يعرض 1 - 10 نتائج من 19 نتيجة بحث عن '"Oscar, Dony"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    مؤتمر

    المصدر: AIP Conference Proceedings ; 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication ; ISSN 0094-243X

  6. 6
    دورية أكاديمية

    المؤلفون: Oscar, Dony

    المصدر: Format : Jurnal Ilmiah Teknik Informatika; Vol 9, No 1 (2020); 11-20 ; FORMAT; Vol 9, No 1 (2020); 11-20 ; 2722-7162 ; 2089-5615

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    رسالة جامعية

    المؤلفون: Gómez Cárdenas, Oscar Dony

    المساهمون: Baldrich Mora, Laura Mercedes, Groot De Restrepo, Helena, Laboratorio de Genética Humana

    وصف الملف: 24 páginas; application/pdf

    العلاقة: Animal Cell Culture Guide %7C ATCC. (s/f). https://www.atcc.org/resources/culture-guides/animal-cell-culture-guideTest; Babilotte, J., Martin, B., Guduric, V., Bareille, R., Agniel, R., Roques, S., Héroguez, V., Dussauze, M., Gaudon, M., Le Nihouannen, D., & Catros, S. (2021). Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Materials Science and Engineering: C, 118, 111334. https://doi.org/10.1016/j.msec.2020.111334Test; Baust, J. M., Buehring, G. C., Campbell, L., Elmore, E., Harbell, J. W., Nims, R. W., Price, P., Reid, Y. A., & Simione, F. (2017). Best practices in cell culture: an overview. In Vitro Cellular & Developmental Biology - Animal, 53(8), 669-672. https://doi.org/10.1007/s11626-017-0177-7Test; Bédard, P., Gauvin, S., Ferland, K., Caneparo, C., Pellerin, È., Chabaud, S., & Bolduc, S. (2020). Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel, Switzerland), 7(3). https://doi.org/10.3390/bioengineering7030115Test; Cai, S., Wu, C., Yang, W., Liang, W., Yu, H., & Liu, L. (2020). Recent advance in surface modification for regulating cell adhesion and behaviors. 9(1), 971-989. https://doi.org/10.1515/ntrev-2020-0076Test; Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., & Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15), 2559-2566. https://doi.org/10.1016/j.biomaterials.2004.07.034Test; Chen, H., Yin, B., Hu, B., Zhang, B., Liu, J., Jing, Y., Fan, Z., Tian, Y., Wei, X., & Zhang, W. (2021). Acellular fish skin enhances wound healing by promoting angiogenesis and collagen deposition. Biomedical Materials, 16(4), 45011. https://doi.org/10.1088/1748-605X/abef7aTest; Choi, W. S., Kim, J. H., Ahn, C. B., Lee, J. H., Kim, Y. J., Son, K. H., & Lee, J. W. (2021). Development of a Multi-Layer Skin Substitute Using Human Hair Keratinic Extract-Based Hybrid 3D Printing. Polymers, 13(16). https://doi.org/10.3390/polym13162584Test; Cialdai, F., Risaliti, C., & Monici, M. (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10, 958381. https://doi.org/10.3389/fbioe.2022.958381Test; Compton, T. (1993). An immortalized human fibroblast cell line is permissive for human cytomegalovirus infection. Journal of Virology, 67(6), 3644-3648. https://doi.org/10.1128/JVI.67.6.3644-3648.1993Test; Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2015). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering. Part A, 21(5-6), 1055-1065. https://doi.org/10.1089/ten.TEA.2014.0443Test; desJardins-Park, H. E., Foster, D. S., & Longaker, M. T. (2018). Fibroblasts and wound healing: an update. Regenerative Medicine, 13(5), 491-495. https://doi.org/10.2217/rme-2018-0073Test; Drexler, H. G. (2001). 1 - Introduction. En H. G. B. T.-T. L.-L. C. L. F. Drexler (Ed.), Factsbook (pp. 2-11). Academic Press. https://doi.org/10.1016/B978-012221970-2/50002-4Test; Esmaeili, A., Biazar, E., Ebrahimi, M., Heidari Keshel, S., Kheilnezhad, B., & Saeedi Landi, F. (2023). Acellular fish skin for wound healing. International Wound Journal, n/a(n/a). https://doi.org/10.1111/iwj.14158Test; Espósito, A. C. C., Brianezi, G., Miot, L. D. B., & Miot, H. A. (2022). Fibroblast morphology, growth rate and gene expression in facial melasma. Anais Brasileiros de Dermatologia, 97(5), 575-582. https://doi.org/10.1016/j.abd.2021.09.012Test; Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 15(3), 3640-3659. https://doi.org/10.3390/ijms15033640Test; Gharibshahian, M., Salehi, M., Beheshtizadeh, N., Kamalabadi-Farahani, M., Atashi, A., Nourbakhsh, M.-S., & Alizadeh, M. (2023). Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering . En Frontiers in Bioengineering and Biotechnology (Vol. 11). https://www.frontiersin.org/articles/10.3389/fbioe.2023.1168504Test; González-González, A. M., Cruz, R., Rosales-Ibáñez, R., Hernández-Sánchez, F., Carrillo-Escalante, H. J., Rodríguez-Martínez, J. J., Velasquillo, C., Talamás-Lara, D., & Ludert, J. E. (2023). In Vitro and In Vivo Evaluation of a Polycaprolactone (PCL)/Polylactic-Co-Glycolic Acid (PLGA) (80:20) Scaffold for Improved Treatment of Chondral (Cartilage) Injuries. En Polymers (Vol. 15, Número 10). https://doi.org/10.3390/polym15102324Test; Greenhalgh, D. G. (2019). Management of Burns. New England Journal of Medicine, 380(24), 2349-2359. https://doi.org/10.1056/NEJMra1807442Test; Hama, R., Reinhardt, J. W., Ulziibayar, A., Watanabe, T., Kelly, J., & Shinoka, T. (2023). Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration. En Biomimetics (Vol. 8, Número 1). https://doi.org/10.3390/biomimetics8010130Test; Han, Y., Lian, M., Wu, Q., Qiao, Z., Sun, B., & Dai, K. (2021). Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. En Frontiers in Bioengineering and Biotechnology (Vol. 9). https://www.frontiersin.org/articles/10.3389/fbioe.2021.629270Test; Hosseini Mansoub, N. (2021). The role of keratinocyte function on the defected diabetic wound healing. International Journal of Burns and Trauma, 11(6), 430-441.; Ibrahim, M., Ayyoubi, H. S., Alkhairi, L. A., Tabbaa, H., Elkins, I., & Narvel, R. (2023). Fish Skin Grafts Versus Alternative Wound Dressings in Wound Care: A Systematic Review of the Literature. Cureus, 15(3), e36348. https://doi.org/10.7759/cureus.36348Test; James, S. L., Lucchesi, L. R., Bisignano, C., Castle, C. D., Dingels, Z. V, Fox, J. T., Hamilton, E. B., Henry, N. J., McCracken, D., Roberts, N. L. S., Sylte, D. O., Ahmadi, A., Ahmed, M. B., Alahdab, F., Alipour, V., Andualem, Z., Antonio, C. A. T., Arabloo, J., Badiye, A. D., . Mokdad, A. H. (2020). Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Injury Prevention, 26(Suppl 2), i36 LP-i45. https://doi.org/10.1136/injuryprev-2019-043299Test; Komine, M., Meijuan, J., Kimura-Sashikawa, M., Hossain, R. M. D., Ansary, T. M., Oshio, T., Meephansan, J., Tsuda, H., Tominaga, S., & Ohtsuki, M. (2022). Keratinocytes in Skin Disorders: The Importance of Keratinocytes as a Barrier (M. Komine (Ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.103732Test; Li, Z. (2011). 5.43 - In Vitro Micro-Tissue and -Organ Models for Toxicity Testing (M. B. T.-C. B. (Second E. Moo-Young (Ed.); pp. 551-563). Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00503-1Test; Low, Z. W. K., Li, Z., Owh, C., Chee, P. L., Ye, E., Dan, K., Chan, S. Y., Young, D. J., & Loh, X. J. (2020). Recent innovations in artificial skin. Biomaterials Science, 8(3), 776-797. https://doi.org/10.1039/C9BM01445DTest; Luze, H., Nischwitz, S. P., Smolle, C., Zrim, R., & Kamolz, L.-P. (2022). The Use of Acellular Fish Skin Grafts in Burn Wound Management-A Systematic Review. En Medicina (Vol. 58, Número 7). https://doi.org/10.3390/medicina58070912Test; Mehra, L., & Gupta, P. (2023). 3 - Biomaterial-based fibers for enhanced wound healing and effective tissue regeneration. En N. Sharma & B. S. B. T.-F. and T. E. in D. D. S. Butola (Eds.), The Textile Institute Book Series (pp. 73-96). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-96117-2.00005-4Test; Navarrete, N., & Rodriguez, N. (2016). Epidemiologic characteristics of death by burn injury from 2000 to 2009 in Colombia, South America: a population-based study. Burns & Trauma, 4(1), 8. https://doi.org/10.1186/s41038-016-0033-0Test; Nilforoushzadeh, M. A., Ahmadi Ashtiani, H. R., Jaffary, F., Jahangiri, F., Nikkhah, N., Mahmoudbeyk, M., Fard, M., Ansari, Z., & Zare, S. (2017). Dermal Fibroblast Cells: Biology and Function in Skin Regeneration. Journal of Skin and Stem Cell, 4(2), e69080. https://doi.org/10.5812/jssc.69080Test; Norton, R., & Kobusingye, O. (2013). Injuries. New England Journal of Medicine, 368(18), 1723-1730. https://doi.org/10.1056/NEJMra1109343Test; Park, Y., Huh, K. M., & Kang, S.-W. (2021). Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052491Test; Patel, M., Jha, A., & Patel, R. (2021). Potential application of PLGA microsphere for tissue engineering. Journal of Polymer Research, 28(6), 214. https://doi.org/10.1007/s10965-021-02562-6Test; Phan, T. T., Lim, I. J., Tan, E. K., Bay, B. H., & Lee, S. T. (2005). Evaluation of cell culture on the polyurethane-based membrane (TegadermTM): implication for tissue engineering of skin. Cell and Tissue Banking, 6(2), 91-97. https://doi.org/10.1007/s10561-004-3904-8Test; Piipponen, M., Li, D., & Landén, N. X. (2020). The Immune Functions of Keratinocytes in Skin Wound Healing. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/ijms21228790Test; Poor cell growth troubleshooting. (s/f). https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/poor-cell-growthTest; Price, K., Lee, K. C., Woolley, K. E., Falk, H., Peck, M., Lilford, R., & Moiemen, N. (2021). Burn injury prevention in low- and middle- income countries: scoping systematic review. Burns & Trauma, 9, tkab037. https://doi.org/10.1093/burnst/tkab037Test; Quinn, L., Ahmed, T., Falk, H., Miranda Altamirano, A., Muganza, A., Nakarmi, K., Nawar, A., Peck, M., Man Rai, S., Sartori, J., Philipe Molina Vana, L., Wabwire, B., Moiemen, N., & Lilford, R. (2023). Burn Admissions Across Low- and Middle-income Countries: A Repeated Cross-sectional Survey. Journal of Burn Care & Research, 44(2), 320-328. https://doi.org/10.1093/jbcr/irac096Test; Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 146, 344-365. https://doi.org/0.1016/j.addr.2018.06.019Test; Russo, B., Brembilla, N. C., & Chizzolini, C. (2020). Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. En Frontiers in immunology (Vol. 11, p. 648). https://doi.org/10.3389/fimmu.2020.00648Test; Sadeghi-Avalshahr, A., Nokhasteh, S., Molavi, A. M., Khorsand-Ghayeni, M., & Mahdavi-Shahri, M. (2017). Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regenerative Biomaterials, 4(5), 309-314. https://doi.org/10.1093/rb/rbx026Test; Salerno, S., Messina, A., Giordano, F., Bader, A., Drioli, E., & De Bartolo, L. (2017). Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. Materials Science and Engineering: C, 71, 943-953. https://doi.org/https://doi.org/10.1016/j.msec.2016.11.008Test; Seo, M.-D., Kang, T. J., Lee, C. H., Lee, A.-Y., & Noh, M. (2012). HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines. Biomolecules & Therapeutics, 20(2), 171-176. https://doi.org/10.4062/biomolther.2012.20.2.171Test; Sierra-Sánchez, Á., Kim, K. H., Blasco-Morente, G., & Arias-Santiago, S. (2021). Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. npj Regenerative Medicine, 6(1), 35. https://doi.org/10.1038/s41536-021-00144-0Test; Skardal, A. (2015). Chapter 1 - Bioprinting Essentials of Cell and Protein Viability (A. Atala & J. J. B. T.-E. of 3D B. and T. Yoo (Eds.); pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-12-800972-7.00001-3Test; Souto, E. B., Ribeiro, A. F., Ferreira, M. I., Teixeira, M. C., Shimojo, A. A. M., Soriano, J. L., Naveros, B. C., Durazzo, A., Lucarini, M., Souto, S. B., & Santini, A. (2020). New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. En International Journal of Molecular Sciences (Vol. 21, Número 2). https://doi.org/10.3390/ijms21020393Test; Stokes, M. A. R., & Johnson, W. D. (2017). Burns in the Third World: an unmet need. Annals of Burns and Fire Disasters, 30(4), 243-246.; Sun, Q., Hou, Y., Chu, Z., & Wei, Q. (2022). Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 10, 397-404. https://doi.org/10.1016/j.bioactmat.2021.08.026Test; Sun, Q., Wei, Q., & Zhao, C. (2021). How do the cells sense and respond to the microenvironment mechanics? Chinese Science Bulletin, 66(18), 2303-2311. https://doi.org/https://doi.org/10.1360/TB-2020-1069Test; Tavakoli, S., & Klar, A. S. (2021). Bioengineered Skin Substitutes: Advances and Future Trends. En Applied Sciences (Vol. 11, Número 4). https://doi.org/10.3390/app11041493Test; Ulrich, A. B., & Pour, P. M. (2001). Cell Lines (S. Maloy & K. B. T.-B. E. of G. (Second E. Hughes (Eds.); pp. 481-482). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.00212-6Test; Urciuolo, F., Casale, C., Imparato, G., & Netti, P. A. (2019). Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. Journal of Clinical Medicine, 8(12). https://doi.org/10.3390/jcm8122083Test; Verma, A. (2014). Chapter 12 - Animal Tissue Culture: Principles and Applications (A. S. Verma & A. B. T.-A. B. Singh (Eds.); pp. 211-231). Academic Press. https://doi.org/10.1016/B978-0-12-416002-6.00012-2Test; Wall, S. L., Velin, L., Abbas, A., Allorto, N. L., Graner, M., Moeller, E., Ryan-Coker, M. F. D., & Pompermaier, L. (2023). Who tells the story of burns in low-and-middle income countries? A bibliometric study. Burns, 49(4), 854-860. https://doi.org/10.1016/j.burns.2022.06.003Test; Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22(2), 246-255. https://doi.org/10.1111/wrr.12154Test; Xie, W., Wei, X., Kang, H., Jiang, H., Chu, Z., Lin, Y., Hou, Y., & Wei, Q. (2023). Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 10(9), 2204594. https://doi.org/10.1002/advs.202204594Test; Yakupu, A., Zhang, J., Dong, W., Song, F., Dong, J., & Lu, S. (2022). The epidemiological characteristic and trends of burns globally. BMC Public Health, 22(1), 1596. https://doi.org/10.1186/s12889-022-13887-2Test; Yang, X., Wang, Y., Zhou, Y., Chen, J., & Wan, Q. (2021). The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. En Polymers (Vol. 13, Número 16). https://doi.org/10.3390/polym13162754Test; Yin, B., He, Y., Zhang, Z., Cheng, X., Bao, W., Li, S., Wang, W., & Jia, C. (2023). Global burden of burns and its association with socio-economic development status, 1990-2019. Burns. https://doi.org/10.1016/j.burns.2023.02.007Test; Zhong, J., Wang, H., Yang, K., Wang, H., Duan, C., Ni, N., An, L., Luo, Y., Zhao, P., Gou, Y., Sheng, S., Shi, D., Chen, C., Wagstaff, W., Hendren-Santiago, B., Haydon, R. C., Luu, H. H., Reid, R. R., Ho, S. H., . Fan, J. (2022). Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioactive Materials, 9, 523-540. https://doi.org/10.1016/j.bioactmat.2021.07.022Test; Zorina, A., Zorin, V., Isaev, A., Kudlay, D., Vasileva, M., & Kopnin, P. (2023). Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. En Current Issues in Molecular Biology (Vol. 45, Número 5, pp. 3829-3847). https://doi.org/10.3390/cimb45050247Test; http://hdl.handle.net/1992/69050Test; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.coTest/

  10. 10
    دورية أكاديمية