يعرض 1 - 10 نتائج من 871 نتيجة بحث عن '"N. A. Andreeva"', وقت الاستعلام: 1.16s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 3 (2024); 52-57 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 3 (2024); 52-57 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-3

    وصف الملف: application/pdf

    العلاقة: https://nnp.ima-press.net/nnp/article/view/2287/1674Test; Petzold A, Fraser CL, Abegg M, et al. Diagnosis and classification of optic neuritis. Lancet Neurol. 2022 Dec;21(12):1120-34. doi:10.1016/S1474-4422(22)00200-9. Epub 2022 Sep 27.; Sarkar P, Mehtani A, Gandhi HC, et al. Atypical optic neuritis: An overview. Indian J Ophthalmol. 2021 Jan;69(1):27-35. doi:10.4103/ijo.IJO_451_20; Zhang Y, Qiu W, Guan H, et al. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol. 2022 Mar 2;13:844155. doi:10.3389/fneur.2022.844155; Шерман МА, Бойко АН. Эпидемиология заболеваний спектра оптиконейромиелита. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2021;121(7-2):5-12. doi:10.17116/jnevro20211210725; Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 2023 Mar;22(3):268-82. doi:10.1016/S1474-4422(22)00431-8. Epub 2023 Jan 24.; Cacciaguerra L, Flanagan EP. Updates in NMOSD and MOGAD Diagnosis and Treatment: A Tale of Two Central Nervous System Autoimmune Inflammatory Disorders. Neurol Clin. 2024 Feb;42(1):77-114. doi:10.1016/j.ncl.2023.06.009. Epub 2023 Aug 7.; Gaier ED, Boudreault K, Rizzo JF 3rd, et al. Atypical Optic Neuritis. Curr Neurol Neurosci Rep. 2015 Dec;15(12):76. doi:10.1007/s11910-015-0598-1; Lin TY, Chien C, Lu A, et al. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: an updated review. Expert Rev Neurother. 2021 Oct;21(10):1101-23. doi:10.1080/14737175.2021.1982697. Epub 2021 Oct 11.; Chen JJ, Sotirchos ES, Henderson AD, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG anti body-associated disease and Multiple Sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS. Mult Scler Relat Disord. 2022 Feb;58:103525. doi:10.1016/j.msard.2022.103525. Epub 2022 Jan 11.; Patil SA, Grossman S, Kenney R, et al. Where's the Vision? The Importance of Visual Outcomes in Neurologic Disorders: The 2021 H. Houston Merritt Lecture. Neurology. 2023 Jan 31;100(5):244-53. doi:10.1212/WNL.0000000000201490. Epub 2022 Dec 15.; Jarius S, Aktas O, Ayzenberg I, et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) — revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol. 2023 Jul;270(7):3341-68. doi:10.1007/s00415-023-11634-0. Epub 2023 Apr 6.; Dhar N, Kumar M, Tiwari A, et al. Comparison of clinico-radiological profile, optical coherence tomography parameters, and outcome in MOGAD and Neuromyelitis optica spectrum disorder subtypes: A prospective observational study. J Neurosci Rural Pract. 2023 Apr-Jun;14(2):239-51. doi:10.25259/JNRP_8_2022. Epub 2023 Feb 23.; Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017 Apr 1;389(10076):1336-46. doi:10.1016/S0140-6736(16)30959-X. Epub 2016 Nov 24.; Wingerchuk DM, Banwell B, Bennett JL, et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015 Jul 14;85(2):177-89. doi:10.1212/WNL.0000000000001729. Epub 2015 Jun 19.; Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018 May 3;15(1):134. doi:10.1186/s12974-018-1144-2; Ramanathan S, Reddel SW, Henderson A, et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm. 2014 Oct 29;1(4):e40. doi:10.1212/NXI.0000000000000040; Kümpfel T, Giglhuber K, Aktas O, et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) — revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J Neurol. 2024 Jan;271(1):141-76. doi:10.1007/s00415-023-11910-z. Epub 2023 Sep 7. Erratum in: J Neurol. 2024 Apr 5.; Outteryck O, Majed B, Defoort-Dhellemmes S, et al. A comparative optical coherence tomography study in neuromyelitis optica spectrum disorder and multiple sclerosis. Mult Scler. 2015 Dec;21(14):1781-93. doi:10.1177/1352458515578888. Epub 2015 Mar 31.; Oertel FC, Sotirchos ES, Zimmermann HG, et al; with the GJCF International Clinical Consortium for NMOSD and the CROCTINO study group. Longitudinal Retinal Changes in MOGAD. Ann Neurol. 2022 Sep;92(3):476-85. doi:10.1002/ana.26440. Epub 2022 Jul 16.; https://nnp.ima-press.net/nnp/article/view/2287Test

    الإتاحة: https://doi.org/10.14412/2074-2711-2024-3-52-5710.14412/2074-2711-2024-310.1016/S1474-4422Test(22)00200-910.4103/ijo.IJO_451_2010.3389/fneur.2022.84415510.17116/jnevro2021121072510.1016/S1474-4422(22)00431-810.1016/j.ncl.2023.06.00910.1007/s11910-015-0598-110.1080/14737175.2021.198269710.1016/j.msard.2022.10352510.1007/s00415-023-11634-010.25259/JNRP_8_202210.1016/S0140-6736(16)30959-X10.1212/WNL.000000000000172910.1186/s12974-018-1144-210.1212/NXI.000000000000004010.1007/s00415-023-11910-z10.1177/135245851557888810.1002/ana.26440
    https://nnp.ima-press.net/nnp/article/view/2287Test

  6. 6
    دورية أكاديمية

    المصدر: Vestnik Universiteta; № 2 (2024); 104-114 ; Вестник университета; № 2 (2024); 104-114 ; 2686-8415 ; 1816-4277

    وصف الملف: application/pdf

    العلاقة: https://vestnik.guu.ru/jour/article/view/5075/2937Test; Данилов Р.С., Картышева П.А. Влияние национальных проектов на структуру расходов бюджетов бюджетной системы Российской Федерации. Государственная служба. 2021;5(127):19–25. https://doi.org/10.22394/2070-8378-2020-22-5-19-25Test; Зотиков Н.З., Львова Н.В., Арланова О.И. Особенности и проблемы формирования бюджетов субъектов РФ. Инновационное развитие экономики. 2020;2(50):205–218.; Тимушев Е.Н. Потенциал, ограничения и направления исследований внутрирегиональной (местной) бюджетной децентрализации в федеральной политике регионального развития. Финансы и кредит. 2020;1(26):196–212. https://doi.org/10.24891/fc.26.1.196Test; Глушакова О.В. О взаимосвязи национальных целей развития России с бюджетными расходами и о возможностях достижения целей в условиях COVID-19. Финансы и кредит. 2021;7(27):1444–1475.; Ковалева Т.М., Маняева В.А., Бойко И.А. Вопросы эффективности общественных финансов. Экономика и предпринимательство. 2020;2(103):189–193.; Колодяжная А.Ю. Сбалансированность как базовый параметр эффективности бюджета региона. В кн.: Статистический анализ социально-экономического развития федеральных округов российской федерации: опыт, реалии, перспективы: материалы Всероссийской научно-практической конференции, Ставрополь, 7–8 апреля 2021 г. Ставрополь; 2021. С.122–126.; Шешуков Д.Е. Анализ состава, структуры и динамики доходов и расходов регионального бюджета. Научные записки молодых исследователей. 2021;3:57–66.; Чуркин И.Д., Корчемкина Е.С. К вопросу о проблемах региональных бюджетов Российской Федерации. Вестник науки и образования. 2020;10-4(64):46–49.; Огородникова Е.П. Региональные бюджеты – «инициативное бюджетирование». В кн.: Социально-экономическое развитие регионов России: тенденции, проблемы, перспективы: материалы II Всероссийской научно-практической конференции, Оренбург, 8 декабря 2021 г. Волгоград; 2022. С. 192–196.; Огородникова Е.П., Ермолаева В.А., Рязанова Е.В. Реформирование налоговой системы РФ на примере НДС. В кн.: Стратегические приоритеты развития экономики и ее информационное обеспечение: материалы Международной научной конференции, молодых ученых и преподавателей вузов. Краснодар; 2022. С. 158–163.; https://vestnik.guu.ru/jour/article/view/5075Test

  7. 7
    دورية أكاديمية

    المصدر: Epidemiology and Vaccinal Prevention; Том 23, № 2 (2024); 94-101 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 2 (2024); 94-101 ; 2619-0494 ; 2073-3046

    وصف الملف: application/pdf

    العلاقة: https://www.epidemvac.ru/jour/article/view/1973/1025Test; Hirabara S.M., Serdan T.D.A., Gorjao R, et al. SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Front Cell Infect Microbiol. 2022. Jan 18;11:781429.; Mistry P, Barmania F, Mellet J, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity Front. Immunol. 2022. Jan 3;12:809244.; Mahase E. Covid-19: Omicron and the need for boosters . BMJ. 2021. 375.; He X., Hong W., Pan X., et al. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm. 2021. Dec 16;2(4):838–845.; Jackson C. B., Zhang L., Farzan М., et al. SARS-CoV-2 spike protein. Biochem. Biophys. Res. Commun. 2021. Jan 29;538:108–115.; Kumar A., Dowling W.E., Román R.G., et al. Status report on COVID-19 vaccines development. Curr. Infect. Dis. Rep. 2021. 23(6):9.; Kim J.H., Marks F., Clemens J.D. Looking Beyond COVID-19 vaccine phase 3 trials. Nat. Med. 2021.27:205–11.; Tada T., Zhou H., Samanovic M.I., et al. Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine against SARS-CoV-2 Variants. Front Immunol. 2022. Mar 8;13:797589.; Wu Q., Dudley M.Z., Chen X., et al. Evaluation of the safety profile of COVID-19 vaccines: a rapid review. BMC Med. 2021 Jul. 28;19(1):173.; Karlsson L.C, Soveri A., Lewandowsky S., et al. Fearing the disease or the vaccine: The case of COVID-1. Pers Individ. Dif. 2021. Apr;172:110590; Ladhani S.N. Crossing the Rubicon: A fine line between waiting and vaccinating adolescents against COVID-19. J. Infect. 2021. Sep;83(3):294–297.; Pastorino R., Pezzullo A.M., Villani L., et al. Change in age distribution of COVID-19 deaths with the introduction of COVID-19 vaccination. Environ Res. 2022. Mar;204(Pt C):112342.; Zhu F., Jin P., Zhu T., et al. Safety and Immunogenicity of a Recombinant Adenovirus Type-5-Vectored Coronavirus Disease 2019 (COVID-19) Vaccine With a Homologous Prime-Boost Regimen in Healthy Participants Aged ≥6 Years: A Randomized, Double-Blind, Placebo-Controlled, Phase 2b Trial. Clin. Infect. Dis. 2022 Aug 24;75(1):e783–e791.; Официальный сайт Министерства здравоохранения Российской Федерации. Утверждены временные методические рекомендации «Порядок проведения вакцинации взрослого населения против COVID-19». Доступно на: https: minzdrav.gov.ru/news/2021/07/02/16927-utverzhdeny-vremennye-metodicheskie-rekomendatsii-poryadok-provedeniya-vaktsinatsii-vzroslogo-naseleniya-protiv-covid-19 Ссылка активна на 30.03.2023.; Levin E.G., Lustig Y., Cohen C., et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl J. Med. 2021. Dec;9;385(24):e84.; Schmidt F., Weisblum Y., Rutkowska M., et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature. 2021. Dec;600(7889):512–516.; Официальный сайт Центра по контролю заболеваний США. COVID-19 Vaccine Booster Shots. Доступно на: https:.www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html. Ссылка активна на 30.03.2023.; Alasdair P., Munro S, Janani L., et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021. Dec;18;398(10318):2246.; Barda N., Dagan N., CohenC, et al . Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet 2021. Dec;4;398(10316):2093–2100.; Bar-On Y.M., Goldberg Y., Mandel M., et al Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. N. Engl. J. Med. 2021. Oct;7;385(15):1393–1400.; Письмо Министерства здравоохранения Российской Федерации от 17 июня 2022 года N 30-4/И/2-9890 «О направлении временных методических рекомендаций «Порядок проведения вакцинации против новой коронавирусной инфекции (COVID-19)» Доступно на: https:docs.cntd.ru/document/351563923. Ссылка активна на 30.03.2023.; Давыдова Е. П., Евневич Ю. В., Рукавишникова С. А. и др. Особенности специфического иммунитета (феномен инфламмейджинга) у лиц пожилого и старческого возраста, вакцинированных от новой коронавирусной инфекции . Клиническая геронтология. 2022; 28 (5–6): 14–20.; He Q., Mao Q, An Ch., et al . Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg. Microbes Infect. 2021. Dec;10(1):629–637.; Atmar R.L., Like K.E., Deming M.E., et al. Homologous and heterologous booster vaccines against Covid-19. N. Engl. J. Med. 2022. 17 марта; 38 (11):1046–1057.; Bourgonje A.R., Abdulle A.E, Timens W., et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020. Jul;251(3):228–248.; Bellino S., Punzo O., Rota М.С., Manso M. Patients in Italy. Pediatrics. 2020. Oct;146(4):e2020009399.; Jiang L.,Tang K., Levin M., et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect. Dis. 2020 Nov; 20(11):e276–e288.; Thomas S.J., Moreira Jr.E.D., Kitchin N., et al. Vaccine through 6 Months. N. Engl. J. Med. 2021 Nov4;385(19):1761–1773.; Fernandes E.G., López-Lopes G.I.S., Silva V.О., et al CoV-2 vaccine (CoronaVac) in inadvertently vaccinated healthy children. Rev. Ins.t Med. Trop. Sao Paulo. 2021. Dec;6;63:e83.; Netea M.G., Dominguez-Andres J., Barreiro L.B., et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020. 20(6):375–388.; Pan P., Shen M., Yu Z., et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat. Commun. 2021 Aug;2;12(1):4664.; Bunyavanich S., Do А., Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020 Jun;16;323(23).; Hause A.M., Marquez P., Zhang B., et al. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Children Aged 5-11 Years - United States, October 12-January 1, 2023. MMWR Morb. Mortal. Wkly Rep. 2023 Jan 13;72(2):39–43.; Spitzer A., Angel Y., Marudi O., et al. Association of a Third Dose of BNT162b2 Vaccine With Incidence of SARS-CoV-2 Infection Among Health Care Workers in Israel. JAMA. 2022 Jan;25;327(4):341–349.; Herzberg J., Fischer B., Blecher H., et al. Cellular and humoral immune response to the third dose of the BNT162b2 COVID-19 vaccine - a prospective observational study. Front. Immun. 2022 Jul 1;13:896151.; Ткачева О. Н., Котовская Ю. В., Намазова-Баранова Л. С. и др. Вакцинация лиц пожилого возраста. Методическое руководство. 2 версия.- М.а: ПедиатрЪ;2022.; Костинов М. П., Адамян Л. В., Черданцев А. П. и др. Вакцинация и экстренная иммунопрофилактика инфекционных заболеваний у беременных и кормящих женщин: руководство для врачей (изд. 1-е). М.:Группа МДВ; 2022.; Костинов М. П., Квасова М. А., Тарасова А. А. и др. Влияние COVID-19 на исход беременности и оценка вакцинопрофилактики SARS-CoV-2 у беременных и кормящих женщин. Педиатрия им. Г.Н. Сперанского. 2022;101(1):128–134.; Bhuiyan M.U., Stiboy E., Hassan M.Z., et al. Epidemiology of COVID-19 infection in young children under five years: a systematic review and meta-analysis. Vaccine 2021;39:667–77.; Костинов М. П. Иммунопатогенные свойства SARS-CoV-2 как основа для выбора патогенетической терапии. Иммунология. 2020;41(1):83–91.; Костинов М. П. Вакцинопрофилактика COVID-19 у пациентов с коморбидными заболеваниями. Руководство для врачей. М.: Группа МДВ, 2022.; Тарасова А. А., Костинов М. П., Квасова М. А. Вакцинация детей против новой коронавирусной инфекции и тактика иммунизации у пациентов с хроническими заболеваниями. Педиатрия. Журнал им. Г. Н. Сперанского. 2021; 100(6):15–22.; https://www.epidemvac.ru/jour/article/view/1973Test

  8. 8
    دورية أكاديمية

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 15 (2023): (Suppl. 1); 35-42 ; Неврология, нейропсихиатрия, психосоматика; Vol 15 (2023): (Suppl. 1); 35-42 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-0

    وصف الملف: application/pdf

    العلاقة: https://nnp.ima-press.net/nnp/article/view/2077/1573Test; Bennett J, Costello F, Chen J, et al. Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. Lancet Neurol. 2023 Jan;22(1):89-100. doi:10.1016/S1474-4422(22)00187-9; Jenkins TM, Toosy AT. Optic neuritis: the eye as a window to the brain. Curr Opin Neurol. 2017 Feb;30(1):61-6. doi:10.1097/WCO.0000000000000414; Gaier ED, Boudreault K, Rizzo JF 3rd, et al. Atypical Optic Neuritis. Curr Neurol Neurosci Rep. 2015 Dec;15(12):76. doi:10.1007/s11910-015-0598-1; McGinley P, Goldschmidt, C, Rae-Grant A. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA. 2021 Feb 23;325(8):765-79. doi:10.1001/jama.2020.26858; Zhang Y, Qiu W, Guan H, et al. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol. 2022 Mar 2;13:844155. doi:10.3389/fneur.2022.844155; Foo R, Yau C, Singhal S, et al. Optic Neuritis in the Era of NMOSD and MOGAD: A Survey of Practice Patterns in Singapore. Asia Pac J Ophthalmol (Phila). 2022 Mar-Apr 01;11(2):184-95. doi:10.1097/APO.0000000000000513; Lennon V, Wingerchuk D, Kryzer T, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004 Dec 11-17;364(9451):2106-12. doi:10.1016/S0140-6736(04)17551-X; Lennon V, Kryzer T, Pittock S, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473-7. doi:10.1084/jem.20050304; Häusser-Kinzel S, Weber M. The Role of B Cells and Antibodies in Multiple Sclerosis, Neuromyelitis Optica, and Related Disorders. Front Immunol. 2019 Feb 8;10:201. doi:10.3389/fimmu.2019.00201; Jacob A, McKeon I, Nakashima, D, et al. Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):922-30. doi:10.1136/jnnp-2012-302310; Wingerchuk D, Banwell B, Bennett J, et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015 Jul 14;85(2):177-89. doi:10.1212/WNL.0000000000001729; Hamid S, Whittam D, Mutch K, et al. What proportion of AQP4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients. J Neurol. 2017 Oct;264(10):2088-94. doi:10.1007/s00415-017-8596-7; Flanagan B. Neuromyelitis optica spectrum disorder and other non-multiple sclerosis central nervous system inflammatory diseases. Contin Lifelong Learn Neurol. 2019;25:815-44. doi:10.1212/CON.0000000000000742; Pröbstel A, Rudolf G, Dornmair K, et al. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J Neuroinflammation. 2015;12:46. doi:10.1186/s12974-015-0256-1; Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014 Feb 11;82(6):474-81. doi:10.1212/WNL.0000000000000101. Epub 2014 Jan 10.; Peschl P, Schanda K, Zeka B, et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J Neuroinflammation. 2017 Oct 25;14(1):208. doi:10.1186/s12974-017-0984-5; Waters P, Fadda G, Woodhall M, et al. Canadian Pediatric Demyelinating Disease Network. Serial Anti-Myelin Oligodendrocyte Glycoprotein Antibody Analyses and Outcomes in Children With Demyelinating Syndromes. JAMA Neurol. 2020 Jan 1;77(1):82-93. doi:10.1001/jamaneurol.2019.2940; Jarius S, Metz I, Konig F, et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in 'pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Mult Scler. 2016 Oct;22(12):1541-9. doi:10.1177/1352458515622986; Sechi E, Cacciaguerra L, Chen J, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol. 2022 Jun 17;13:885218. doi:10.3389/fneur.2022.885218; Wildemann B, Horstmann S, Korporal-Kuhnke M, et al. Aquaporin-4-und Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Optikusneuritis: Diagnose und Therapie [Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis: Diagnosis and Treatment]. Klin Monbl Augenheilkd. 2020 Nov;237(11):1290-305. doi:10.1055/a-1219-7907 (In Germ.)].; Tanaka S, Hashimoto B, Izaki S, et al. Clinical and immunological differences between MOG associated disease and anti AQP4 antibody- positive neuromyelitis optica spectrum disorders: Blood-brain barrier breakdown and peripheral plasmablasts. Mult Scler Relat Disord. 2020 Jun;41:102005. doi:10.1016/j.msard.2020.102005; Akaishi T, Takahashi T, Misu T, et al. Difference in the Source of Anti-AQP4-IgG and Anti-MOG-IgG Antibodies in CSF in Patients With Neuromyelitis Optica Spectrum Disorder. Neurology. 2021 Jul 6;97(1):e1-e12. doi:10.1212/WNL.0000000000012175; Beck R, Cleary P, Backlund J, et al. The course of visual recovery after optic neuritis. Experience of the Optic Neuritis Treatment Trial. Ophthalmology. 1994 Nov;101(11):1771-8. doi:10.1016/s0161-6420(94)31103-1; Llufriu S, Castillo J, Blanco Y, et al. Plasma exchange for acute attacks of CNS demyelination: Predictors of improvement at 6 months. Neurology. 2009 Sep 22;73(12):949-53. doi:10.1212/WNL.0b013e3181b879be; Roesner S, Appel R, Gbadamosi J, et al. Treatment of steroid-unresponsive optic neuritis with plasma exchange. Acta Neurol Scand. 2012 Aug;126(2):103-8. doi:10.1111/j.1600-0404.2011.01612.x. Epub 2011 Nov 2.; Banwell B, Bennett J, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 2023 Mar;22(3):268-82. doi:10.1016/S1474-4422(22)00431-8; Jurynczyk M, Messina S, Woodhall R, et al. Clinical presentation and prognosis in MOGantibody disease: a UK study. Brain. 2017 Dec 1;140(12):3128-38. doi:10.1093/brain/awx276. Erratum in: Brain. 2018 Apr 1;141(4):e31.; Kurane K, Monden Y, Tanaka D, et al. MOG-Ab titer-guided approach for steroid tapering to prevent relapse in children with mog antibody-associated adem diseases: A case report. Mult Scler Relat Disord. 2020 Oct;45:102320. doi:10.1016/j.msard.2020.102320; Deneve M, Biotti D, Patsoura S, et al. MRI features of demyelinating disease associated with anti-MOG antibodies in adults. J Neuroradiol. 2019 Sep;46(5):312-8. doi:10.1016/j.neurad.2019.06.001. Epub 2019 Jun 20.; Salama S, Khan M, Shanechi A, et al. MRI differences between MOG antibody disease and AQP4 NMOSD. Mult Scler. 2020 Dec;26(14):1854-65. doi:10.1177/1352458519893093. Epub 2020 Jan 15.; Havla J, Pakeerathan T, Schwake C, et al. Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well? J Neuroinflammation. 2021 May 29;18(1):121. doi:10.1186/s12974-021-02160-9; Dutra B, da Rocha A, Nunes R, et al. Neuromyelitis Optica Spectrum Disorders: Spectrum of MR Imaging Findings and Their Differential Diagnosis. Radiographics. 2018 Jan-Feb;38(1):169-93. doi:10.1148/rg.2018170141; Carandini T, Sacchi L, Bovis F, et al. Distinct patterns of MRI lesions in MOG antibody disease and AQP4 NMOSD: a systematic review and meta-analysis. Mult Scler Relat Disord. 2021 Sep;54:103118. doi:10.1016/j.msard.2021.103118; Filippatou A, Mukharesh L, Saidha S, et al. AQP4-IgG and MOG-IgG Related Optic Neuritis-Prevalence, Optical Coherence Tomography Findings, and Visual Outcomes: A Systematic Review and Meta-Analysis. Front Neurol. 2020 Oct 8;11:540156. doi:10.3389/fneur.2020.540156; Sotirchos E, Filippatou A, Fitzgerald K, et al. Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Mult Scler. 2020 Oct;26(11):1360-71. doi:10.1177/1352458519864928; Akaishi T, Takahashi T, Fujihara K, et al. Impact of comorbid Sjögren syndrome in anti-aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J Neurol. 2021 May;268(5):1938-44. doi:10.1007/s00415-020-10377-6; Wang X, Shi Z, Zhao Z, et al. The causal relationship between neuromyelitis optica spectrum disorder and other autoimmune diseases. Front Immunol. 2022 Sep29;13:959469. doi:10.3389/fimmu.2022.959469; https://nnp.ima-press.net/nnp/article/view/2077Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية