يعرض 1 - 10 نتائج من 216 نتيجة بحث عن '"O. S. Medvedev"', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المساهمون: The study was carried out within the framework of a scientific project of the state assignment of the Government of the Russian Federation to the Federal State Budget Educational Institution of Higher Education M.V.Lomonosov Moscow State University, The Government of the Russian Federation No.121032300071-8, Исследование выполнено в рамках научного проекта государственного задания Правительства Российской Федерации Федеральному государственному бюджетному образовательному учреждению высшего образования «Московский государственный университет имени М.В.Ломоносова» Правительства Российской Федерации № 121032300071-8

    المصدر: PULMONOLOGIYA; Том 34, № 1 (2024); 19-30 ; Пульмонология; Том 34, № 1 (2024); 19-30 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4485/3596Test; Poch D., Mandel J. Pulmonary hypertension. Ann. Intern. Med. 2021; 174 (4): ITC49–64. DOI:10.7326/AITC202104200.; Simonneau G., Gatzoulis M., Adatia I. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013; 62 (25, Suppl.): D34–41. DOI:10.1016/j.jacc.2013.10.029.; Waxman A., Elia D., Adir Y. et al. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur. Respir. Rev. 2022; 31 (165): 210220. DOI:10.1183/16000617.0220-2021.; Nogueira-Ferreira R., Vitorino R., Ferreira R., Henriques-Coelho T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: a network approach. Pulm. Pharmacol. Ther. 2015; 35: 8–16. DOI:10.1016/j.pupt.2015.09.007.; Cui Y., Robertsonb J., Maharaj S. et al. Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int. J. Biochem. Cell Biol. 2011; 43 (8): 1122–1133. DOI:10.1016/j.biocel.2011.04.005.; Ohsawa I., Ishikawa M., Takahashi K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007; 13 (6): 688–694. DOI:10.1038/nm1577.; Iida A., Nosaka N., Yumoto T. et al. The clinical application of hydrogen as a medical treatment. Acta Med. Okayama. 2016; 70 (5): 331–337. DOI:10.18926/amo/54590.; Liu C., Zhang K., Chen G. Hydrogen therapy: from mechanism to cerebral diseases. Med. Gas Res. 2016; 6 (1): 48–54. DOI:10.4103/2045-9912.179346.; Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014; 144 (1): 1–11. DOI:10.1016/j.pharmthera.2014.04.006.; Ge L., Yang M., Yang N. et al. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget. 2017; 8 (60): 102653–102673. DOI:10.18632/oncotarget.21130.; Huang L. Molecular hydrogen: a therapeutic antioxidant and beyond. Med. Gas. Res. 2016; 6 (4): 219–222. DOI:10.4103/2045-9912.196904.; Шогенова Л.В., Туе Т.Ч., Крюкова Н.О. и др. Ингаляционный водород в реабилитационной программе медицинских работников, перенесших COVID-19. Кардиоваскулярная терапия и профилактика. 2021; 20 (6): 2986. DOI:10.15829/1728-8800-2021-2986.; Nicolson G., de Mattos G., Settineri R. et al. Clinical effects of hydrogen administration: from animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016; 7 (1): 32–76. DOI:10.4236/ijcm.2016.71005.; Liu L., Shi Q., Liu X. et al. Attenuation of myocardial fibrosis using molecular hydrogen by inhibiting the TGF-β signaling pathway in spontaneous hypertensive rats. Am. J. Hypertension. 2022; 35 (2): 156–163. DOI:10.1093/ajh/hpab159.; Nakayama M., Itami N., Suzuki H. et al. Novel haemodialysis (HD) treatment employing molecular hydrogen (H2)-enriched dialysis solution improves prognosis of chronic dialysis patients: a prospective observational study. Sci. Rep. 2018; 8 (1): 254. DOI:10.1038/s41598-017-18537-x.; Kishimoto Y., Kato T., Ito M. et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J. Thorac. Cardiovasc. Surg. 2015; 150 (3): 645–654. DOI:10.1016/j.jtcvs.2015.05.052.; Wang Y., Jing L., Zhao X.M. et al. Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model. Respir. Res. 2011; 12 (1): 26. DOI:10.1186/1465-9921-12-26.; He B., Zhang Y., Kang B. et al. Protection of oral hydrogen water as an antioxidant on pulmonary hypertension. Mol. Biol. Rep. 2013; 40 (9): 5513–5521. DOI:10.1007/s11033-013-2653-9.; Sano M., Ichihara G., Katsumata Y. et al. Pharmacokinetics of a single inhalation of hydrogen gas in pigs. PLoS One. 2020; 15 (6): e0234626. DOI:10.1371/journal.pone.0234626.; Ichihara G., Katsumata Y., Moriyama H. et al. Pharmacokinetics of hydrogen after ingesting a hydrogen-rich solution: a study in pigs. Heliyon. 2021; 7 (11): e08359. DOI:10.1016/j.heliyon.2021.e08359.; Wijsenbeek M., Suzuki A., Maher T. Interstitial lung diseases. Lancet. 2022; 400 (10354): 769–786. DOI:10.1016/S0140-6736(22)01052-2.; Kuropatkina T., Pavlova O., Gulyaev M. et al. Sex-dependent protective effect of combined application of solubilized ubiquinol and Selenium on monocrotaline-induced pulmonary hypertension in Wistar rats. Antioxidants (Basel). 2022; 11 (3): 1–16. DOI:10.3390/antiox11030549.; Otoupalova E., Smith S., Cheng G., Thannickal V.J. Oxidative stress in pulmonary fibrosis. Compr. Physiol. 2020; 10 (2): 509–547. DOI:10.1002/cphy.c190017.; Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic application. Curr. Pharm. Des. 2011; 17 (22): 2241–2252. DOI:10.2174/138161211797052664.; Komi D., Mortaz E., Amani S. et al. The role of mast cells in IgE-Independent lung diseases. Clin. Rev. Allergy Immunol. 2020; 58 (3): 377–387. DOI:10.1007/s12016-020-08779-5.; Atiakshin D., Kostin A., Volodkin A. et al. Mast cells as a potential target of molecular hydrogen in regulating the local tissue microenvironment. Pharmaceuticals (Basel). 2023; 16 (6): 817. DOI:10.3390/ph16060817.; Shi J., Duncan B., Kuang X. Hydrogen treatment: a novel option in liver diseases. Clin. Med. (Lond.). 2021; 21 (2): e223–227. DOI:10.7861/clinmed.2020-0370.; Farha S., Sharp J., Asosingh K. et al. Mast cell number, phenotype, and function in human pulmonary arterial hypertension. Pulm. Circ. 2012; 2 (2): 220–228. DOI:10.4103/2045-8932.97609.; Tsang Y., Panjabi S., Funtanilla V. et al. Economic burden of illness among patients with pulmonary arterial hypertension (PAH) associated with connective tissue disorders (CTD). Pulm. Circ. 2023; 13 (2): e12218. DOI:10.1002/pul2.12218.; Liu H., Liang X., Wang D. et al. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock. 2015; 43 (5): 504–511. DOI:10.1097/shk.0000000000000316.; https://journal.pulmonology.ru/pulm/article/view/4485Test