يعرض 1 - 10 نتائج من 8,078 نتيجة بحث عن '"Order of reaction"', وقت الاستعلام: 1.69s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: This works was supported by the Russian Science Foundation, Project No. 22-79-00129. https://rscf.ru/en/project/22-79-00129Test, Исследование выполнено за счет гранта Российского научного фонда № 22-79-00129. https://rscf.ru/project/22-79-00129Test

    المصدر: Izvestiya. Non-Ferrous Metallurgy; № 2 (2023); 5-14 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 2 (2023); 5-14 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1476/637Test; Mineral commodity summaries 2022. URL: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdfTest (accessed: 24.02.2023).; Illés I.B., Nagy S., Kékesi T. The recycling of pure metallic indium from waste LCD screens by a combined hydro-electrometallurgical method. Hydrometallurgy. 2022;213:105945. https://doi.org/10.1016/j.hydromet.2022.105945Test; Wang H.Y. A study of the effects of LCD glass sand on the properties of concrete. Waste Management. 2009;29(1):335—341. https://doi.org/10.1016/j.wasman.2008.03.005Test; Savvilotidou V., Kousaiti A., Batinic B., Vaccari M., Kastanaki E., Karagianni K., Gidarakos E. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays. Waste Management. 2019;87:51—61. https://doi.org/10.1016/j.wasman.2019.01.029Test; Li J., Gao S., Duan H., Liu L. Recovery of valuable materials from waste liquid crystal display panel. Waste Management. 2009;29(7):2033—2039. https://doi.org/10.1016/j.wasman.2008.12.013Test; Chinnam R.K., Ujaczki É., O’Donoghue L. Leaching indium from discarded LCD glass: A rapid and environmentally friendly process. Journal of Cleaner Production. 2020;277:122868. https://doi.org/10.1016/j.jclepro.2020.122868Test; Wang S., He Y., Yang J., Feng Y. Enrichment of indium tin oxide from colour filter glass in waste liquid crystal display panels through flotation. Journal of Cleaner Production. 2018;189:464—471. https://doi.org/10.1016/j.jclepro.2018.04.096Test; Lahtela V., Virolainen S., Uwaoma A., Kallioinen M., Kärki T., Sainio T. Novel mechanical pre-treatment methods for effective indium recovery from end-of-life liquid-crystal display panels. Journal of Cleaner Production. 2019;230:580—591. https://doi.org/10.1016/j.jclepro.2019.05.163Test; Virolainen S., Huhtanen T., Laitinen A., Sainio T. Two alternative process routes for recovering pure indium from waste liquid crystal display panels. Journal of Cleaner Production. 2020;243:118599. https://doi.org/10.1016/j.jclepro.2019.118599Test; Wang Y., Wang R., Zhang C., Wang J. Full components recovery of organic matter and indium from discarded liquid crystal display panels. Journal of Cleaner Production. 2021;299:126862. https://doi.org/10.1016/j.jclepro.2021.126862Test; Zhang L., Wu B., Chen Y., Xu Z. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process: Pyrolysis of liquid crystals and preparation of indium product. Journal of Cleaner Production. 2017;162:141—152. https://doi.org/10.1016/j.jclepro.2017.06.031Test; Park K-S., Sato W., Grause G., Kameda T., Yoshioka T. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochimica Acta. 2009;493(1-2):105—108. https://doi.org/10.1016/j.tca.2009.03.003Test; Rocchetti L., Amato A., Fonti V., Ubaldini S., de Michelis I., Kopacek B., Vegliò F., Beolchini F. Cross-current leaching of indium from end-of-life LCD panels. Waste Management. 2015;42:180—187. https://doi.org/10.1016/j.wasman.2015.04.035Test; Houssaine Moutiy E., Tran L-H., Mueller K.K., Coudert L., Blais J-F. Optimized indium solubilization from LCD panels using H2SO4 leaching. Waste Management. 2020;114:53—61. https://doi.org/10.1016/j.wasman.2020.07.002Test; Kato T., Igarashi S., Ishiwatari Y., Furukawa M., Yamaguchi H. Separation and concentration of indium from a liquid crystal display via homogeneous liquid—liquid extraction. Hydrometallurgy. 2013;137:148—155. https://doi.org/10.1016/j.hydromet.2013.06.004Test; Lee C-H., Jeong M-K., Fatih Kilicaslan M., Lee J-H., Hong H-S., Hong S-J. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM. Waste Management. 