يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"O. Bogomyakova B."', وقت الاستعلام: 1.22s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Мы благодарим Министерство науки и высшего образования РФ (АААА-А16-116121510090-5) за доступ к МРТ оборудованию. Исследование выполнено при финансовой поддержке РНФ (№ 19-75-00052).

    المصدر: Diagnostic radiology and radiotherapy; Том 12, № 1 (2021); 30-35 ; Лучевая диагностика и терапия; Том 12, № 1 (2021); 30-35 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/579/452Test; Lapointe E., Li D.K.B., Traboulsee A.L., Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? // AJNR Am. J. of Neuroradiology. 2018. doi: https://doi.org/10.3174/ajnr.A5504Test.; Grigoriadis N., van Pesch V., Paradig MS Group. A basic overview of multiple sclerosis immunopathology // Europ. J. Neurology. 2015. Vol. 22 (2). Р. 3-13. doi:10.1111.; Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis // The Lancet. 2018. doi: https://doi.org/10.1016/S0140-6736Test(18)30481-1.; MRI in multiple sclerosis: clinical and research update. 2018. Available at: https://insights.ovid.com/pubmed?pmid=29561520Test (accessed 31 March 2018).; Sati P., Oh J., Constable R.T. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative // Nat. Rev. Neurol. 2016. Vol. 12 (12). Р. 714-722. doi:10.1038/nrneurol.2016.166pmid:27834394.; Law M, Saindaine A.M., Ge Y. et al. Microvascular abnormality in relapsingremitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter // Radiology. 2004. Vol. 231 (3). Р. 645-652. doi:10.1148/radiol.2313030996.; Rashid W., Parkes L.M., Ingle G.T. et al. Abnormalities of cerebral perfusion in multiple sclerosis // J. Neurol. Neurosurg. Psychiary. 2004. Vol. 75. Р. 1288-1293. doi:10.1136/jnnp.2003.026021.; Hojjat S.P., Kincal M., Vitorino R., Cantrell C.G., Feinstein A., Zhang L., Lee L., O'Connor P., Carroll T.J., Aviv R. Cortical Perfusion Alteration in Normal-Appearing Gray Matter Is Most Sensitive to Disease Progression in Relapsing-Remitting Multiple Sclerosis // AJNR Am. J. Neuroradiol. 2016. Vol. 37, No. 8. Р. 1454-1461.; Hojjat S.-P., Cantrell C.G., Carroll T.J., Vitorino R., Feinstein A., Zhang L., Symons S.P., Morrow S.A., Lee L., O'Connor P., Aviv R. Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients // MultScler. 2016. Vol. 22, No. 3. Р. 1685-1694.; Francis P.L., Jakubovic R., O'Connor P., Zhang L., Eilaghi A., Lee L., Carroll T.J., Mouannes-Srour J., Feinstein A., Aviv R.I. Robust perfusion deficits in cognitively impaired patients with secondary-progressive multiple sclerosis // AJNR Am. J. Neuroradiol. 2013. Vol. 34, No. 1. Р. 62-67.; Helms G. Volume correction for edema in single-volume proton MR spectroscopy of contrast-enhancing multiple sclerosis lesions // Magn. Reson Med. 2001. Vol. 46, No. 2. Р. 256-263.; Wuerfel J., Bellmann-Strobl J., Brunecker P., Aktas O., McFarland H., Villringer A., Zipp F. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study // Brain. A J. Neurol. 2004. Vol. 127, No. 1. Р. 111-119.; Adams C.W.M., Poston R.N., Buk S.J. et al. Inflammatory vasculitis in multiple sclerosis // J. Neurol. Sci. 1985. Vol. 69, No. 1. Р. 269-283.; Bakshi R., Thompson A.J., Rocca M.A., Pelletier D., Dousset V., Barkhof F., Inglese M., Guttmann C.R.G., Horsfield M.A., Filippi M. MRI in multiple sclerosis: current status and future prospects // Lancet Neurol. 2008. Vol. 7, No. 7. Р. 615-625.; Doche E., Lecocq A., Maarouf A., Duhamel G., Soulier E., Confort-Gouny S., Rico A., Guye M., Audoin B., Pelletier J., Ranjeva J.P., Zaaraoui W. // J Hypoperfusion of the thalamus is associated with disability in relapsing remitting multiple sclerosis. Neuroradiol. 2017. Vol. 44, No. 2. Р. 158-164.; https://radiag.bmoc-spb.ru/jour/article/view/579Test

  2. 2
    دورية أكاديمية

    المساهمون: Мы благодарим Министерство науки и высшего образования РФ за доступ к МРТ-оборудованию.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 9, № 3 (2020); 21-29 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 9, № 3 (2020); 21-29 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/754/513Test; Maillard S.M., Jones R., Owens C., Pilkington C., Woo P., Wedderburn L.R., Murray K.J. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology. 2004;43(5):603-608. doi:10.1093/rheumatology/keh130; Schmidt J. Current Classification and Management of Inflammatory Myopathies. J Neuromuscul Dis. 2018;5(2):109- 129. doi:10.3233/JND-180308; Oldroyd A., Lilleker J., Chinoy H. Idiopathic inflammatory myopathies – a guide to subtypes, diagnostic approach and treatment. Clin Med. 2017;17(4):322-328. doi:10.7861/clinmedicine.17-4-322; Литвиненко И.В., Живолупов С.А., Бардаков С.Н., Самарцев И.Н., Рашидов Н.А., Яковлев Е.В. Воспалительные миопатии: патогенез, клиника, диагностика, лечение. Вестник Российской военно-медицинской академии. 2015;3(51):217-226.; Lundberg I.E., Miller F.W., Tjärnlund A., Bottai M. Diagnosis and classification of Idiopathic Inflammatory Myopathies. Intern Med. 2016;280(1):39-51. doi:10.1111/joim.12524; Birnkrant D.J., Bushby K., Bann C.M., Apkon S.D., Blackwell A., Brumbaugh D. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet Neurology. 2018;17(3):1-17. doi:10.1016/S1474-4422(18)30024-3; Shelly M.J., Bolster F., Foran P., Crosbie I., Kavanagh E.C., Eustace S.J. Whole-body magnetic resonance imaging in skeletal muscle disease. Semin Musculoskeletal Radiol. 2010;14(1):47–56. doi:10.1055/s-0030-1248704; Jackson G.D., Connelly A., Duncan J.S., Grunewald R.A., Gadian D.G. Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance. Neurology. 1993;43(9):1793-1799. doi:10.1212/wnl.43.9.1793.; Weber M.A., Wolf M., Wattjes M.P. Imaging Patterns of Muscle Atrophy. Semin Musculoskelet Radiol. 2018;22:299– 306. doi; 10.1055/s-0038-1641574; Bohan A., Peter J.B. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344-347. doi:10.1056/NEJM197502132920706; Mercuri E., Pichiecchio A., Allsop J., Messina S., Pane M., Muntony F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging. 2007;25:433–440. doi:10.1002/jmri.20804; McDouall R.M., Dunn M.J., Dubowitz V. Nature of the mononuclear infiltrate and the mechanism of muscle damage in juvenile dermatomyositis and Duchenne muscular dystrophy. J Neurol Sci. 1990;99(2-3):199 – 217.; Kliegman R., Nelson W.E. Nelson textbook of pediatrics. Philadelphia: Saunders, 2007.; Prior B.M., Foley J.M., Jayaraman R.C., Meyer R.A. Pixel T2 distribution in functional magnetic resonance images of muscle. J Appl Physiol. 1999;87(6):2107 – 2114. doi:10.1152/jappl.1999.87.6.2107; Baffa A.P., Felisio L.R., Saad M.C., Nogueira-Barbosa M.H., Santos A.C., Bevilaqua-Grossy D. Quantitative MRI of Vastus Medialis, Vastus Lateralis and Gluteus Medius Muscle Workload after Squat Exercise: Comparison Between Squatting with Hip Adduction and Hip Abduction. J Hum Kinet. 2012;33:5-14. doi:10.2478/v10078-012-0039-z; Kumbhare D.A., Elzibak A.H., Akbary A., Noseworthy M.D. Advanced Skeletal Muscle MR Imaging Approaches in the Assessment of Muscular Dystrophies. Int J Phys Med Rehabil. 2014;2(6):248-259. doi:10.4172/2329-9096.1000248; Reimers C.D., Schedel H., Fleckenstein J.L., Nagele M., Witt T.N., Pongratz T.E. et al. Magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults. J Neurol.1994; 241(5):306-314. doi:10.1007/BF00868438; Klupp E., Weidlich D., Schlaeger S., Baum T., Cervanres B., Deschauer M. et al. B1-insensitive T2 mapping of healthy thigh muscles using a T2-prepared 3D TSE sequence. PLoS One. 2017;12(2):e0171337.; https://www.nii-kpssz.com/jour/article/view/754Test

  3. 3
    دورية أكاديمية

    المصدر: Complex Issues of Cardiovascular Diseases; Том 9, № 3 (2020); 81-89 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 9, № 3 (2020); 81-89 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/760/518Test; Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991-999. doi:10.1084/jem.20142290; Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., Harris T.H., Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi:10.1038/nature14432; Iliff J.J., Wang M., Liao Y., Plogg B., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., Nagelhus E.A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111- 147ra111. doi:10.1126/scitranslmed.3003748; Jessen N.A., Munk A.S.F., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583-2599. doi:10.1007/s11064-015-1581-6; Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M., Contarino C., OnengutGumuscu S., Farber E., Raper D., Viar K.E., Powell R.D., Baker W., Dabhi N., Bai R., Cao R., Hu S., Rich S.S., Munson J.M., Lopes M.B., Overall C.C., Acton S.T., Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185-191. doi: /10.1038/ s41586-018-0368-8; Kress B.T., Iliff J.J., Xia M., Wang M, Wei H.S., Zeppenfeld D., Xie L., Kang H., Xu Q., Liew J.A., Plog B.A., Ding F., Deane R., Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845-861. doi:10.1002/ana.24271; Xie L., Kang H., Xu Q., Chen M.J., Liao Y., Thiyagarajan M., O’Donnell J., Christensen D.J., Nicholson C., Iliff J.J., Takano T., Deane R., Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373- 377. doi:10.1126/science.1241224; Fultz N.E., Bonmassar G., Setsompop K., Stickgold R.A., Rosen B.R., Polimeni J.R., Lewis L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631. doi:10.1126/science.aax5440; Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., Logan J., Nedergaard M., Benveniste H. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034- 11044. doi:10.1523/JNEUROSCI.1625-15.2015; Davson H., Segal M.B. Physiology of the CSF and blood-brain barriers.: CRC press.; 1996.; Ma Q., Ineichen B.V., Detmar M., Proulx S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1- 13. doi:10.1038/s41467-017-01484-6; Jackson R.T., Tigges J., Arnold W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol. 1979;105(4):180-184. doi:10.1001/archotol.1979.00790160014003; Gomez D.G., Manzo R.P., Fenstermacher J.D., Potts D.G. Cerebrospinal fluid absorption in the rabbit. Graefes Arch Clin Exp Ophthalmol. 1988;226(1):1-7. doi:10.1007/BF02172707; Orešković D., Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Brain Res Rev. 2010;64(2):241- 262. doi:10.1016/j.brainresrev.2010.04.006; Hannocks M.J., Pizzo M.E., Huppert J., Deshpande T., Abbott N.J., Thorne R.G., Sorokin L. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab. 2018;38(4):669-686. doi:10.1177/0271678X17749689; Rennels M.L., Gregory T.F., Blaumanis O.R., Fujimoto K., Grady P.A. Evidence for a ‘paravascular’fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47-63. doi:10.1016/0006-8993(85)91383-6; Rennels M.L., Blaumanis O.R., Grady P.A. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990;52:431-439.; Brightman M.W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965;117(2):193-219.; Brightman M.W., Reese T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648-677.; Ichimura T., Fraser P.A., Cserr H.F. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991;545((1-2)):103-113. doi:10.1016/0006-8993(91)91275-6; Carare R.O., Bernardes-Silva M., Newman T.A., Page A.M., Nicoll J.A.R., Perry V.H., Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131-144. doi:10.1111/j.1365-2990.2007.00926.x; Morris A.W., Sharp M.M., Albargothy N.J., Fernandes R., Hawkes C.A., Verma A., Weller R.O., Carare R.O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131(5):725-736. doi:10.1007/s00401-016-1555-z; Abbott N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437-449. doi:10.1007/s10545-013-9608-0; Bakker E.N., Bacskai B.J., Arbel-Ornath M., Aldea R., Bedussi B., Morris A.W.J., Weller R.O., Carare R.O. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181-194. doi:10.1007/s10571-015-0273-8; Hladky S.B., Barrand M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):1-32. doi:10.1186/2045-8118-11-26; Sharp M.K., Diem A.K., Weller R.O., Carare R.O. Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann Biomed Eng. 2016;44(5):1553-1565. doi:10.1007/s10439-015-1457-6; Coloma M., Schaffer J.D., Carare R.O., Chiarot P.R., Huang P. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J Math Biol. 2016;73(2):469-490. doi:10.1007/s00285-015-0960-6; Iliff J.J., Chen M.J., Plog B.A., Zeppenfeld D.M., Soltero M., Yang L., Singh I., Deane R., Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-16193. doi:10.1523/JNEUROSCI.3020-14.2014; Mathiisen T.M., Lehre K.P., Danbolt N.C., Ottersen O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094-1103. doi:10.1002/glia.20990; Korogod N., Petersen C.C., Knott G.W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife. 2015;4:e05793. doi:10.7554/eLife.05793; Jin B.J., Smith A.J., Verkman A.S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol. 2016;148(6):489-501. doi:10.1085/jgp.201611684; Iliff J.J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299- 1309. doi:10.1172/JCI67677.; Taoka T., Jost G., Frenzel T., Naganawa S., Pietsch H. Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations. Invest Radiol. 2018;53(9):529-534. doi:10.1097/RLI.0000000000000473; Akbar J.J., Luetmer P.H., Schwartz K.M., Hunt C.H., Diehn F.E., Eckel L.J. The role of MR myelography with intrathecal gadolinium in localization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33(3):535-540. doi:10.3174/ajnr.A2815; Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691-2705. doi:10.1093/brain/awx191; Ringstad G., Valnes L.M., Dale A.M., Pripp A.H., Vatnehol S.A.S., Emblem K.E., Mardal K.A., Eide P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI insight. 2018;3(13): e121537. doi:10.1172/jci.insight.121537; Van De Haar H.J., Burgmans S., Jansen J.F., Van Osch M.J.P., Van Buchem M.A., Muller M., Hofman P.A.M., Verhey F.R.J., Backes W.H. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527-535. doi:10.1148/radiol.2016152244; Jiang Q., Zhang L., Ding G., Davoodi-Bojd E., Li Q., Li L., Sadry N., Nedergaard M., Chopp M., Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2017;37(4):1326-1337. doi:10.1177/0271678X16654702; Mascagni P. Vasorum lymphaticorum corporis humani historia et ichnographia. Siena: Ex typographia Pazzini Carli; 1787. Available at: https://anatomia.library.utoronto.ca/islandora/object/anatomia%3ARBAI052Test (accessed 09.07.2020); Lüdemann W., von Rautenfeld D.B., Samii M., Brinker T. Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005;21(2):96-103. doi:10.1007/s00381-004-1040-1; Furukawa M., Shimoda H., Kajiwara T., Kato S., Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res. 2008;29(6):289-296. doi:10.2220/biomedres.29.289; Cserr H.F., Harling‐Berg C.J., Knopf P.M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992;2(4):269- 276. doi:10.1111/j.1750-3639.1992.tb00703.x; Abbott N.J., Pizzo M.E., Preston J.E., Janigro D., Thorne R.G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’system? Acta Neuropathol. 2018;135(3):387-407. DOI:10.1007/s00401-018-1812-4; Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology. 1948;29(1):58-69; Murphy J.B., Sturm E. Conditions determining the transplantability of tissues in the brain. The Journal of experimental medicine. 1923;38(2).; Galea I., Bechmann I., Perry V.H. What is immune privilege (not)? Trends Immunol. 2007;28(1):12-18. doi:10.1016/j.it.2006.11.004; Louveau A., Harris T.H., Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569-577. doi:10.1016/j.it.2015.08.006; Louveau A., Plog B.A., Antila S., Alitalo K., Nedergaard M., Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210-3219. doi:10.1172/JCI90603.; Antila S., Karaman S., Nurmi H., Airavaara M., Voutilainen M.H., Mathivet T., Chilov D., Li Z., Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A,Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214(12):3645-3667. doi:10.1084/jem.20170391; Maloveska M., Danko J., Petrovova E., Kresakova L., Vdoviakova K., Michalicova A., Kovac A., Cubinkova V., Cizkova D. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes. Neurol Res. 2018;40(5):372-380. doi:10.1080/01616412.2018.1446282; Louveau A., Herz J., Alme M.N., Salvador A.F., Dong M.Q., Viar K.E., Herod S.G., Knopp J., Setliff J.C., Lupi A.L., Da Mesquita S., Frost E.L., Gaultier A., Harris T.H., Cao R., Hu S., Lukens J.R., Smirnov I., Overall K.C., Oliver G., Kipnis J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018;21(10):1380-1391. doi:10.1038/s41593-018-0227-9; Absinta M., Ha S.K., Nair G., Sati P., Luciano N.J., Palisoc M., Louveau A., Zaghloul K.A., Pittaluga S., Kipnis J., Reich D.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:e29738. doi:10.7554/eLife.29738; Kuo P.H., Stuehm C., Squire S., Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4(3):99-103. doi:10.18383/j.tom.2018.00013; Goodman J.R., Adham Z.O., Woltjer R.L., Lund A.W., Iliff J.J. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects. Brain Behav Immun. 2018;73:34-40. doi:10.1016/j.bbi.2018.07.020; Raper D., Louveau A., Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581-586. doi:10.1016/j.tins.2016.07.001; https://www.nii-kpssz.com/jour/article/view/760Test