يعرض 1 - 10 نتائج من 135 نتيجة بحث عن '"Muylaert, Renata L"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    جغرافية الموضوع: Amazonas

    وصف الملف: 14 páginas; application/pdf

    العلاقة: 14; 18636; 13; Scientific Reports; World Health Organization. World Malaria Report 2021 (World Health Organization, 2021).; Recht, J. et al. Malaria in Brazil, Colombia, Peru and Venezuela: Current challenges in malaria control and elimination. Malar. J. 16, 273 (2017).; Mafwele, B. J. & Lee, J. W. Relationships between transmission of malaria in Africa and climate factors. Sci. Rep. 12, 14392 (2022).; Zambrano, C. & Chaparro, P. Malaria. https://www.ins.gov.co/buscador-eventos/SitePages/Evento.aspx?Event=13Test; https://doi.org/10.33610/infoeventos.13Test (2022).; Méndez, C. F. & Calderón, J. M. P. Informe de Evento Malaria, Colombia, 2020 (2019).; Padilla-Rodríguez, J. C., Olivera, M. J., Ahumada-Franco, M. L. & Paredes-Medina, A. E. Malaria risk stratification in Colombia 2010 to 2019. PLoS ONE 16, e0247811 (2021).; Montoya-Lerma, J. et al. Malaria vector species in Colombia: A review. Mem. Inst. Oswaldo Cruz 106, 223–238 (2011).; Bourke, B. P. et al. Exploring malaria vector diversity on the Amazon Frontier. Malar. J. 17, 342 (2018).; Chaves, L. S. M. et al. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS ONE 16, e0245087 (2021).; Conn, J. E. et al. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am. J. Trop. Med. Hyg. 66, 18–22 (2002).; Martins, L. M. O., David, M. R., Maciel-de-Freitas, R. & Silva-do-Nascimento, T. F. Diversity of Anopheles mosquitoes from four landscapes in the highest endemic region of malaria transmission in Brazil. J. Vector Ecol. 43, 235–244 (2018).; Vittor, A. Y. et al. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Vol. 16 (2013).; Carmona-Fonseca, J. Nuevos tratamientos para el paludismo en Colombia. Acta Med. Colomb. 32, 157 (2007).; Forero, D. A. et al. Knowledge, attitudes and practices of malaria in Colombia. Malar. J. 13, 165 (2014).; Carlos, B. C., Rona, L. D. P., Christophides, G. K. & Souza-Neto, J. A. A comprehensive analysis of malaria transmission in Brazil. Pathog. Glob. Health 113, 1–13 (2019).; Tapias-Rivera, J. & Gutiérrez, J. D. Environmental and socio-economic determinants of the occurrence of malaria clusters in Colombia. Acta Trop. 241, 106892 (2023).; Alonso, D., Bouma, M. J. & Pascual, M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. R. Soc. B Biol. Sci. 278, 1661–1669 (2011).; Brooker, S. et al. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop. Med. Int. Health 9, 757–766 (2004).; Gilman, R. H. et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian amazon. Am. J. Trop. Med. Hyg. 74, 3–11 (2006).; Guimarães, R. M. et al. Deforestation and malaria incidence in the legal Amazon region between 1996 and 2012. Cad. Saúde Colet. 24, 3–8 (2016).; Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P. & Patz, J. A. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9, e85725 (2014).; Levins, R. & Yasuoka, J. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).; Barros, F. S. M. & Honório, N. A. Deforestation and malaria on the Amazon frontier: Larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am. J. Trop. Med. Hyg. 93, 939–953 (2015).; Bauhoff, S. & Busch, J. Does deforestation increase malaria prevalence? Evidence from satellite data and health surveys. World Dev. 127, 104734 (2020).; Alimi, T. O. et al. Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population. Parasites Vectors 8, 431 (2015).; Altamiranda-Saavedra, M., Porcasi, X., Scavuzzo, C. M. & Correa, M. M. Downscaling incidence risk mapping for a Colombian malaria endemic region. Trop. Med. Int. Health 23, 1101–1109 (2018).; Fuller, D. O., Ahumada, M. L., Quiñones, M. L., Herrera, S. & Beier, J. C. Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int. J. Health Geogr. 