2013;33(3):730—734. https://doi.org/10.1016/j.wasman.2012.10.002Test; Argenta A.B., Reis C.M., Mello G.P., Dotto G.L., Tanabe E.H., Bertuol D.A. Supercritical CO2 extraction of indium present in liquid crystal displays from discarded cell phones using organic acids. The Journal of Supercritical Fluids. 2017;120:95—101. https://doi.org/10.1016/j.supflu.2016.10.014Test; Virolainen S., Ibana D., Paatero E. Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy. 2011;107(1-2):56—61. https://doi.org/10.1016/j.hydromet.2011.01.005Test; Ruan J., Guo Y., Qiao Q. Recovery of indium from scrap TFT-LCDs by solvent extraction. Procedia Environmental Sciences. 2012;16:545—551. https://doi.org/10.1016/j.proenv.2012.10.075Test; Assefi M., Maroufi S., Nekouei R.K., Sahajwalla V. Selective recovery of indium from scrap LCD panels using macroporous resins. Journal of Cleaner Production. 2018;180:814—822. https://doi.org/10.1016/j.jclepro.2018.01.165Test; Fortin-Lecomte C., Tran L-H., Rioux G., Coudert L., Blais J-F. Recovery of indium from acidic leach solutions of spent LCD panels using ion exchange. Hydrometallurgy. 2022;210:105845. https://doi.org/10.1016/j.hydromet.2022.105845Test; Qin J., Ning S., Fujita T., Wei Y., Zhang S., Lu S. Leaching of indium and tin from waste LCD by a time-efficient method assisted planetary high energy ball milling. Waste Management. 2021;120:193—201. https://doi.org/10.1016/j.wasman.2020.11.028Test; Zhang K., Li B., Wu Y., Wang W., Li R., Zhang Y-N., Zuo T. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Management. 2017;64:236—243. https://doi.org/10.1016/j.wasman.2017.03.031Test; Souada M., Louage C., Doisy J-Y., Meunier L., Benderrag A., Ouddane B., Bellayer S., Nuns N., Traisnel M., Maschke U. Extraction of indium-tin oxide from end-oflife LCD panels using ultrasound assisted acid leaching. Ultrasonics Sonochemistry. 2018;40:929—936. https://doi.org/10.1016/j.ultsonch.2017.08.043Test; Gernon M.D., Wu M., Buszta T., Janney P. Environmental benefits of methanesulfonic acid. Green Chemistry. 1999;1(3):127—140. https://doi.org/10.1039/A900157CTest; Palden T., Onghena B., Regadío M., Binnemans K. Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. Green Chemistry. 2019;21(19):5394—5404. https://doi.org/10.1039/C9GC02238DTest; Wang H., Yang S., Chang C., Zhou X., Deng X., He J., He X., Chen Y. Direct oxidative pressure leaching of bismuth sulfide concentrate in methanesulfonic acid medium. Hydrometallurgy. 2020;194:105347. https://doi.org/10.1016/j.hydromet.2020.105347Test; Wu J., Ahn J., Lee J. Kinetic and mechanism studies using shrinking core model for copper leaching from chalcopyrite in methanesulfonic acid with hydrogen peroxide. Mineral Processing and Extractive Metallurgy Review. 2021;42(1):38—45. https://doi.org/10.1080/08827508.2020.1795850Test; Wu Z., Dreisinger D.B., Urch H., Fassbender S. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA). Hydrometallurgy. 2014;142:23—35. https://doi.org/10.1016/j.hydromet.2013.10.018Test; Dreisinger D., Baxter K., Worland A., Cooper T., Cau T., Waters N. Lead metal production at Paroo station mine using leach-electrowinning process in methane sulfonic acid solution. In: PbZn 2020: 9th International Symposium on Lead and Zinc Processing (San Diego, USA, 23—27 February, 2020). Switzerland, Springer, 2020. P. 135—163. https://doi.org/10.1007/978-3-030-37070-1_12Test; Зинченко А.В., Изотова С.Г., Румянцев А.В. Новый справочник химика и технолога. Химическое равновесие. Свойства растворов. С.-Пб.: АНО НПО «Профессионал», 2004. 998 с.; Guthrie J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20° pK units. Canadian Journal of Chemistry. 1978;56(17):2342—2354. https://doi.org/10.1139/v78-385Test; Illés I.B., Kékesi T. The application of selective leaching and complex anion exchange in a novel aqueous process to produce pure indium from waste liquid crystal display panels. Journal of Environmental Chemical Engineering. 2022;10(5):108420. https://doi.org/10.1016/j.jece.2022.108420Test; Cao Y., Li F., Li G., Huang J., Zhu H., He W. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis. Waste Management. 2020;102:635—644. https://doi.org/10.1016/j.wasman.2019.11.029Test; https://cvmet.misis.ru/jour/article/view/1476Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية