يعرض 1 - 10 نتائج من 75 نتيجة بحث عن '"N. A. Barashkov"', وقت الاستعلام: 1.60s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: This work was supported by research work of the YSC CMP “Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)” and the Ministry of Science and Higher Education of the Russian Federation (FSRG-2023-0003)., Работа выполнена в рамках НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия) и Государственного задания Министерства науки и высшего образования РФ (FSRG-2023-0003).

    المصدر: Medical Genetics; Том 22, № 7 (2023); 51-60 ; Медицинская генетика; Том 22, № 7 (2023); 51-60 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2328/1729Test; Baldwin C.t., Weiss S., Farrer L.A., et al. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet. 1995; 4: 1637–1642. https://doi.org/10.1093/hmg/4.9.1637Test.; Everett L.A., Glaser B., Beck J.C., et al. Pendred Syndrome Is Caused by Pathogenic variants in a Putative Sulphate transporter Gene (PDS). Nat. Genet. 1997; 17: 411–422. https://doi.org/10.1038/ng1297-411Test.; Abe S., Usami S., Hoover D.M., et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene. Am. J. Med. Genet. 1999; 82: 322–328.; Li X.C., Everett L.A., Lalwani A.K., et al. A pathogenic variant in PDS causes non-syndromic recessive deafness. Nat. Genet. 1998; 18: 215–217. https://doi.org/10.1038/ng0398-215Test.; Usami S., Abe S., Weston M.D., et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS pathogenic variants. Hum. Genet. 1999; 104: 188–192. doi:10.1007/s004390050933.; Campbell C., Cucci R.A., Prasad S., et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel pathogenic variants and possible genotype-phenotype correlations. Hum. Mutat. 2001; 17: 403–411. https://doi.org/10.1002/humu.1116Test.; Valvassori G.E., Clemis J.D. the large vestibular aqueduct syndrome. Laryngoscope 1978; 88: 723–728. https://doi.org/10.1002/lary.1978.88.5.723Test.; Jackler R.K., Luxford W.M., House W.F. Congenital Malformations of the Inner Ear: A Classification Based on Embryogenesis. Laryngoscope 1987; 97: 2–14. https://doi.org/10.1002/lary.5540971301Test.; Sennaroglu L., Saatci I. A New Classification for Cochleovestibular Malformations. Laryngoscope 2002; 112: 2230–2241. https://doi.org/10.1097/00005537-200212000-00019Test.; Sennaroğlu L., Bajin M.D. Classification and Current Management of Inner Ear Malformations. Balkan Med. J. 2017; 34: 397–411. https://doi.org/10.4274/balkanmedj.2017.0367Test.; Pendred V. Deaf-mutism and goitre. The Lancet. 1896; 148: 532. https://doi.org/10.1016/S0140-6736Test(01)74403-0; Fraser G.R. Association of congenital deafness with goitre (pendred’s syndrome): a study of 207 families. Ann. Hum. Genet. 1965; 28: 201– 249. https://doi.org/10.1111/j.1469-1809.1964.tb00479.xTest; Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the Protein Encoded by the Pendred Syndrome Gene (PDS), Is an Apical Porter of Iodide in the thyroid and Is Regulated by thyroglobulin in FRtL-5 Cells. Endocrinology. 2000; 141: 839–845. https://doi.org/10.1210/endo.141.2.7303Test.; Royaux I.E., Wall S.M., Karniski L.P., et al. Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion. Proc. Natl. Acad. Sci. USA 2001; 98: 4221–4226. https://doi.org/10.1073/pnas.071516798Test.; Scott D.A., Wang R., Kreman t.M., et al. the Pendred Syndrome Gene Encodes a Chloride-Iodide transport Protein. Nat. Genet. 1999; 21: 440–443. https://doi.org/10.1038/7783Test.; Scott D.A., Karniski L.P. Human Pendrin Expressed in Xenopus Laevis Oocytes Mediates Chloride/Formate Exchange. Am. J. Physiol. Cell Physiol. 2000; 278: 207–211. https://doi.org/10.1152/ajpcell.2000.278.1.C207Test.; Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr. Opin. Nephrol. Hypertens. 2001; 10: 677–683. https://doi.org/10.1097/00041552-200109000-00020Test.; Pedemonte N., Caci E., Sondo E., et al. thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007; 178: 5144– 5153. https://doi.org/10.4049/jimmunol.178.8.5144Test; Dossena S., Bernardinelli E., Sharma A.K., et al. the Pendrin Polypeptide. In the Role of Pendrin in Health and Disease. Springer: Cham. 2017; 187–220. https://doi.org/10.1007/978-3-319-43287-8_11Test.; Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: физиология сенсорных систем: учебник для вузов. Москва: Издательство Юрайт, 2020: 459 с.; Wangemann P. the role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28: 527–534. https://doi.org/10.1159/000335113Test; Griffith A.J., Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281: 11– 17. https://doi.org/10.1016/j.heares.2011.05.009Test; Park H.-J., Shaukat S., Liu X.-Z., et al. Origins and Frequencies of SLC26A4 (PDS) Pathogenic variants in East and South Asians: Global Implications for the Epidemiology of Deafness. J. Med. Genet. 2003; 40: 242–248. https://doi.org/10.1136/jmg.40.4.242Test.; tsukamoto K., Suzuki H., Harada D. et al. Distribution and frequencies of PDS (SLC26A4) pathogenic variants in Pendred Syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: A unique spectrum of pathogenic variants in Japanese. Eur. J. Hum. Genet. 2003; 11: 916–922. https://doi.org/10.1038/sj.ejhg.5201073Test.; Blons H., Feldmann D., Duval V., et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: A large spectrum of pathogenic variants in France and phenotypic heterogeneity. Clin. Genet. 2004; 66: 333–340. https://doi.org/10.1111/j.1399-0004.2004.00296.xTest.; Hutchin t., Coy N.N., Conlon H., et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK— Implications for genetic testing. Clin. Genet. 2005; 68: 506–512. doi:10.1111/j.1399-0004.2005.00539.x.; Pryor S.P., Demmler G.J., Madeo A.C., et al. Investigation of the Role of Congenital Cytomegalovirus Infection in the Etiology of Enlarged Vestibular Aqueducts. Arch. Otolaryngol. Head Neck Surg. 2005; 131: 388–392. https://doi.org/10.1001/archotol.131.5.388Test.; Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet. 2006; 14: 773–779. doi:10.1038/sj.ejhg.5201611.; Guo Y.F., Liu X.W., Guan J., et al. GJB2, SLC26A4 and mitochondrial DNA A1555G pathogenic variants in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol. 2008; 128: 297–303. doi:10.1080/00016480701767382.; Pourová R., Janousek P., Jurovcík M., et al. Spectrum and frequency of SLC26A4 pathogenic variants among Czech patients with early hearing loss with and without Enlarged Vestibular Aqueduct (EVA). Ann. Hum. Genet. 2010; 74: 299–307. doi:10.1111/j.1469-1809.2010.00581.x.; Pang X., Chai Y., Chen P., et al. Mono-allelic pathogenic variants of SLC26A4 is over-presented in deaf patients with non-syndromic enlarged vestibular aqueduct. Int. J. Pediatr. Otorhinolaryngol. 2015; 79: 1351–1353. doi:10.1016/j.ijporl.2015.06.009.; Chai Y., Huang Z., tao Z., et al. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am. J. Med. Genet. Part A 2013; 161: 2226–2233. doi:10.1002/ajmg.a.36068.; Miyagawa M., Nishio S.Y., Usami S. Deafness Gene Study Consortium. Pathogenic variant spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 pathogenic variants in the Japanese: A large cohort study. J. Hum. Genet. 2014; 5: 262– 268. https://doi.org/10.1038/jhg.2014.12Test.; Wu C.C., Yeh t.H., Chen P.J., et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in taiwan, including a frequent founder mutation. Laryngoscope. 2005; 115: 1060-1064. doi:10.1097/01.MLG.0000163339.61909.D0.; tsukada K., Nishio S.Y., Hattori M., et al. Ethnic-specific spectrum of GJB2 and SLC26A4 pathogenic variants: their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015; 124 (Suppl. 1): 61–76. https://doi.org/10.1177/0003489415575060Test.; Erdenechuluun J., Lin Y.-H., Ganbat K., et al. Unique spectra of deafness-associated pathogenic variants in Mongolians provide in-sights into the genetic relationships among Eurasian populations. PLoS ONE. 2018; 13: e0209797. doi:10.1371/journal.pone.0209797.; Xiang Y.B., tang S.H., Li H.Z., et al. Pathogenic variant analysis of common deafness-causing genes among 506 patients with nonsyndromic hearing loss from Wenzhou city, China. Int. J. Pediatr. Otorhinolaryngol. 2019; 122: 185–190. doi:10.1016/j.ijporl.2019.04.024.; Koohiyan M. A systematic review of SLC26A4 pathogenic variants causing hearing loss in the Iranian population. Int. J. Pediatr. Otorhinolaryngol. 2019; 125: 1–5. doi:10.1016/j.ijporl.2019.06.012.; Han J.J., Nguyen P.D., Oh D.Y., et al. Elucidation of the unique pathogenic variant spectrum of severe hearing loss in a Vietnamese pediatric population. Sci. Rep. 2019; 9(1): 1604. doi:10.1038/s41598-018-38245-4.; Zhang M., Han Y., Zhang F., et al. Pathogenic variant spectrum and hotspots of the common deafness genes in 314 patients with nonsyndromic hearing loss in Heze area, China. Acta Otolaryngol. 2019; 139: 612–617. doi:10.1080/00016489.2019.1609699.; tian Y., Xu H., Liu D., et al. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol. Genet. Genom. Med. 2021; 9 (8): e1734. doi:10.1002/mgg3.1734.; Roesch S., Rasp G., Sarikas A., et al. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol. Res. 2021; 11(3): 423-442. doi:10.3390/audiolres11030040.; Honda K., Griffith A.J. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum. Genet. 2022; 141(3-4): 455-464. https://doi.org/10.1007/s00439-021-02311-1Test.; Yang t., Vidarsson H., Rodrigo-Blomqvist S., et al. transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J. Hum. Genet. 2007: 80: 1055–1063. https://doi.org/10.1086/518314Test.; Yang t., Gurrola J.G., Wu H., et al. Pathogenic variants of KCNJ10 together with pathogenic variants of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet. 2009; 84(5): 651–657. doi:10.1016/j.ajhg.2009.04.014.; Wu C.C., Lu Y.C., Chen P.J., et al. Phenotypic analyses and pathogenic variant screening of the SLC26A4 and FOXI1 genes in 101 taiwanese families with bilateral nonsyndromic enlarged vestibular aqueduct (DFNB4) or Pendred syndrome. Audiol. Neurootol. 2010; 15: 57–66. https://doi.org/10.1159/000231567Test.; Chen K., Wang X., Sun L., et al. Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. Otolaryngol. Head Neck Surg. 2012; 146: 972–978. https://doi.org/10.1177/0194599812439670Test.; Pique L.M., Brennan M., Davidson C.J., et al. Pathogenic variant analysis of the SLC26A4, FOXI1 and KCNJ10 genes in individuals with congenital hearing loss. PeerJ 2014; 2: e384. https://doi.org/10.7717/peerj.384Test.; Landa P., Differ A.-M., Rajput K., et al. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet. 2013; 14: 85. https://doi.org/10.1186/1471-2350-14-85Test; Klarov L.A., Pshennikova V.G., Romanov G.P., et al. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. International Journal of Molecular Sciences. 2022; 23(23): 15372. https://doi.org/10.3390/ijms232315372Test; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Insight into the Natural History of Pathogenic Variant c.919-2A>G in the SLC26A4 Gene Involved in Hearing Loss: the Evidence for Its Common Or igin in Southern Siberia (Russia). Genes. 2023, 14: 928. https://doi.org/10.3390/genes14040928Test; Li M., Nishio S.-Y., Naruse C., et al. Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat. Commun. 2020; 11: 1343. https://doi.org/10.1038/s41467-020-15198-9Test; Pryor S.P., Madeo A.C., Reynolds J.C., et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 2005; 42: 159–165. https://doi.org/10.1136/jmg.2004.024208Test; Azaiez H., Yang t., Prasad S., et al. Genotype-phenotype correlations for SLC26A4-related deafness. Hum Genet. 