يعرض 1 - 10 نتائج من 18 نتيجة بحث عن '"Nanopartículas semiconductoras"', وقت الاستعلام: 1.06s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    رسالة جامعية
  3. 3
    رسالة جامعية
  4. 4
    رسالة جامعية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/rcolquim/article/view/58567Test; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Química; Revista Colombiana de Química; Castro Acuña, Giovanni Andrés and Reyes Cuellar, Julia Constanza (2016) Nanocristales para degradación de un colorante contaminante. Revista Colombiana de Química, 45 (1). pp. 27-33. ISSN 2357-3791; https://repositorio.unal.edu.co/handle/unal/66292Test; http://bdigital.unal.edu.co/67316Test/

  7. 7
    دورية أكاديمية
  8. 8

    المؤلفون: Pascual Blanco, Tiffany

    المساهمون: Fernández Diego, Inmaculada, Universidad de Cantabria

    المصدر: UCrea Repositorio Abierto de la Universidad de Cantabria
    Universidad de Cantabria (UC)

  9. 9
    دورية أكاديمية

    المصدر: Revista Colombiana de Química; Vol. 45 Núm. 1 (2016); 27-33 ; Revista Colombiana de Química; v. 45 n. 1 (2016); 27-33 ; Revista Colombiana de Química; Vol. 45 No. 1 (2016); 27-33 ; 2357-3791 ; 0120-2804

    وصف الملف: application/pdf; text/html

    العلاقة: https://revistas.unal.edu.co/index.php/rcolquim/article/view/58567/57058Test; https://revistas.unal.edu.co/index.php/rcolquim/article/view/58567/57873Test; Rossetti, R.; Nakahara, S.; Brus, L.E.J. Quantum size effect in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Chem. Phys. 1983, 79 (2), 1086-1088. DOI: http://dx.doi.org/10.1063/1.445834Test.; Wang, X.; Huang, H.; Liang, B.; Liu, Z.; Chen, D.; Shen, G. ZnS nanostructures: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 2012, 38, 57-90. DOI: http://dx.doi.org/10.1080/10408436.2012.736887Test; Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933-937.DOI: http://dx.doi.org/10.1126/science.271.5251.933Test; Smith, A.M.; Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190-200. DOI: http://dx.doi.org/10.1021/ar9001069Test; Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775. DOI: http://dx.doi.org/10.1038/nmeth.1248Test; Yin, Y.; Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670. DOI: http://dx.doi.org/10.1038/nature04165Test; Soltani, N.; Saion, E.; Yunus W.M.M.; Erfani, M.; Navasery, M.; Bahmanrokha, G.; Rezae, K. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating. Appl. Surf. Sci, 2014, 290, 440-447.DOI: http://dx.doi.org/10.1016/j.apsusc.2013.11.104Test; Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I.G.; Weller, H. CdS nanoclusters: Synthesis, characterization, side dependent oscillator strength, temperature shift of the excitonic transition energy and reversible absorbance shift. J. Phys. Chem, 1994, 98, 7665-7673. DOI: http://dx.doi.org/10.1021/j100082a044Test; Martínez-Castañón, G. A.; Loyola-Rodríguez, J. P.; Reyes-Macías, J. F.; Niño-Martínez, N.; Ruiz, F. Synthesis and optical properties of functionalized cds nanoparticles with different sizes. Superficies y Vacío 2010, 23, 1-4; Lippens, P.E.; Lannoo, M. Calculation of the band gap for small CdS and ZnS crystallites. Phys. Rev. B 1989, 39, 10935-10942.DOI: http://dx.doi.org/10.1103/physrevb.39.10935Test; Rathore, K. S.; Patidar D.; Janu, Y.; Saxena, N. S.; Sharma, K.; Sharma, T. P. Structural and optical characterization of chemically synthesized ZnS nanoparticles. Chalcogenide Lett. 2008, 5, 105-110.; Steigerwald, M. L. Clusters as small solids. Polyhedron 1994, 13, 1245-1252. DOI: http://dx.doi.org/10.1016/s0277-5387Test(00)80258-2; Peng, X.; Wickham, J.; Alivisatos, A.P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing, of size distributions. J. Am. Chem. Soc. 1998, 120, 5343-5344. DOI: http://dx.doi.org/10.1021/ja9805425Test; Thangadurai, P; Balajai, S.; Manoharan, P. T. Surface modification of CdS quantum dots using thiols- structural and photophysical studies. Nanotechnology 2008, 19, 1435708-1435708-8. DOI: http://dx.doi.org/10.1088/0957-4484/19/43/435708Test; Rath T., Kunert B., Resel R., Fritz-Popovski G., Saf R., Trimmel G. Investigation of primary crystallite sizes in nanocrystalline ZnS powders: comparison of microwave assisted with conventional synthesis routes Inorg. Chem. 2008, 47, 3014-3022. DOI: http://dx.doi.org/10.1021/ic7017715Test; Chen, H.; Wang, L. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein J. Nanotechnol. 2014, 5, 696-710. DOI: http://dx.doi.org/10.3762/bjnano.5.82Test; Borbón Jara, B.; Medel, A.; Bedolla Valdez, Z.; Núñez, G. A.; Oropeza Guzmán, M. T. Evaluación electroquímica de nanoestructuras Fe/MWCNT-Pt y Fe/MWCNT-Pt-Pd como materiales de cátodos multifuncionales con potencial aplicación en el mejoramiento de la calidad de agua tratada. Mundo Nano 2015, 8, 6-16.; Coronado, J.; Fresno, F.; Hernández-Alonso, M.D.; Portela, R. (eds.) Design of advanced photocatalytic materials for energy and environmental applications. Green Energy and Technology. Springer Verlag, London, 2013; pp 157-169. DOI: http://dx.doi.org/10.1007/978-1-4471-5061-9Test; Hoffmann, MR.; Martin, S.T.; Choi, W.; Bahnemannt, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96. DOI: http://dx.doi.org/10.1021/cr00033a004Test; Durán–Álvarez, J. C.; Avella, E.; Zanella, R. Descontaminación de agua utilizando nanomateriales y procesos fotocatalíticos. Mundo Nano 2015, 8, 17-39; Gutiérrez, M.C.; Crespi, M. A review of electrochemical treatments for colour elimination. Color. Technol. 1999, 115, 342-345. DOI: http://dx.doi.org/10.1111/j.1478-4408.1999.tb00323.xTest; Torres-Martínez, C.L.; Kho, R.; Mian, O.I.; Mehra, R.K. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals, J. Colloid Interface Sci. 2001, 240, 525–532. DOI: http://dx.doi.org/10.1006/jcis.2001.7684Test; Khan, M.R.; Khan, M.A.; Alothman, Z.A.; Alsohaimi, I.H.; Naushad, M.; Al-Shaalan, N.H. Quantitative determination of methylene blue in environmental samples by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry: a green approach. RSC Adv. 2014, 4, 34037-34044. DOI: http://dx.doi.org/10.1039/c4ra03504fTest; Boeningo, M. Carcinogenicity and metabolism of azodyes especially derived from benzidine; U.S Gov. Printing Off, DNHS (NIOSH) publication: Washington, DC, 1994; pp. 80-119.; Mansour, S. A.; Al-Kotb, M. S.; Kotkata, M.F. Model-free transformation kinetics for ZnS quantumdots synthesized via coloidal reaction. Physic. B 2014, 433, 127-132. DOI: http://dx.doi.org/10.1016/j.physb.2013.10.002Test; Nazerdeylami, S.; Saieva-_Iranizad, E.S.; Molaei, M. Optical properties of synthesized nanoparticles ZnS using methacryic acid as the capping agent. Int. J. Mod. Phys. Conf. Ser. 2012, 5, 127-133 . DOI: http://dx.doi.org/10.1142/S2010194512001936Test; Nisha, K.D.; Navaneethan, M.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C. Influence of lanthanide ion on the morphology and luminescence properties of cadmium sulphide nanocrystals. J. Alloys Compd. 2011, 509, 5816-5821. DOI: http://dx.doi.org/10.1016/j.jallcom.2011.02.130Test; Pathania, D.; Bhim, S.; Rathore, H.S. Synthesis, characterization and photocatytic application of bovine serum albumin capped cadmum sulphide nanoparticles. Chalcogenide Letters. 2011, 8, 396-404.; Zhou, Z.; Bedwell, G. J.; Li, R.; Prevelige, P. E.; Gupta, A. Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles. Sci. Rep. 2014, 4, 3832. DOI: http://dx.doi.org/10.1038/srep03832Test; Shockley, W. Electrons and Holes in Semiconductors. 7ª Ed. Van Nostrand.: Princeton, NJ, 1959; p 139; Irimpan, L.; Nampoori, V. P. N.; Radhakrishnan, P.; Krishnan, B.; Deepthy, A. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. J. Appl. Phys. 2008, 103, 33105-33105. DOI: http://dx.doi.org/10.1063/1.2838178Test; Nishidate, K.; Sato, T.; Matsukura, Y.; Baba, M.; Hasegawa, M.; Sasaki, T. Density-functional electronic structure calculations for native defects and Cu impurities in CdS. Phys. Rev. B 2006, 74, 035210 -1. DOI: http://dx.doi.org/10.1103/PhysRevB.74.035210Test; Cao H, Wang G, Zhang S, Zhang X, Rabinovich D: Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem. 2006, 45: 5103–5108. DOI: http://dx.doi.org/10.1021/ic060440cTest; Choi, J.Y.; King, K.J.; Yoo, J.B.; Kim, D. Properties of cadmium sulfide thin films deposited by chemical bath deposition with ultasonication. Solar Energy, 1998, 64, 41-47. DOI: http://dx.doi.org/10.1016/S0038-092XTest(98)00047-4; Antoniadou, M.; Daskalaki, V.M.; Balis, N.; Kondarides, D.I.; Kordulis, C.; Lianos, P. Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Applied Catalysis B: Environmental 2011, 107, 188-196. DOI: http://dx.doi.org/10.1016/j.apcatb.2011.07.013Test; Adler, S.L. Theory of the Valence Band Splittings at k=0 in Zinc-Blende and Wurtzite Structures. Phys. Rev. 1962, 126, 118-122. DOI: http://dx.doi.org/10.1103/PhysRev.126.118Test; Balantseva, E.; Camino, B.; Ferrari, A. M.; Berlie, G.Effect of Post-Synthesis Treatments on the Properties of ZnS Nanoparticles: An Experimental and Computational Study. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 2015, 70, 817-829. DOI: http://dx.doi.org/10.2516/ogst/2015010Test; Mathew, S.; Ani Joseph, S.; Radhakrishnan, P.; Nampoori, V. P.; Vallabhan, C. P. Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. J. Fluoresc. 2011, 21, 1479-84. DOI: http://dx.doi.org/10.1007/s10895-011-0833-3Test; Lakowicz, J. R.; Gryczynski, I.; Murphy, C. J. Luminescence Spectral Properties of CdS Nanoparticles. J. Phys. Chem. B 1999, 103, 7613-7620. DOI: http://dx.doi.org/10.1021/jp991469nTest; Liu, S.H.; Qian, X. F.; Yin, J.; Ma, X. D.; Yuan, J. Y.; Zhu, Z. K. Preparation and characterization of polymer-capped CdS nanocrystals. J. Phys. Chem. Solids 2003, 64, 455-458. DOI: http://dx.doi.org/10.1016/s0022-3697Test(02)00333-5; Khani, O.; Rajabi, H,R.; Yousefi, M. H.; Khosravi, A.A.; Jannesari, M.; Shamsipur, M. Synthesis and characterizations of ultra-small ZnS and Zn(1−x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin. Spectrochim. Acta, Part A 2011, 79, 361-369. DOI: http://dx.doi.org/10.1016/j.saa.2011.03.025Test; Zaman, S.; Zainelabdin, A.; Amin, G.; Nour. O.; Willander, M. Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. J. Phys. Chem. Solids 2012, 73, 1320-1325. DOI: http://dx.doi.org/10.1016/j.jpcs.2012.07.005Test; Bandekar, G.; Rajurkar, N. S.; Mulla, I. S.; Mulik, U. P.; Amalnerkar, D.P.; Adhyapak, P. V. Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl. Nanosci., 2014, 4, 199-208. DOI:10.1007/s13204-012-0189-2; Herrmann, J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today., 1999, 53, 115-129. DOI: doi:10.1016/S0920- 5861(99)00107-8; Pouretedal, H. R.; Kadkhodaie, A. Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism. Chin. J. Catal. 2010, 31, 1328-1334. DOI: http://dx.doi.org/10.1016/s1872-2067Test(10)60121-0; Soltani, N.; Saiona E.; Yunus W. M. M.; Navasery, M.; Bahmanrokh, G.; Erfani, M.; Zareb, M. R.; Gharibshahi, E. Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles. Sol. Energy 2013, 97, 147-154. DOI: http://dx.doi.org/10.1016/j.solener.2013.08.023Test; https://revistas.unal.edu.co/index.php/rcolquim/article/view/58567Test

  10. 10