يعرض 1 - 10 نتائج من 796 نتيجة بحث عن '"Multi threaded"', وقت الاستعلام: 0.88s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المصدر: «System analysis and applied information science»; № 4 (2023); 4-13 ; «Системный анализ и прикладная информатика»; № 4 (2023); 4-13 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2023-4

    وصف الملف: application/pdf

    العلاقة: https://sapi.bntu.by/jour/article/view/640/478Test; Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1(1), pp. 269–271.; Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5(6), p. 345.; Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of Shortest Path Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7, no. 1&2, pp. 20–30.; Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv: 1705.02044v1 [cs.DS], 4 May 2017, 26 p.; Prihozhy А., Mlynek D. Design of parallel implementations by means of abstract dynamic critical path based profiling of complex sequential algorithms. Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation: 16th International Workshop, PATMOS 2006, Montpellier, France, September 13-15, 2006, pp. 1–11.; Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthesis and Optimization from Branched Feedback Dataflow Programs. Journal of Signal Processing Systems, Springer Nature, 2020, vol. 92, pp. 1091–1099. doi:10.1007/s11265-020-01568-5; Katz G.J., Kider J.T. All-pairs shortest-paths for large graphs on the GPU. GH’08: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47–55.; Ortega-Arranz H., Torres Y., Llanos D.R. and Escribano A.G. The all-pair shortest-path problem in shared-memory heterogeneous systems. High-Performance Computing on Complex Environments, 2013, pp. 283–299.; Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU computation of all-pairs shortest paths. IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 360–369.; Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857–874.; Park J.S., Penner M. and Prasanna V.K. Optimizing graph algorithms for improved cache performance. IEEE Trans. on Parallel and Distributed Systems, 2004, no. 15(9), pp.769–782.; Bellman R.E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87–90.; Johnson D.B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24, no. 1, pp. 1–13.; Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU using CUDA. International conference on high-performance computing. Springer, 2007, pp. 197–208.; Meyer U., Sanders P. Δ-stepping: a parallelizable shortest path algorithm. Journal of Algorithms, vol. 49, no. 1, 2003, pp. 114–152.; Прихожий, А.А. Разнородный блочный алгоритм поиска кратчайших путей между всеми парами вершин графа / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика. – 2017. – № 3. – С. 68–75.; Prihozhy А., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data processing // Сборник материалов VIII Международной научно-практической конференции. – Минск: Беспринт, 2022. – С. 56–66.; Прихожий, А.А. Усовершенствованный разнородный блочно-параллельный алгоритм поиска кратчайших путей на графе / А.А. Прихожий, О.Н. Карасик // Труды БГТУ. Сер. 3, Физико-математические науки и информатика. – 2023. – № 1(266). – С. 77–83. doi:10.52065/2520-6141-20; Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path Algorithm in OpenMP 3.0. 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013). Los Angeles, CA, July 1–2, 2013, pp. 109–112.; Yang S., Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse Graph. ICS '23: Proceedings of the 37th International Conference on Supercomputing, 2023, pp. 277–288.; Прихожий, А.А. Моделирование кэш прямого отображения и ассоциативных кэш на алгоритмах поиска кратчайших путей на графе / А.А. Прихожий // Системный анализ и прикладная информатика. – 2019. – № 4. – С. 10–18.; Прихожий, А.А. Оптимизация размещения данных в иерархической памяти для блочных алгоритмов поиска кратчайших путей / А.А. Прихожий // Системный анализ и прикладная информатика. – 2021. – № 3. – С. 40–50. doi:10.21122/2309-4923-2021-3-40-50; Прыхожы, А.А. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на шмат'ядравых сістэмах / А.А. Прыхожы, А.М. Карасiк // Системный анализ и прикладная информатика. – 2015. – № 2. – С. 10–18.; Карасик, О.Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе / О.Н. Карасик, А.А. Прихожий // Доклады БГУИР. – 2018. – № 2. – С. 77–84.; Карасик, О.Н. Настройка блочно-параллельного алгоритма поиска кратких путей на эффективную много-ядерную реализацию / О.Н. Карасик, А.А. Прихожий // Системный анализ и прикладная информатика. – 2022. – № 3. – С. 57–65. doi:10.21122/2309-4923-2022-3-57-65; Прихожий, А.А. Влияние алгоритмов поиска кратчайших путей на энергопотребление многоядерных процессоров / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика. – 2023. – № 2. – С. 4–12. doi:10.21122/2309-4923-2023-2-4-12; Прихожий, А.А. Генерация потоковых сетей акторов поиска кратчайших путей для параллельной многоядерной реализации / А.А. Прихожий // Информатика. – 2023. – Т. 20. – № 2. – С. 65–84. doi:10.37661/1816-0301-2023-20-2-65-84; https://sapi.bntu.by/jour/article/view/640Test

  4. 4

    المصدر: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS (SIMULTECH). :234-243

    وصف الملف: print

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: Pascal Baumann and Moses Ganardi and Rupak Majumdar and Ramanathan S. Thinniyam and Georg Zetzsche

    وصف الملف: application/pdf

    العلاقة: Is Part Of LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023); urn:nbn:de:0030-drops-180559; https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.3Test

  7. 7
    مؤتمر
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المصدر: CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; http://195.187.71.2/ipac20/ipac.jsp?profile=geogpan&index=BOCLC&term=ee95400564Test ; CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406

    العلاقة: Abernethy, B., & Rutherford, I. D. (1998). Where along a river's length will vegetation most effectively stabilise stream banks? Geomorphology, 23(1), 55-75. https://doi.org/10.1016/S0169-555XTest(97)00089-5; Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. US Geological Survey Professional Paper, 422-I, 1-37.; Bartnik, W. (1992). Hydraulika potoków i rzek górskich z dnem ruchomym - początek ruchu rumowiska wleczonego. Zeszyty Naukowe Akademii Rolniczej w Krakowie 171, 1-122.; Bartnik, W., & Strużyński, A. (1999). Determining hydrodynamic balance in Mountain stream floods. In Third International Symposium on Ecohydraulics, IAHR and Utah State Unversity, published on CD_ROM, Salt Lake City.; Baumgart-Kotarba, M. (1983). Kształtowanie koryt i teras rzecznych w warunkach zróżnicowanych ruchów tektonicznych: na przykładzie wschodniego Podhala. Prace Geograficzne IGiPZ PAN, 145.; Baumgart-Kotarba, M. (1983). Study of braided channel processes of the Białka river during 6 years without floods and during a flood in 1980. Studia Geomorphologica Carpatho-Balcanica, 16, 161-181.; Belletti, B., Dufour, S., Piégay, H. (2015). What is the relative effect of space and time to explain the braided river width and island patterns at a regional scale?. River Research and Applications, 3 1(1),1-15. https://doi.org/10.1002/rra.2714Test; Bendix, J., Hupp, CR. (2000). Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes 14(16-17), 2977-2990. https://doi.org/10.1002/1099-1085Test(200011/12)14:16/17%3C2977::AID-HYP130%3E3.0.CO;2-4; Birkenmajer, K. (1979). Przewodnik geologiczny po pienińskim pasie skałkowym. Warszawa: Wydawnictwa Geologiczne.; Birkenmajer, K. (2007). The Czertezik Succession in the Pieniny National Park (Pieniny Klippen Belt, West Carpathians): stratigraphy, tectonics, palaeogeography. Studia Geologica Polonica, 127, 7-50.; Bojarski, A., Jeleński, J., Jelonek, M., Litewka, T., Wyżga, B., & Zalewski, J. (2005). Zasady dobrej praktyki w utrzymaniu rzek i potoków górskich. Warszawa: Ministerstwo Środowiska i Zasobów Wodnych. Departament Zasobów Wodnych.; Bollati, I. M., Pellegrin, L., Rinaldi, M., Duci, G., & Pelfini, M. (2014). Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). Geomorphology, 221, 176-186. https://doi.org/10.1016/j.geomorph.2014.06.007Test; Bray, D. I. (2002). Flow resistance in gravel-bed rivers. In R. D. Hey, J. C. Bathurst, C. R. Thorne (Eds.), Gravel-bed rivers: Fluvial processes, engineering and management (pp. 109-137). New York: Wiley.; Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebraska. U.S. Geological Survey Professional Paper 422-D, Washington.; Brice, J. C. (1975). Air photo interpretation of the form and behavior of alluvial rivers, Final Report to the US Army Research Office. Applying Geomorphology to Environmental Management.; Bridge, J. S. (1993). The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. Geological Society, London, Special Publications, 75(1), 13-71. https://doi.org/10.1144/GSL.SP.1993.075.01.02Test; Bristow, C. S., & Best, J. L. (1993). Braided rivers: perspectives and problems. Geological Society, London, Special Publications, 75(1), 1-11. https://doi.org/10.1144/GSL.SP.1993.075.01.01Test; Bryła, M., Walczykiewicz, T., Skonieczna, M., Żelazny, M. (2021). Selected Issues of Adaptive Water Management on the Example of the Białka River Basin. Water, 13(24), 3540. https://doi.org/10.3390/w13243540Test; Burge, L. M. (2005). Wandering Miramichi rivers, New Brunswick, Canada. Geomorphology, 69(1), 253-274. https://doi.org/10.1016/j.geomorph.2005.01.010Test; Carson, M. A., 1984. The meandering-braided river threshold: A reappraisal. Journal of Hydrology, 73(3-4), 315-334. https://doi.org/10.1016/0022-1694Test(84)90006-4; Church, M. (1983). Pattern of instability in a wandering gravel bed channel. Modern and ancient fluvial systems In Modern and ancient fluvial systems (Vol. 6, pp. 169-180). Oxford, UK: International Association of Sedimentologists Special Publication. https://doi.org/10.1002/9781444303773.ch13Test; Church, M. (1992). Channel morphology and typology. In P. Calow, & G. E. Petts (Eds.), The Rivers Handbook (Vol. 1, pp. 126-143). Oxford: Wiley-Blackwell.; Church, M. (2002). Geomorphic thresholds in riverine landscapes. Freshwater Biology, 47(4), 541-557. https://doi.org/10.1046/j.1365-2427.2002.00919.xTest; Crosato, A., Mosselman, E. (2009). Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resources Research, 45(3), W03424, https://doi.org/10.1029/2008WR007242Test; Darley, L. (1996). L'Écoulement a plein bord dans les rivières alluviales. Méthodes d'estimation du niveau et du debit. Départament Gestion des Milieux Aquatiques, Division Hydrologie-Hydraulique.; Desloges, J. R., & Church, M. A. (1989). Wandering gravel-bed rivers. The Canadian Geographer. Le Géographe canadien, 33, 360-364.; Egozi, R., & Ashmore, P. (2008). Defining and measuring braiding intensity. Earth Surface Processes and Landforms, 33(14), 2121-2138. https://doi.org/10.1111/j.1541-0064.1989.tb00922.xTest; Egozi, R., & Ashmore, P. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114(F2). https://doi.org/10.1029/2008JF001099Test; Ettema, R., & Armstrong, D. L. (2019). Bedload and channel morphology along a braided, sand-bed channel: insights from a large flume. Journal of Hydraulic Research, 57(6), 822-835. https://doi.org/10.1080/00221686.2018.1555557Test; Ferguson, R. I., & Werritty, A. (1983). Bar development and channel changes in the gravelly River Feshie, Scotland. In Modern and Ancient Fluvial Systems (pp. 181-193). https://doi.org/10.1002/9781444303773.ch14Test; Ferguson, R. I. (2005). Estimating critical stream power for bedload transport calculations in gravel-bed rivers. Geomorphology, 70(1-2), 33-41. https://doi.org/10.1016/j.geomorph.2005.03.009Test; Fonstad, M. A. (2003). Spatial variation in the power of mountain streams in the Sangre de Cristo Mountains, New Mexico. Geomorphology, 55(1-4), 75-96. https://doi.org/10.1016/S0169-555XTest(03)00133-8; Garcia-Ruiz, J. M., White, S. M., Lasanta, T., Marti, C., Gonzalez, C., Errea, M. P., & Ortigosa, L. (1997). Assessing the effects of land-use changes on sediment yield and channel dynamics in the central Spanish Pyrenees. In D. E. Walling, J. L. Prost (Eds.), Human Impact on Erosion and Sedimentation, Proceedings of Rabat Symposium S6 (pp. 151-158). IAHS Press, Wallingford, UK: Institute of Hydrology.; Germanowski, D., & Schumm, S. A. (1993). Changes in braided river morphology resulting from aggradation and degradation. The Journal of Geology, 101, 451-466.; Gorczyca, E., & Krzemień, K. (2010). Channel structure changes in Carpathian rivers. In A. Radecki-Pawlik, J. Hernik, J. (Eds.) Cultural Landscapes of River Valleys (pp. 189-202). Kraków: Wydawnictwo Uniwersytetu Rolniczego w Krakowie.; Gorczyca, E., Krzemień, K., & Łyp, M. (2011). Contemporary trends in the Białka river channel development in the Western Carpathians. Geographia Polonica, 84, Special Issue Part 2, 39-53.; Gorczyca, E., Krzemień, K., Łyp, M., & Strużyński, A. (2018). Białka - ostatnie koryto roztokowe w polskich Karpatach. In Antropogeniczne uwarunkowania współczesnych procesów fluwialnych (pp. 85-89). Kraków: Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński.; Górz, B. (1994). Rolnictwo Podhala. In B. Górz (Ed.) Studia nad przemianami Podhala (pp. 142-176). Prace Monograficzne WSP w Krakowie, 172.; Gran, C., & Paola, C. (2001). Riparian vegetation controls on braided stream dynamics. Water Resources Research, 37(12), 3275-3283. https://doi.org/10.1029/2000WR000203Test; Gurnell, A., Surian, N., & Zanoni, L. (2009). Multi-thread river channels: A perspective on changing European alpine river systems. Aquatic Sciences, 71, 253-265. https://doi.org/10.1007/s00027-009-9186-2Test; Gurnell, A. M., Petts, G. E., Hannah, D. M., Smith, B. P. G., Edwards, P. J., Kollmann, J., Ward, J. V., Tockner, K. (2001). Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento. Italy. Earth Surface Processes and Landforms, 26(1), 31-62. https://doi.org/10.1002/1096-9837Test(200101)26:1%3C31::AID-ESP155%3E3.0.CO;2-Y; Hajdukiewicz, H., Wyżga, B., & Zawiejska, J. (2019). Twentieth-century hydromorphological degradation of Polish Carpathian rivers. Quaternary International, 504, 181-194. https://doi.org/10.1016/j.quaint.2017.12.011Test; Hey, R. D., & Thorne, C. R. (1986). Stable channels with mobile gravel beds. Journal of Hydraulic Engineering, 112, 671-689. https://doi.org/10.1061Test/(ASCE)0733-9429(1986)112:8(671); Hickin, E. J. (1984). Vegetation and river channel dynamics. The Canadian Geographer. Le Géographe canadien, 28(2), 111-126. https://doi.org/10.1111/j.1541-0064.1984.tb00779.xTest; Hupp, C. R., & Osterkamp, W. R. (1996). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14, 277-295. https://doi.org/10.1016/0169-555XTest(95)00042-4; Kamykowska, M., Kaszowski, L., & Krzemień, K. (1999). River channel mapping instructions. key to the river bed description. Zeszyty Naukowe UJ. Prace Geograficzne, 104, 9-25.; Kaszowski, L., & Krzemień, K. (1999). Classification system of mountain river channels. Zeszyty Naukowe UJ. Prace Geograficzne, 10, 27-40.; Knighton, D. A. (1998). Fluvial forms and processes: A new perspective. London: Edward Arnold. https://doi.org/10.4324/9780203784662Test; Kondolf, G. M. (1997). PROFILE: Hungry water: Effects of dams and gravel mining on river channels. Environmental management, 21(4), 533-551. https://doi.org/10.1007/s002679900048Test; Korpak, J. (2007). The influence of river training on mountain channel changes (Polish Carpathian Mountains). Geomorphology, 92(3-4), 166-181. https://doi.org/10.1016/j.geomorph.2006.07.037Test; Korpak, J., Krzemień, K., Radecki-Pawlik, A. (2009). Wpływ budowli regulacyjnych i poboru rumowiska na koryta rzek i potoków górskich - wybrane przykłady z rzek karpackich. Gospodarka Wodna, 69(7), 274-281.; Krzemień, K. (2003). The Czarny Dunajec River, Poland, as an Example of Human-induced Development Tendencies in a Mountain River Channel. Landform Analysis, 4, 57-64.; Krzemień, K. (Ed.). (2012). Struktura koryt rzek i potoków (studium metodyczne). Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.; Książek, L., Woś, A., Wyrębek, M., & Strużyński, A. (2020). Habitat structure changes of the Wisłoka river as a result of channel restoration. In M. Kalinowska, M. Mrokowska, P. Rowiński (Eds.) Recent trends in environmental hydraulics (pp. 103-115). Cham: Springer. https://doi.org/10.1007/978-3-030-37105-0_9Test; Lach, J., & Wyżga, B. (2002). Channel incision and flow increase of the upper Wisłoka River, southern Poland, subsequent to the reafforestation of its catchment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(4), 445-462. https://doi.org/10.1002/esp.329Test; Leopold, L. B., & Wolman, M. G. (1957). River channel patterns: Braided, meandering, and straight. Professional Paper, 282B, 50, 39-85.; Liébault, F., Lallias-Tacon, S., Cassel, M., & Talaska, N. (2013). Long profile responses of alpine braided rivers in SE France. River Research and Applications, 29(10), 1253-1266. https://doi.org/10.1002/rra.2615Test; Magilligan, F. J. (1992). Thresholds and the spatial variability of flood power during extreme floods. Geomorphology, 5(3), 373-390. https://doi.org/10.1016/0169-555XTest(92)90014-F; Michalik, A. (1990). Badania intensywności transportu rumowiska wleczonego w rzekach karpackich. Kraków: Akademia Rolnicza.; Mueller, E. R., & Pitlick, J. (2014). Sediment supply and channel morphology in mountain river systems: 2. Single thread to braided transitions. Journal of Geophysical Research: Earth Surface, 119(7), 1516-1541. https://doi.org/10.1002/2013JF003045Test; Nanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4(6), 459-486. https://doi.org/10.1016/0169-555XTest(92)90039-Q; Nanson, G. C., & Knighton, A. D. (1996). Anabranching rivers: their cause, character and classification. Earth Surface Processes and Landforms, 21, 217-239. https://doi.org/10.1002Test/(SICI)1096-9837(199603)21:3%3C217::AID-ESP611%3E3.0.CO;2-U; Neill, C. R. (1973). Hydraulic geometry of sand rivers in Alberta. In Symposium on Fluvial Processes and Sedimentation. Subcommittee on Hydrology, Associate Committee on Geodesy and Geophysics. National Research Council of Canada, Hydrology Symposium, 9, (pp. 341-380).; Nowak, A. (2022). Analiza równowagi hydrodynamicznej koryta roztokowego na przykładzie rzeki Białki. PhD thesis, manuscript, Kraków.; Piégay, H., Grant, G., Nakamura, F., & Trustrum, N. (2006). Braided river management: From assessment of river behaviour to improved sustainable development. In G. H. Sambrook-Smith, J. L. Best, C. S. Bristow, G. E. Petts (Eds.) Braided Rivers: Process, Deposits, Ecology and Management: Special publication 36 of the International Association of Sedimentologists (pp. 257-275).; Pickup, G., & Warner, R. F. (1976). Effects of hydrologic regime on magnitude and frequency of dominant discharge. Journal of Hydrology, 29(1-2), 51-75. https://doi.org/10.1016/0022-1694Test(76)90005-6; Przyborowski, Ł., Nones, M., Mrokowska, M., Książek, L., Phan, N. C., Strużyński, A., Wyrębek, M., Mitka, B., & Wojak, S. (2022). Preliminary evidence on laboratory experiments to detect the impact of transient flow on bedload transport. Acta Geophysica,70, 2311-2324. https://doi.org/10.1007/s11600-022-00743-5Test; Radecki-Pawlik, A. (2011). Hydromorfologia rzek i potoków górskich (Hydro-morphology of the mountain rivers and streams). Kraków: Wydawnictwo Uniwersytetu Rolniczego.; Rączkowska, Z., Łajczak, A., Margielewski, W., & Święchowicz, J. (2012). Recent Landform Evolution in the Polish Carpathians. In D. Lóczy, M. Stankoviansky, A. Kotarba (Eds.), Recent Landform Evolution. Springer Geography. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2448-8_5Test; Reinfelds, I., & Nanson, G. (1993). Formation of braided river floodplains, Waimakariri River. New Zealand. Sedimentology, 40(6), 1113-1127. https://doi.org/10.1111/j.1365-3091.1993.tb01382.xTest; Rhoads, B. L. (1987). Stream power terminology. Professional Geographer, 39(2), 189-195. https://doi.org/10.1111/j.0033-0124.1987.00189.xTest; Rice, S. P., Church, M., Wooldridge, C., & Hickin, E. J. (2009). Morphology and evolution of bars in a wandering gravel-bed river; lower Fraser river, British Columbia, Canada. Sedimentology, 56(3), 709-736. https://doi.org/10.1111/j.1365-3091.2008.00994.xTest; Rinaldi, M., Gurnell, A. M., Del Tánago, M. G., Bussettini, M., & Hendriks, D. (2016). Classification of river morphology and hydrology to support management and restoration. Aquatic Sciences, 78(1), 17-33. https://doi.org/10.1007/s00027-015-0438-zTest; Rosgen, D. (1996). Applied river morphology. Pagosa Springs, Co: Wildland Hydrology Books.; Schumm, S. A. (1960). The shape of alluvial channels in relation to sediment type. Professional Paper, 352-B, 17-30. https://doi.org/10.3133/pp352BTest; Schumm, S. A. (1985). Patterns of alluvial rivers. Annual Review of Earth and Planetary Sciences, 13, 5-27; Selby, M. J. (1985). Earth's changing surface: An introduction to geomorphology. Oxford: Oxford University Press.; Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau, 26. Berlin: Preußische Versuchsanstalt für Wasserbau.; Simons, D. B., & Sentürk, F. (1977). Sediment Transport Technology. Water Resources Publications, Fort Collins, USA.; Strużyński, A. (2013). Ocena stanu oraz identyfikacja zaburzeń procesów fluwialnych w korytach rzek Karpackich. Acta Scientiarum Polonorum. Formatio Circumiectus, 13(2), 117-130.; Strużyński, A., Kulesza, K., & Strutyński, M. (2013). Bed Stability as a Parameter Describing the Hydromorphological Balance of a Mountain River, In R. Rowinski (Ed.), Experimental and computational solutions of hydraulic problems (pp. 249-251). Berlin - Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-30209-1_17Test; Strużyński, A., Bartnik, W., Kulesza, K., & Czoch, K. (2013). Równowaga hydrodynamiczna ważnym parametrem kształtującym stan ekologiczny cieków karpackich. Rocznik Ochrona Środowiska, 15, 2591-2610.; Surian, N. (2006). Effects of human impact on braided river morphology: Examples from Northern Italy. In G. H. Sambrook-Smith, J. L. Best, C. Bristow, & G. E. Petts (Eds.) Braided rivers: Process, deposits, ecology and management (pp. 327-338). IAS Special Publication, 36, Blackwell Science. https://doi.org/10.1002/9781444304374.ch16Test; Surian, N., & Rinaldi, M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50(4), 307-326. https://doi.org/10.1016/S0169-555XTest(02)00219-2; Surian, N., Barban, M., Ziliani, L., Monegato, G., Bertoldi, W., & Comiti, F. (2015). Vegetation turnover in a braided river: Frequency and effectiveness of floods of different magnitude. Earth Surface Processes and Landforms, 40(4), 542-558. https://doi.org/10.1002/esp.3660Test; Tal, M., & Paola, C. (2007). Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology, 35(4), 347-350. https://doi.org/10.1130/G23260A.1Test; Thorne, C. R. (1990). Effects of vegetation on riverbank erosion and stability. In J. B. Thornes (Ed.) Vegetation and Erosion: Processes and Environments (125-144). Chichester: John Wiley & Sons.; Thorne, C. R. (1997). Channel types and morphological classification. In C. R. Thorne, R. D. Hey, M. D. Newson (Eds.), Applied fluvial geomorphology for river engineering and management (pp. 175-222). Chichester: John Wiley & Sons.; Van den Berg, J. H. (1995). Prediction of alluvial channel pattern of perennial rivers. Geomorphology, 12(4), 259-279. https://doi.org/10.1016/0169-555XTest(95)00014-V; Vázquez-Tarrío, D., Recking, A., Liébault, F., Tal, M., & Menéndez-Duarte, R. (2019). Particle transport in gravel-bed rivers: Revisiting passive tracer data. Earth Surface Processes and Landforms, 44(1), 112-128. https://doi.org/10.1002/esp.4484Test; Wang, F. Y. (1977). Bed load transport in open channels. Proceedings of IAHR, Baden-Baden, A-9.; Witek, B. (2011). Zróżnicowanie składu petrograficznego i frakcjonalnego rumowiska korytowego Białki. Archiwum Instytutu Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.; Wohl, E. (2006). Human impacts to mountain streams. Geomorphology, 79(3-4), 217-248. https://doi.org/10.1016/j.geomorph.2006.06.020Test; Wolman, M. G. (1954). A method of sampling coarse river-bed material. EOS. Transactions American Geophysical Union, 35(6), 951-956. https://doi.org/10.1029/TR035i006p00951Test; Wooldridge, C. L., & Hickin, E. J. (2005). Radar architecture and evolution of channel bars in wandering gravel-bed rivers: Fraser and Squamish Rivers, British Columbia, Canada. Journal of Sedimentary Research, 75(5), 844-860. https://doi.org/10.2110/jsr.2005.066Test; Wu, X., Li, Z., Gao, P., Huang, C., & Hu, T. (2018). Response of the downstream braided channel to Zhikong reservoir on Lhasa River. Water, 10(9), 1144. https://doi.org/10.3390/w10091144Test; Wyżga, B. (1993). River response to channel regulation: case study of the Raba River, Carpathians, Poland. Earth Surface Processes and Landforms, 18(6), 541-556. https://doi.org/10.1002/esp.3290180607Test; Wyżga, B. (2007). A review on channel incision in the Polish Carpathian rivers during the 20th century. Developments in Earth Surface Processes, 11, 525-553.; Wyżga, B. (2008). A review on channel incision in the Polish Carpathian rivers during the 20th century. In H. Habersack, H. Piegay, & M. Rinaldi (Eds.) Gravel-bed Rivers VI - From Process Understanding to River Restoration. Developments in Earth Surface Processes, 11, 525-555. https://doi.org/10.1016/S0928-2025Test(07)11142-1; Wyżga, B. (Ed.). (2013). Stan środowiska rzek południowej Polski - znaczenie środowiskowe, degradacja i możliwości rewitalizacji rzek wielonurtowych. Kraków: Instytut Ochrony Przyrody PAN.; Yeasmin, A., & Islam, M. N. (2011). Changing trends of channel pattern of the Ganges Padma river. International Journal of Geomatics and Geosciences, 2(2), 669-675.; Zawiejska, J., & Krzemień, K. (2004). Man-induced changes in the structure and dynamics of the Upper Dunajec river channel. Geograficky časopis, 56(2), 111-124.; Zawiejska, J., Wyżga, B., & Radecki-Pawlik, A. (2015). Variation in surface bed material along a mountain river modified by gravel extraction and channelization, the Czarny Dunajec, Polish Carpathians. Geomorphology, 231, 353-366. https://doi.org/10.1016/j.geomorph.2014.12.026Test; Zanoni, L., Gurnell, A., Drake, N., & Surian, N. (2008). Island dynamics in a braided river from analysis of historical maps and air photographs. River Research and Applications, 24(8), 1141-1159. https://doi.org/10.1002/rra.1086Test; Ziliani, L., Surian, N., Coulthard, T. J., & Tarantola, S. (2013). Reduced-complexity modeling of braided rivers: Assessing model performance by sensitivity analysis, calibration, and validation. Journal of Geophysical Research: Earth Surface, 118(4), 2243-2262. https://doi.org/10.1002/jgrf.20154Test; Geographia Polonica; oai:rcin.org.pl:publication:274492; https://rcin.org.pl/dlibra/publication/edition/238342/contentTest; oai:rcin.org.pl:238342

  10. 10
    دورية أكاديمية

    المصدر: Sensors; Volume 23; Issue 2; Pages: 973

    مصطلحات موضوعية: sound rendering, multi-threaded algorithm, ray tracing

    وصف الملف: application/pdf

    العلاقة: Sensor Networks; https://dx.doi.org/10.3390/s23020973Test