2007; 122: 451– 457. https://doi.org/10.1007/s00439-007-0415-2Test; Choi B.Y., Madeo A.C., King K.A., et al. Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes. J Med Genet. 2009; 46: 856–861. https://doi.org/10.1136Test/ jmg.2009.067892; Chattaraj P., Munjal t., Honda K., et al. A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. J. Med. Genet. 2017; 10: 665–673. https://doi.org/10.1136/jmedgenet-2017-104721Test.; Reardon W., Coffey R., Chowdhury t., et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet. 1999; 36: 595–598. https://doi.org/10.1136/jmg.36.8.595Test; Madeo A.C., Manichaikul A., Reynolds J.C., et al. Evaluation of the thyroid in patients with hearing loss and enlarged vestibular aqueducts. Arch. Otolaryngol. Head. Neck. Surg. 2009; 135: 670–676. https://doi.org/10.1001/archoto.2009.66Test; Ladsous M., Vlaeminck-Guillem V., Dumur V., et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid. 2014; 24: 639–648.https://doi.org/10.1089/thy.2013.0164Test; Soh L.M., Druce M., Grossman A.B., et al. Evaluation of genotype-phenotype relationships in patients referred for endocrine assessment in suspected Pendred syndrome. Eur. J. Endocrinol. 2015; 172:217–226. https://doi.org/10.1530/eje-14-0679Test; Lee H.J., Jung J., Shin J.W., et al. Correlation between genotype and phenotype in patients with bi-allelic SLC26A4 mutations. Clin. Genet. 2014; 86(3): 270–275. doi:10.1111/cge.12273.; Zhao J., Yuan Y., Huang S., et al. KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS ONE 2014; 9(11): e108134. doi:10.1371/journal.pone.0108134.; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Different Rates of the SLC26A4-Related Hearing Loss in two Indigenous Peoples of Southern Siberia (Russia). Diagnostics 2021; 11: 2378. doi.org/10.3390/diagnostics11122378.; tesolin P., Fiorino S., Lenarduzzi S., et al. Pendred Syndrome, or Not Pendred Syndrome? that Is the Question. Genes. 2021; 12(10): 1569. https://doi.org/10.3390/genes12101569Test; Bałdyga N., Oziębło D., Gan N., et al. the Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes 2023; 14(2): 335. https://doi.org/10.3390/genes14020335Test; Smits J.J., de Bruijn S.E., Lanting C.P., et al. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum. Genet. 2022; 141: 465–484. doi:10.1007/s00439-021-02336-6.; Chao J.R., Chattaraj P., Munjal t. et al. SLC26A4-linked CEVA haplotype correlates with phenotype in patients with enlargement of the vestibular aqueduct. BMC Med Genet 2019; 20 (1): 118. https://doi.org/10.1186/s12881-019-0853-4Test; https://www.medgen-journal.ru/jour/article/view/2328Test

  4. 4
    دورية أكاديمية

    المساهمون: This work was supported Ministry of Science and Higher Education of the Russian Federation (FSRG-2023-0003) and YSC CMP project “Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)”., Работа выполнена в рамках Государственного задания Министерства науки и высшего образования РФ (FSRG-2023-0003) и НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия)».

    المصدر: Medical Genetics; Том 22, № 8 (2023); 3-12 ; Медицинская генетика; Том 22, № 8 (2023); 3-12 ; 2073-7998

    مصطلحات موضوعية: Бурятия, mtDNA, MT-RNR1, m.1555A>G, Buryatia, мтДНК

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2329/1730Test; Morton C.C., Nance W.E. Newborn hearing screening – a silent revolution. N Engl J Med. 2006; 354(20):2151-64. doi:10.1056/NEJMra050700.; Del Castillo F.J., Del Castillo I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci. 2017; 10:428. doi:10.3389/fnmol.2017.00428.; Del Castillo I., Morín M., Domínguez-Ruiz M., Moreno-Pelayo M.A. Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet. 2022; 141(3-4):683-696. doi:10.1007/s00439-021-02425-6.; Smith R.J., Bale J.F., White K.R. Sensorineural hearing loss in children. Lancet. 2005; 365: 879–890. https://doi.org/10.1016/S0140-6736Test(05)71047-3; Lott M.T., Leipzig, J.N., Derbeneva, O. et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Current Protocols in Bioinformatics. 2013; 1(123):1.23.1-26. URL: http://www.mitomap.orgTest; Prezant T.R., Agapian J.V., Bohlman M.C. et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 1993; 4(3):289-94. doi:10.1038/ng0793-289.; Fischel-Ghodsian N., Prezant T.R., Bu X., Oztas S. Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol. 1993;14(6):399-403. doi:10.1016/0196-0709(93)90113-l.; Fischel-Ghodsian N., Prezant T.R., Chaltraw W.E., Wendt K.A., Nelson R.A., Arnos K.S., Falk R.E. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol. 1997;18(3):173-8. doi:10.1016/s0196-0709(97)90078-8.; Estivill X., Govea N., Barceló E. et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet. 1998; 62(1):27-35. doi:10.1086/301676.; Hobbie S.N., Bruell C.M., Akshay S. et al. Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci USA. 2008; 105(9):3244-9. doi:10.1073/pnas.0707265105.; Hutchin T., Haworth I., Higashi K. et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res. 1993; 21(18):4174-9. doi:10.1093/nar/21.18.4174.; Guan M.X., Fischel-Ghodsian N., Attardi G. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet. 1996 ;5(7):963-71. doi:10.1093/hmg/5.7.963.; Hamasaki K., Rando R.R. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry. 1997; 36(40):12323-8. doi:10.1021/bi970962r.; Greber B.J., Bieri P., Leibundgut M. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015; 348(6232):303-8. doi:10.1126/science.aaa3872.; Rovcanin B., Jancic J., Samardzic J. et al. In silico model of mtDNA mutations effect on secondary and 3D structure of mitochondrial rRNA and tRNA in Leber’s hereditary optic neuropathy. Exp Eye Res. 2020; 201:108277. doi:10.1016/j.exer.2020.108277.; Kalapala S.K., Hobbie S.N., Böttger E.C., Shcherbakov D. Mutation K42R in ribosomal protein S12 does not affect susceptibility of Mycobacterium smegmatis 16S rRNA A-site mutants to 2-deoxystreptamines. PLoS One. 2010; 5(8):e11960. doi:10.1371/journal.pone.0011960.; O’Sullivan M., Rutland P., Lucas D. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet. 2015; 24(4):1036-44. doi:10.1093/hmg/ddu518.; Пшенникова В.Г., Терютин Ф.М., Барашков Н.А., и др. Клинико-аудиологический и генеалогический анализ случаев нарушения слуха в Республике Бурятия. Якутский медицинский журнал. 2020.; 4:44-49.; Pshennikova V.G., Teryutin F.M., Cherdonova A.M. et al. The GJB2 (Cx26) Gene Variants in Patients with Hearing Impairment in the Baikal Lake Region (Russia). Genes. 2023; 14: 1001. https://doi.org/10.3390/genes14051001Test.; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi:10.1186/1471-2105-13-134.; Данильченко В.Ю. Анализ генетического контроля наследственной потери слуха в популяциях ряда регионов Сибири: Автореферат диссертации на соискание ученой степени кандидата биологических наук. – Новосибирск, 2022.; Пшенникова В.Г., Терютин Ф.М., Романов Г.П. и др. Локальный очаг накопления митохондриальной формы потери слуха в Эвено-Бытантайском районе Якутии. Якутский медицинский журнал. 2022. 4(80): 91-95. DOI 10.25789/YMJ.2022.80.24.; Журавский С.Г. Сенсоневральная тугоухость: молекулярно-генетические, структурные и лечебно-профилактические аспекты (клинико-экспериментальное исследование): диссертация на соискание ученой степени доктора медицинских наук. – Санкт-Петербург, 2006.; Джемилева Л.У., Посух О.Л., Тазетдинов А.М. и др. Анализ генов 12S rRNA и tRNASer(UCN) мтДНК у больных несиндромальной сенсоневральной тугоухостью/глухотой из различных регионов России. Генетика. 2009. 7(45):982-991.; Романов Г.П., Барашков Н.А., Терютин Ф.М. и др. Частота мутации M.1555A>G гена MT-RNR1 митохондриальной ДНК у индивидуумов с нарушениями слуха в Якутии. Якутский медицинский журнал. 2017; 3(59):49-51.; Abe S., Usami S., Shinkawa H. et al. Phylogenetic analysis of mitochondrial DNA in Japanese pedigrees of sensorineural hearing loss associated with the A1555G mutation. Eur J Hum Genet. 1998; 6(6):563-9. doi:10.1038/sj.ejhg.5200239.; Usami S., Abe S., Akita J. et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet. 2000; 37(1):38-40. doi:10.1136/jmg.37.1.38.; Guo Y.F., Liu X.W., Xu B.C. et al. Analysis of a Large-Scale Screening of Mitochondrial DNA m.1555A>G Mutation in 2417 Deaf–Mute Students in Northwest of China. Genetic Testing and Molecular Biomarkers. 2010; 4(14):527-531.http://doi.org/10.1089Test/ gtmb.2010.0020; Erdenechuluun J., Lin Y.H., Ganbat K. et al. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS One. 2018; 13(12):e0209797. doi:10.1371/journal.pone.0209797.; Elander J., Ullmark T., Ehrencrona H. et al. Extended genetic diagnostics for children with profound sensorineural hearing loss by implementing massive parallel sequencing. Diagnostic outcome, family experience and clinical implementation. Int J Pediatr Otorhinolaryngol. 2022; 159:111218. doi:10.1016/j.ijporl.2022.111218.; Gu P., Wang G., Gao X. et al. Clinical and molecular findings in a Chinese family with a de novo mitochondrial A1555G mutation. BMC Med Genomics. 2022; 15(1):121. doi:10.1186/s12920-022-01276-y.; Bravo O., Ballana E., Estivill X. Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun. 2006; 344(2):511-6. doi:10.1016/j.bbrc.2006.03.143.; López-Bigas N., Rabionet R., Martinez E. et al. Mutations in the mitochondrial tRNA Ser(UCN) and in the GJB2 (connexin 26) gene are not modifiers of the age at onset or severity of hearing loss in Spanish patients with the 12S rRNA A1555G mutation. Am J Hum Genet. 2000; 66(4):1465-7. doi:10.1086/302870.; Gallo-Terán J., Morales-Angulo C., del Castillo I. et al. Incidencia de las mutaciones A1555G en el ADN mitocondrial y 35delG en el gen GJB2 (conexina 26) en familias con hipoacusia neurosensorial postlocutiva no sindrómica en Cantabria [Incidence of A1555G mutations in the mitochondrial DNA and 35delG in the GJB2 gene (connexin-26) in families with late onset non-syndromic sensorineural hearing loss from Cantabria]. Acta Otorrinolaringol Esp. 2002; 53(8):563-71. Spanish. doi:10.1016/s0001-6519(02)78349-0.; Gallo-Terán J., Arellano B., Morales-Angulo C. et al. Prevalencia de la mutación A1555G en el ADN mitocondrial en pacientes con patología auditiva o vestibular debida a la ototoxicidad de los aminoglucósidos [Prevalence of the A1555G mutation in the mitochondrial DNA in patients with cochlear or vestibular damage due to aminoglycoside-induced ototoxicity]. Acta Otorrinolaringol Esp. 2004; 55(5):212-7. Spanish. doi:10.1016/s0001-6519(04)78511-8.; Morales Angulo C., Gallo-Terán J., Señaris B. et al. Prevalencia de la mutación A1555G del gen MTRNR1 en pacientes con hipoacusia postlocutiva sin antecedentes familiares de sordera [Prevalence of the A1555G MTDNA mutation in sporadic hearing-impaired patients without known history of aminoglycoside treatment]. Acta Otorrinolaringol Esp. 2011; 62(2):83-6. Spanish. doi:10.1016/j.otorri.2010.08.003.; Torroni A., Cruciani F., Rengo C. et al. The A1555G mutation in the 12S rRNA gene of human mtDNA: recurrent origins and founder events in families affected by sensorineural deafness. Am J Hum Genet. 1999; 65(5):1349-58. doi:10.1086/302642.; https://www.medgen-journal.ru/jour/article/view/2329Test

  5. 5
    دورية أكاديمية

    المساهمون: This study was supported by research work of the YSC CMP «Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)», as well as RFBR grant (No. 20- 015-00328_A)., Работа выполнена в рамках НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия), а также при поддержке гранта РФФИ (№20-015-00328_A).

    المصدر: Medical Genetics; Том 22, № 3 (2023); 35-46 ; Медицинская генетика; Том 22, № 3 (2023); 35-46 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2277/1702Test; Kallen K., Robert E., Mastroiacovo P. et al. CHARGE association in newborns: a registry-based study. Teratology. 1999; 60: 334-343. DOI:10.1002/(SICI)1096-9926(199912)60:63.0.CO;2-S; Issekutz K.A., Graham J.M.Jr., Prasad C. et al. An epidemiological analysis of CHARGE syndrome: preliminary results from a Canadian study. Am. J. Med. Genet. 2005; 133A: 309-317. doi:10.1002/ajmg.a.30560.; Vissers L.E.L.M., van Ravenswaaij C.M.A., Admiraal R. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–957. doi:10.1038/ng1407.; Woodage T., Basrai M.A., Baxevanis A.D. et al. Characterization of the CHD family of proteins. PNAS. 1997; 94 (21): 11472-11477; doi.org/10.1073/pnas.94.21.11472; Bajpai R., Chen D.A., Rada-Iglesias A. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature.2010; 463: 958-962. DOI:10.1038/nature08733; Hall B.D. Choanal atresia and associated multiple anomalies. J. Pediat. 1979; 95: 395-398. DOI:10.1016/s0022-3476(79)80513-2; Hittner H.M., Hirsch N.J., Kreh G.M. et al. Colobomatous microphthalmia, heart disease, hearing loss, and mental retardation - a syndrome. J. Pediat. Ophthal. Strabismus. 1979; 16: 122-128.; Pagon R.A., Graham J.M.Jr., Zonana J. et al. Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J. Pediat. 1981; 99: 223-227. doi:10.1016/s0022-3476(81)80454-4; Oley C.A., Baraitser M., Grant D.B. A reappraisal of the CHARGE association. J. Med. Genet. 1988; 25: 147-156. DOI:10.1136/jmg.25.3.147; Blake K.D., Hartshorne T.S., Lawand C. et al. Cranial nerve manifestations in CHARGE syndrome. Am. J. Med. Genet. 2008; 146A: 585-592. doi:10.1136/adc.65.2.217.; Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am. J. Med. Genet. 2005; 133A: 306-308. DOI:10.1002/ajmg.a.30559; Hale C.L., Niederriter A.N., Green G.E. et al. Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria Am J Med Genet A. 2016; 170A(2): 344–354. doi:10.1002/ajmg.a.37435; Kim H.-G., Kurth I., Lan F., et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 2008; 83: 511-519. doi.org/10.1016/j.ajhg.2008.09.005; Jackler R.K., Luxford W.M., House W.F. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope. 1987; 2-14. doi:10.1002/lary.5540971301.; Richards S., Aziz N., Bale S. et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405-24. doi:10.1038/gim.2015.30.; Sennaroglu L., Saatci I. A new classification for cochleovestibular malformations. Laryngoscope. 2002; 112: 2230-41. doi.org/10.1097/00005537-200212000-00019; Lalani S.R., Safiullah A.M., Fernbach S.D. et al. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome and Genotype-Phenotype Correlation. Am J Hum Genet. 2006;78:303–314. doi:10.1086/500273; Zentner G.E., Layman W.S., Martin D.M. et al. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A. 2010;152A:674–686. doi:10.1002/ajmg.a.33323; Bergman J.E.H., Janssen N., Hoefsloot L.H. et al. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J of Med Genet. 2011;48:334–342. DOI:10.1136/jmg.2010.087106; Amiel J., Attié-Bitach T., Marianowski R. et al. Temporal bone anomaly proposed as a major criteria for diagnosis of CHARGE syndrome. Am J Med Genet 2001;99: 124– 127. doi.org/10.1002/1096-8628(20010301)99:23.0.CO;2-9; Stjernholm C. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery. Acta Radiol Suppl 2003; 430: 2– 15.; Janssen N., Bergman J.E., Swertz M.A. et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012;33:1149–1160 doi:10.1002/humu.22086.; Arrington C.B., Cowley B.C., Nightingale D.R. et al. Interstitial deletion 8q11.2-q13 with congenital anomalies of CHARGE association. Am J Med Genet A. 2005;133:326–330 doi:10.1002/ajmg.a.30562.; Palumbo O., Palumbo P., Stallone R. et al. 8q12.1q12.3 de novo microdeletion involving the CHD7 gene in a patient without the major features of CHARGE syndrome: case report and critical review of the literature. Gene. 2013;513:209–213. doi:10.1016/j.gene.2012.09.132.; Cyran S.E., Martinez R., Daniels S., et al. Spectrum of congenital heart disease in CHARGE association. J. Pediat. 1987; 110: 576-580. doi:10.1016/s0022-3476(87)80555-3.; Wheeler P.G., Quigley C.A., Sadeghi-Nejad A. et al. Hypogonadism and CHARGE association. Am. J. Med. Genet. 2000; 94: 228-231. doi.org/10.1002/1096-8628(20000918)94:33.0.CO;2-H; Van de Laar I., Dooijes D., Hoefsloot L. et al. Limb anomalies in patients with CHARGE syndrome: an expansion of the phenotype. Am. J. Med. Genet. 2007; 143A: 2712-2715, 2007. doi.org/10.1002/ajmg.a.32008; Alazami A.M., Alzahrani F., Alkuraya F.S. Expanding the “E” in CHARGE. Am J Med Genet A. 2008;146A:1890–1892. doi:10.1002/ajmg.a.32376.; Brock K.E., Mathiason M.A., Rooney B.L., Williams M.S. Quantitative analysis of limb anomalies in CHARGE syndrome: correlation with diagnosis and characteristic CHARGE anomalies. Am J Med Genet A. 2003;123A:111–121. doi:10.1002/ajmg.a.20526.; Doyle C., Blake K. Scoliosis in CHARGE: a prospective survey and two case reports. Am J Med Genet A. 2005;133:340–343. doi:10.1002/ajmg.a.30564; Jongmans M.C.J., Admiraal R.J., van der Donk K.P. et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006; 43:306–314. doi:10.1136/jmg.2005.036061; Wright E.M., O’Connor R., Kerr B.A. Radial aplasia in CHARGE syndrome: a new association. Eur J Med Genet. 2009;52:239–241. doi:10.1016/j.ejmg.2009.03.017.; Yu T., Meiners L.C., Danielsen K. et al. Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. Elife. 2013;2:e01305. doi:10.7554/eLife.01305; Tilley M.K., Justice C.M., Swindle K. et al. CHD7 gene polymorphisms and familial idiopathic scoliosis. Spine. 2013; 38: E1432-E1436. doi:10.1097/BRS.0b013e3182a51781; Vuorela P., Ala-Mello S., Saloranta C. et al. Molecular analysis of the CHD7 gene in CHARGE syndrome: identification of 22 novel mutations and evidence for a low contribution of large CHD7 deletions. Genet Med. 2007;9:690–694. DOI:10.1097/gim.0b013e318156e68e; https://www.medgen-journal.ru/jour/article/view/2277Test

  6. 6
    دورية أكاديمية

    المصدر: Medical Genetics; Том 21, № 6 (2022); 37-48 ; Медицинская генетика; Том 21, № 6 (2022); 37-48 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2185/1652Test; Scott D.A., Karniski L.P. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol. 2000; 278: 207-211. doi:10.1152/ajpcell.2000.278.1.C207.; Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology. 2000; 141(2): 839-845. doi:10.1210/endo.141.2.7303.; Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr Opin Nephrol Hypertens. 2001; 10(5): 677-83. doi:10.1097/00041552-200109000-00020.; Bizhanova A., Kopp P. Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells. Cellular Physiology and Biochemistry. 2011; 28(3): 485-90. doi:10.1159/000335103.; Jacques T., Picard N., Miller R.L., et al. Overexpression of Pendrin in Intercalated Cells Produces Chloride-Sensitive Hypertension. J Am Soc Nephrol. 2013; 24(7): 1104-1113. doi:10.1681/ASN.2012080787.; Karniski L.P., Aronson P.S. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proceedings of the National Academy of Sciences of the United States of America. 1985; 82(18): 6362-6365. doi:10.1073/pnas.82.18.6362.; Kim H-M., Wangemann P. Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PLOS ONE. 2010; 5(11): e14041. doi:10.1371/journal.pone.0014041.; Rimoin D.L., Schimke R.N. Genetic disorders of the endocrine glands. C.V. Mosby Co, St. Louis. 1971: 11-65.; Stinckens C., Huygen P.L.M., Van Camp G., Cremers C.W. Pendred syndrome redefined. Report of a new family fluctuating and progressive hearing loss. Advances in otorhinolaryngology. 2002; 61: 131-141.; Napiontek U., Borck G., Muller-Forell W., et al.Intrafamilial variability of the deafness and goiter phenotype in Pendred syndrome caused by a T416P mutation in the SLC26A4 gene. Journal of clinical endocrinology and metabolism. 2004; 89(11): 5347-5351.; Кларов Л.А., Николаева К.Ю., Пшенникова В.Г., и др. Мутации гена SLC26A4 у пациентов с аномалиями внутреннего уха: IP-I, IP-II (Mondini) и/или EVA в Якутии. Медицинская генетика. 2021; 20(9): 14-25. doi:10.25557/2073-7998.2021.09.14-25.; Jonard L., Niasme-Grare M., Bonnet C., et al. Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct.Int J Pediatr Otorhinolaryngol. 2010 Sep; 74(9): 1049-53. doi:10.1016/j.ijporl.2010.06.002.; Ng P.C., Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006; 7: 61-80. doi:10.1146/annurev.genom.7.080505.115630.; Schwede T., Sali A., Eswar N., Peitsch M.C. Protein Structure Modeling.Computational Structural Biology. 2008: 3-35. https://doi.org/10.1142/9789812778789_0001Test.; Waterhouse A., Bertoni M., Bienert S., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(W1):W296-W303. doi:10.1093/nar/gky427.; Jumper J., Evans R., Pritzel A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2Test.; Tunyasuvunakool K., Adler J., Wu Z., et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596(7873): 590-596. doi:10.1038/s41586-021-03828-1.; Gorbunov D., Sturlese M., Nies F., et al. Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun. 2014; 5:3622. doi:10.1038/ncomms4622.; Geertsma E.R., Chang Y.N., Shaik F.R., et al. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 2015; 22: 803-808. doi:10.1038/nsmb.3091.; Dossena S., Bernardinelli E., Sharma A.K., et al. The Pendrin Polypeptide. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease. Springer, Cham. 2017; 187-220: https://doi.org/10.1007/978-3-319-43287-8_11Test.; Kuwabara M.F., Wasano K., Takahashi S., et al. The extracellular loop of pendrin and prestin modulates their voltage-sensing property. J Biol Chem. 2018; 293(26): 9970-9980. doi:10.1074/jbc.RA118.001831.; Babu M., Greenblatt J.F., Emili A., et al. Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure. 2010; 18(11): 1450-1462. doi:10.1016/j.str.2010.08.015.; Sharma A.K., Rigby A.C., Alper S.L. STAS Domain Structure and Function. Cell Physiol Biochem. 2011. Nov; 28(3): 407-422. doi:10.1159/000335104.; Sharma A.K., Krieger T., Rigby A.C., et al. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies. Biochem Biophys Rep. 2016; 8: 184-191. doi:10.1016/j.bbrep.2016.08.022.; Rapp C., Reinhart X.B., Reithmeier A.F. Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling. Biochim Biophys Acta Biomembr. 2017; 1859(12): 2420-2434. doi:10.1016/j.bbamem.2017.09.016.; Bassot C., Minervini G., Leonardi E., Tosatto S.C.E. Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie. 2017; Jan;132: 109-120. doi:10.1016/j.biochi.2016.10.002.; Pasqualetto E., Aiello R., Gesiot L., et al. Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol. 2010; 400(3): 448-462. doi:10.1016/j.jmb.2010.05.013.; Tsai H.H., Tsai C.J., Ma B., Nussinov R. In silico protein design by combinatorial assembly of protein building blocks. Protein Sci. 2004; 13(10): 2753-2765. doi:10.1110/ps.04774004.; Bordogna A., Pandini A., Bonati L. Predicting the accuracy of protein-ligand docking on homology models. J Comput Chem. 2011; 32(1): 81-98. doi:10.1002/jcc.21601.; Ng D.P., Poulsen B.E., Deber C.M. Membrane protein misassembly in disease. Biochimica et Biophysica Acta (BBA)-Biomembranes 2012; 1818(4): 1115-22. doi:10.1016/j.bbamem.2011.07.046.; Detro-Dassen S., Schänzler M., Lauks H., et al. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem. 2008; 283(7): 4177-4188. doi:10.1074/jbc.M704924200.; Farrell B., Skidmore B.L., Rajasekharan V., Brownell W.E. A novel theoretical framework reveals more than one voltage-sensing pathway in the lateral membrane of outer hair cells. J Biol Chem. 2020; 152(7):e201912447. doi:10.1085/jgp.201912447.; Fu C., Zheng H., Zhang S., et al. Mutation screening of the SLC26A4 gene in a cohort of 192 Chinese patients with congenital hypothyroidism. Arch Endocrinol Metab. 2016 Aug; 60(4): 323-7. doi:10.1590/2359-3997000000108.; Park H.J., Lee S.J., Jin H.S., et al. Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans. Clin Genet. 2005; 67(2):160-165. https://doi.org/10.1111/j.1399-0004.2004.00386.xTest; Tsukamoto K., Suzuki H., Harada D., et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet. 2003 Dec; 11(12): 916-22. doi:10.1038/sj.ejhg.5201073.; Yoon J.S., Park H-J., Yoo S-Y., et al. Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet. 2008 Jul; 45(7): 411-9. doi:10.1136/jmg.2007.054635.; Ishihara K., Okuyama S., Kumano S., et al. Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res. 2010 Dec 1; 270(1-2): 110-8. doi:10.1016/j.heares.2010.08.015.; Huang S., Han D., Yuan Y., et al. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med. 2011 Sep 30; 9: 167. doi:10.1186/1479-5876-9-167.; Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet. 2006 Jun; 14(6): 773-9. doi:10.1038/sj.ejhg.5201611.; Rebeh I.B., Yoshimi N., Hadj-Kacem H., et al. Two missense mutations in SLC26A4 gene: a molecular and functional study. Clin Genet. 2010 Jul; 78(1): 74-80. doi:10.1111/j.1399-0004.2009.01360.x.; Wasano K., Takahashi S., Rosenberg S.K., et al. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat. 2020 Jan; 41(1): 316-331. doi:10.1002/humu.23930.; https://www.medgen-journal.ru/jour/article/view/2185Test

  7. 7
    دورية أكاديمية

    المصدر: Medical Genetics; Том 21, № 2 (2022); 3-14 ; Медицинская генетика; Том 21, № 2 (2022); 3-14 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2041/1549Test; Benjamin J,. Ebstein R.P., Belmaker R.H. Personality genetics. Isr. J. Psychiatry Relat. Sci. 2002; 39(4):271-279.; Caspi A., Roberts B.W., Shiner R.L. Personality development: stability and change. Annu. Rev. Psychol. 2005;56:453-484.doi:10.1146/annurev.psych.55.090902.141913; Srivastava S., John O.P. Gosling S.D., Potter J. Development of personality in early and middle adulthood: set like plaster or persistent change? J. Pers. Soc. Psychol. 2003;84(5):1041-1053. doi:10.1037/0022-3514.84.5.1041; Белокоскова С.Г., Цигунов С.Г. Вазопрессин в механизмах реализаций реакций на стресс и модуляции эмоций. Обзоры по клинической фармакологии и лекарственной терапии. 2018;16(3):5-12. doi:10.17816/RCF1635-12; Yirmiya N., Rosenberg C., Levi S. et al. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry. 2006;11(5):488-494. doi:10.1038/sj.mp.4001812; Meyer-Lindenberg A., Kolachana B., Gold B. et al. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol. Psychiatry. 2009; 14:968-975. doi:10.1038/mp.2008.54; Tansey K.E., Hill M.J., Cochrane L.E. et al. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol.Autism. 2011; 2(1):3. doi:10.1186/2040-2392-2-3; Казанцева А.В., Кутлумбетова Ю.Ю., Малых С.Б. и др. Ассоциация полиморфных маркеров генов аргинин-вазопрессиновых рецепторов (AVPR1A и AVPR1B) с чертами личности. Генетика. 2014;50(3):341-352.; Yang S.Y., Kim S.A., Hur G.M. et al. Replicative genetic association study between functional polymorphisms in AVPR1A and social behavior scales of autism spectrum disorder in the Korean population. Molecular Autism. 2017; 8:44. doi:10.1186/s13229-017-0161-9; Kazantseva A., Davydova Y, Enikeeva R. et al. AVPR1A main effect and OXTR-by-enviroment interplay in individual differences in depression level. Heliyon. 2020;6(10): e05240. doi:10.1016/j.heliyon.2020.e05240.; Zhang Y., Zhu D., Zhang P. et al. Neural mechanisms of AVPR1A RS3-RS1 haplotypes that impact verbal learning and memory. Neuroimage. 2020;222:117283. doi:10.1016/j.neuroimage.2020.117283; Bachner-Melman R., Dina C., Zohar A.H. et al. AVPR1A and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 2005;1(3):394-403. doi:10.1371/journal.pgen.0010042; Ukkola L.T., Onkamo P., Raijas P. et al. Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE. 2009;4(5): e5534. doi:10.1371/journal.pone.0005534; Staes N., Koski S.E., Helsen P. et al. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Horm Behav. 2015;75:84-90. doi:10.1016/j.yhbeh.2015.08.006; Mulholland M.M., Navabpour S.V., Mareno M.C. et al. AVPR1A variation is linked to gray matter covariation in the social brain network of chimpanzees. Genes Brain Behav. 2020;19(4):e12631. doi:10.1111/gbb.12631; Aluja A., García L.F., García Ó., Blanco E. Testosterone and disinhibited personality in healthy males. Physiol Behav. 2016;164:227-232. doi:10.1016/j.physbeh.2016.06.007; Van den Akker A.L., Briley D.A., Grotzinger A.D. et al. Adolescent Big Five personality and pubertal development: pubertal hormone concentrations and self-reported pubertal status. Dev Psychol. 2021;57(1):60-72. doi:10.1037/dev0001135; Vaeroy H., Schneider F., Fetissov S.O. Neurobiology of aggressive behavior-role of autoantibodies reactive with stress-related peptide hormones. Front Psychiatry. 2019;10:872. doi:10.3389/fpsyt.2019.00872; Федорова С.А. Генетические портреты народов Республики Саха (Якутия): анализ линий митохондриальной ДНК и Y-хромосомы. Якутск: Изд. ЯНЦ СО РАН. 2008; 235 с.; Fedorova S.A., Reidla M., Metspalu E. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC evolutionary biology. 2013; 13:127. doi:10.1186/1471-2148-13-127; Morley A.P., Narayanan M., Mines R. et al. AVPR1A and SLC6A4 polymorphisms in choral singers and non-musicians: A Gene Association Study. PLoS ONE. 2012;7(2): e31763. doi:10.1371/journal.pone.0031763; Алмаев Н.А., Островская Л.Д. Адаптация опросника темперамента и характера Р. Клонинджера на русскоязычной выборке. Психологический журнал. 2005;26(6):77-86.; Bielsky I.F., Hu S.B., Szegda K.L. et al. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology. 2004;29(3):483-493. doi:10.1038/sj.npp.1300360; Inoue-Murayama M., Yokoyama C., Yamanashi Y. et al.Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes. Sci Rep. 2018;8(1):10255. doi:10.1038/s41598-018-28112-7; Nishina K., Takagishi H., Takahashi H. et al. Association of Polymorphism of Arginine-Vasopressin Receptor 1A (AVPR1a) Gene With Trust and Reciprocity. Front Hum Neurosci. 2019;13:230. doi:10.3389/fnhum.2019.00230; Brunner J., Keck M.E., Landgraf R. et al. Vasopressin in CSF and plasma in depressed suicide attempters: preliminary results. Eur. Neuropsychopharmacol. 2002;12(5):489-494. doi:10.1016/s0924-977x(02)00071-8; de Winter R.F., van Hemert A.M., Derijk R.H. et al. Anxiousretarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology. 2003;28(1):140-147. doi:10.1038/sj.npp.1300002; Piskunov A., Fusté A., Teryaeva N. et al. The hypothalamic-pituitary-thyroid axis and personality in a sample of healthy subjects. Psychoneuroendocrinology. 2018;87:181-187. doi:10.1016/j.psyneuen.2017.10.023; Arqué J.M., Segura R., Torrubia R. Correlation of thyroxine and thyroid-stimulating hormone with personality measurements: a study in psychosomatic patients and healthy subjects. Neuropsychobiology. 1987;18(3):127-33. doi:10.1159/000118406; Rawal R., Teumer A., Völzke H. et al. Meta-analysis of two genome-wide association studies identifies four genetic loci associated with thyroid function. Hum Mol Genet. 2012;21(14):3275-3282. doi:10.1093/hmg/dds136; Marcisz C., Jonderko G., Kucharz E.J. Changes of plasma arginine-vasopressin level in patients with hyperthyroidism during treatment. Med Sci Monit. 2001;7(3):409-414.; Levie D., Korevaar T., Bath S.C. et al. Thyroid function in early pregnancy, child IQ, and autistic traits: a meta-analysis of individual participant data. J Clin Endocrinol Metab. 2018;103(8):2967-2979. doi:10.1210/jc.2018-00224; Aluja A., Torrubia R. Hostility-aggressiveness, sensation seeking, and sex hormones in men: re-exploring their relationship. Neuropsychobiology. 2004;50(1):P.102-107. doi:10.1159/000077947; Markianos M., Tripodianakis J., Istikoglou C. et al. Suicide attempt by jumping: a study of gonadal axis hormones in male suicide attempters versus men who fell by accident. Psychiatry Res. 2009;170(1):82-85. doi:10.1016/j.psychres.2008.08.001; Fischer S., Ehlert U., Amiel Castro R. Hormones of the hypothalamic-pituitary-gonadal (HPG) axis in male depressive disorders - A systematic review and meta-analysis. Front Neuroendocrinol. 2019; 55:100792. doi:10.1016/j.yfrne.2019.100792; Butovskaya M., Rostovtseva V., Butovskaya P. et al. Oxytocin receptor gene polymorphism (rs53576) and digit ratio associates with aggression: comparison in seven ethnic groups. J Physiol Anthropol. 2020;39(1):20. doi:10.1186/s40101-020-00232-y; Hampson E., Ellis C.L., Tenk C.M. On the relation between 2D:4D and sex-dimorphic personality traits. Arch Sex Behav. 2008;37(1):133-144. doi:10.1007/s10508-007-9263-3; https://www.medgen-journal.ru/jour/article/view/2041Test

  8. 8
    دورية أكاديمية
  9. 9
  10. 10