11, 13 (2012).; Piedrahita, S., Altamiranda-Saavedra, M. & Correa, M. M. Spatial fine-resolution model of malaria risk for the Colombian Pacific region. Trop. Med. Int. Health 25, 1024–1031 (2020).; Mateus, J. C. & Carrasquilla, G. Predictors of local malaria outbreaks: An approach to the development of an early warning system in Colombia. Mem. Inst. Oswaldo Cruz 106, 107–113 (2011).; Mantilla, G. et al. Implementation of malaria dynamic models in municipality level early warning systems in Colombia. Part I: Description of study sites. Am. J. Trop. Med. Hyg. 91, 27–38 (2014).; Poveda, G. et al. Integrating knowledge and management regarding the climate–malaria linkages in Colombia. Curr. Opin. Environ. Sustain. 3, 448–460 (2011).; Feged-Rivadeneira, A., Del Cairo, C. & Vargas, W. Demographic and epidemic transitions in peri-urban areas of Colombia: A multilevel study of malaria in the Amazonian city of San José del Guaviare. Environ. Urban. 31, 325–348 (2019).; Rodríguez, J. C. P., Olivera, M. J., Herrera, M. C. P. & Abril, E. P. Malaria epidemics in Colombia, 1970–2019. Rev. Soc. Bras. Med. Trop. 55, e0559 (2022).; Vásquez-Jiménez, J. M. et al. Consistent prevalence of asymptomatic infections in malaria endemic populations in Colombia over time. Malar. J. 15, 70 (2016).; Jin, X., Jin, S. & Gao, D. Mathematical analysis of the Ross–Macdonald model with quarantine. Bull. Math. Biol. 82, 47 (2020).; Simoy, M. I. & Aparicio, J. P. Ross–Macdonald models: Which one should we use? Acta Trop. 207, 105452 (2020).; Mandal, S., Sarkar, R. R. & Sinha, S. Mathematical models of malaria—A review. Malar. J. 10, 202 (2011).; MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. U.S.A. 116, 22212–22218 (2019).; Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 0108 (2017).; Andrade, M. V. et al. The economic burden of malaria: A systematic review. Malar. J. 21, 283 (2022).; Tucker Lima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160125 (2017).; Carrasco-Escobar, G. et al. Time-varying effects of meteorological variables on malaria epidemiology in the context of interrupted control efforts in the Amazon Rainforest, 2000–2017. Front. Med. 8, 721515 (2021).; Wu, Y. et al. Describing interaction effect between lagged rainfalls on malaria: An epidemiological study in south–west China. Malar. J. 16, 53 (2017).; Magombedze, G., Ferguson, N. M. & Ghani, A. C. A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of Anopheles mosquitoes. Parasites Vectors 11, 576 (2018).; Douine, M. et al. Malaria in gold miners in the Guianas and the Amazon: Current knowledge and challenges. Curr. Trop. Med. Rep. 7, 37–47 (2020).; Hiwat, H. & Bretas, G. Ecology of Anopheles darlingi root with respect to vector importance: A review. Parasites Vectors 4, 177 (2011).; Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).; Ewing, D. A., Cobbold, C. A., Purse, B. V., Nunn, M. A. & White, S. M. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J. Theor. Biol. 400, 65–79 (2016).; Yang, G.-J., Brook, B. W., Whelan, P. I., Cleland, S. & Bradshaw, C. J. A. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes. Ecol. Appl. 18, 2028–2040 (2008).; Vegetacion, palinología y paleoecologia de la amazonía colombiana. (Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 1995).; Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sensing 12, 2735 (2020).; Gobernación de Amazonas. Corregimiento La Pedrera. https://web.archive.org/web/20171009112359Test/; http://amazonas.gov.co/territorios.shtml?apc=bbxx-3-&x=1364463Test (2017).; García, U. G. M. et al. Diseño de la línea base de información ambiental sobre los recursos naturales y el medio ambiente en la Amazonia colombiana: Bases conceptuales y metodológicas (Instituto Amazónico de Investigaciones Científicas, 2007).; Silva Junior, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2021).; Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114, 369–386 (2006).; Arias-Gaviria, J. et al. Drivers and effects of deforestation in Colombia: A systems thinking approach. Reg. Environ. Change 21, 91 (2021).; Armenteras, D., Cabrera, E., Rodríguez, N. & Retana, J. National and regional determinants of tropical deforestation in Colombia. Reg. Environ. Change 13, 1181–1193 (2013).; Larrea-Alcázar, D. Deforestación en la Amazonía (1970–2013). https://doi.org/10.13140/RG.2.1.3694.4407Test (2015).; Pineda, G. F. & Agudelo, C. A. Percepciones, actitudes y prácticas en malaria en el Amazonas Colombiano. Rev. Salud Pública 7, 9 (2005).; Botero, D. S. Informe de Evento Malaria, Colombia, 2018 (2019).; Pineda Granados, F. Y., Valero, V. & Agudelo, C. A. Evaluación del programa de control de la malaria en la Amazonía Colombiana. Rev. Salud Pública 6, 40–49 (2004).; Instituto Nacional de la Salud - Colombia. SIVIGILA—Malaria. http://portalsivigila.ins.gov.co/Paginas/Buscador.aspxTest.; Departamento Administrativo Nacional De Estadística. DANE—Demografía y población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacionTest.; Imbahale, S. S. et al. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar. J. 10, 81 (2011).; Hewitt, J. E., Thrush, S. E. & Cummings, V. J. Assessing environmental impacts: Effects of spatial and temporal variability at likely impact scales. Ecol. Appl. 11, 1502–1516 (2001).; Moore, J. L., Liang, S., Akullian, A. & Remais, J. V. Cautioning the use of degree-day models for climate change projections in the presence of parametric uncertainty. Ecol. Appl. 22, 2237–2247 (2012).; Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics (Springer, 1992).; Avila-Vales, E. & Pérez, Á. G. C. Dynamics of a time-delayed SIR epidemic model with logistic growth and saturated treatment. Chaos Solitons Fract. 127, 55–69 (2019).; Ebraheem, H. K., Alkhateeb, N., Badran, H. & Sultan, E. Delayed dynamics of SIR model for COVID-19. OJMSi 09, 146–158 (2021).; Bernal, S. A System Dynamics Model of Climate and Endemic Malaria in Colombia (Universidad Nacional de Colombia, 2018).; Lardeux, F. J., Tejerina, R. H., Quispe, V. & Chavez, T. K. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J. 7, 141 (2008).; Rúa, G. L. et al. Laboratory estimation of the effects of increasing temperatures on the duration of gonotrophic cycle of Anopheles albimanus (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 100, 515–520 (2005).; Lunde, T. M., Korecha, D., Loha, E., Sorteberg, A. & Lindtjørn, B. A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar. J. 12, 28 (2013).; Chirebvu, E. & Chimbari, M. J. Characteristics of Anopheles arabiensis larval habitats in Tubu village, Botswana. J. Vector Ecol. 40, 129–138 (2015).; Getachew, D., Balkew, M. & Tekie, H. Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malar. J. 19, 65 (2020).; Rodrigures, M. S. et al. Change in Anopheles richness and composition in response to artificial flooding during the creation of the Jirau hydroelectric dam in Porto Velho, Brazil. Malar. J. 16, 87 (2017).; Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).; Achee, N. L. et al. Use of remote sensing and geographic information systems to predict locations of Anopheles darling—Positive breeding sites within the Sibun River in Belize, Central America. J. Med. Entomol. 43, 382 (2006).; Pope, K. O. et al. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol. Appl. 4, 81–90 (1994).; Águas, R., White, L. J., Snow, R. W. & Gomes, M. G. M. Prospects for malaria eradication in sub-saharan Africa. PLoS ONE 3, e1767 (2008).; Fowkes, F. J. I. et al. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J. Infect. Dis. 206, 1612–1621 (2012).; Laneri, K. et al. Forcing versus feedback: Epidemic malaria and monsoon rains in northwest India. PLoS Comput. Biol. 6, e1000898 (2010).; Smith, D. L., Drakeley, C. J., Chiyaka, C. & Hay, S. I. A quantitative analysis of transmission efficiency versus intensity for malaria. Nat. Commun. 1, 108 (2010).; Lardeux, F., Loayza, P., Bouchité, B. & Chavez, T. Host choice and human blood index of Anopheles pseudopunctipennis in a village of the Andean valleys of Bolivia. Malar. J. 6, 8 (2007).; Overgaard, H. J., Abaga, S., Pappa, V., Reddy, M. & Caccone, A. Estimation of the human blood index in malaria mosquito vectors in equatorial guinea after indoor antivector interventions. Am. J. Trop. Med. Hyg. 84, 298–301 (2011).; Briegel, H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J. Med. Entomol. 27, 839–850 (1990).; Churcher, T. S., Trape, J.-F. & Cohuet, A. Human-to-mosquito transmission efficiency increases as malaria is controlled. Nat. Commun. 6, 6054 (2015).; Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. K. & Yan, G. Life-table analysis of Anopheles arabiensis in western Kenya highlands: Effects of land covers on larval and adult survivorship. Am. J. Trop. Med. Hyg. 77, 660–666 (2007).; Baeza, A. et al. Long-lasting transition toward sustainable elimination of desert malaria under irrigation development. Proc. Natl. Acad. Sci. U.S.A. 110, 15157–15162 (2013).; Lawson, B. W., Yan, G., Afrane, Y. A., Githeko, A. K. & Zhou, G. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am. J. Trop. Med. Hyg. 74, 772–778 (2006).; Congedo, L. Semi-automatic classification plugin: A Python tool for the download and processing of remote sensing images in QGIS. JOSS 6, 3172 (2021).; Brown, P. N., Byrne, G. D. & Hindmarsh, A. C. VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989).; Bolker, B., Team, R. D. C. & Giné-Vázquez, I. bbmle: Tools for General Maximum Likelihood Estimation (2022).; Mantilla, G., Oliveros, H. & Barnston, A. G. The role of ENSO in understanding changes in Colombia’s annual malaria burden by region, 1960–2006. Malar. J. 8, 6 (2009).; Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).; Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).; Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).; Fukui, S., Kuwano, Y., Ueno, K., Atsumi, K. & Ohta, S. Modeling the effect of rainfall changes to predict population dynamics of the Asian tiger mosquito Aedes albopictus under future climate conditions. PLoS ONE 17, e0268211 (2022).; Stresman, G. H. Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Trop. 116, 167–172 (2010).; Koenraadt, C. J. M. & Harrington, L. C. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 45, 28 (2008).; Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007).; Grieco, J. P. et al. Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians associated with land use in Northern Belize. J. Med. Entomol. 43, 614 (2006).; Chaves, L. S. M., Conn, J. E., López, R. V. M. & Sallum, M. A. M. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci. Rep. 8, 7077 (2018).; Cruz Marques, A. Human migration and the spread of malaria in Brazil. Parasitol. Today 3, 166–170 (1987).; Sanchez, J. F. et al. Unstable malaria transmission in the southern Peruvian Amazon and its association with gold mining, Madre de Dios, 2001–2012. Am. J. Trop. Med. Hyg. 96, 304–311 (2017).; Doolan, D. L., Dobaño, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).; Roy, M., Bouma, M. J., Ionides, E. L., Dhiman, R. C. & Pascual, M. The potential elimination of Plasmodium vivax malaria by relapse treatment: Insights from a transmission model and surveillance data from NW India. PLoS Negl. Trop. Dis. 7, e1979 (2013).; White, M. T. et al. Plasmodium vivax and Plasmodium falciparum infection dynamics: Re-infections, recrudescences and relapses. Malar. J. 17, 170 (2018).; Rodríguez, J. C. P., Uribe, G. Á., Araújo, R. M., Narváez, P. C. & Valencia, S. H. Epidemiology and control of malaria in Colombia. Mem. Inst. Oswaldo Cruz 106, 114–122 (2011).; Nkrumah, B. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).; Asgarian, T. S., Moosa-Kazemi, S. H. & Sedaghat, M. M. Impact of meteorological parameters on mosquito population abundance and distribution in a former malaria endemic area, Central Iran. Heliyon 7, e08477 (2021).; https://dspace.tdea.edu.co/handle/tdea/4038Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية