يعرض 1 - 10 نتائج من 63 نتيجة بحث عن '"Morris, Jonathan R"', وقت الاستعلام: 1.10s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Division of Environmental Biology

    المصدر: Ecological Applications ; volume 32, issue 7 ; ISSN 1051-0761 1939-5582

  5. 5
    دورية أكاديمية

    المؤلفون: Cowal, Sanya1 (AUTHOR) scowal@ucsc.edu, Morris, Jonathan R.2 (AUTHOR) jonno@umich.edu, Jiménez-Soto, Estelí3 (AUTHOR) jimenezsoto@usf.edu, Philpott, Stacy M.1 (AUTHOR)

    المصدر: Insects (2075-4450). Nov2023, Vol. 14 Issue 11, p869. 15p.

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: University of Michigan, National Science Foundation

    المصدر: Ecology and Evolution ; volume 7, issue 7, page 2193-2203 ; ISSN 2045-7758 2045-7758

  8. 8
    دورية أكاديمية

    المساهمون: University of Michigan, International Institute Individual Fellowship and School of Natural Resources Thesis Research, National Science Foundation

    المصدر: Agriculture, Ecosystems & Environment ; volume 233, page 224-228 ; ISSN 0167-8809

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Glaum, Paul; Wood, Thomas J.; Morris, Jonathan R.; Valdovinos, Fernanda S. (2021). "Phenology and flowering overlap drive specialisation in plant–pollinator networks." Ecology Letters (12): 2648-2659.; https://hdl.handle.net/2027.42/170937Test; Ecology Letters; Robinson, B.W. & Wilson, D.S. ( 1998 ) Optimal foraging, specialization, and a solution to Liem’s paradox. The American Naturalist, 151, 223 – 235.; Else, G.R. & Edwards, M. ( 2018 ) Handbook of the bees of the British Isles, 180, London, UK: Ray Society Monographs, p. 775.; Forister, M.L., Novotny, V., Panorska, A.K., Baje, L., Basset, Y., Butterill, P.T. et al. ( 2015 ) The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences, 112 ( 2 ), 442 – 447.; Garibaldi, L.A., Steffan‐Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A. et al. ( 2013 ) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339 ( 6127 ), 1608 – 1611.; Hunter, M. ( 2016 ) The phytochemical landscape: linking trophic interactions and nutrient dynamics. Princeton University Press, p. 376.; Jordano, P. ( 2016 ) Sampling networks of ecological interactions. Functional Ecology, 30, 1883 – 1893.; Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. ( 2006 ) Spatial segregation of specialists and generalists in bird communities. Ecology Letters, 9, 1237 – 1244.; Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson, D.L., Kress, W.J., Kuzmina, M.L. et al. ( 2015 ) DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the National Academy of Sciences, 112 ( 26 ), 8019 – 8024.; King, C., Ballantyne, G. & Willmer, P.G. ( 2013 ) Why flower visitation is a poor proxy for pollination:measuring single‐visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4, 811 – 818.; Lopezaraiza‐Mikel, M.E., Hayes, R.B., Whalley, M.R. & Memmott, J. ( 2007 ) The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecology letters, 10 ( 7 ), 539 – 550.; MacArthur, R.H. & Pianka, E.R. ( 1966 ) On optimal use of a patchy environment. The American Naturalist, 100 ( 916 ), 603 – 609.; Moldenke, A.R. ( 1979 ) The role of host‐plant selection in bee speciation processes. Phytologia, 43, 433 – 460.; Resende, E.L., Lavabre, J.E., Guimarães, P.R., Jordano, P. & Bascompte, J. ( 2007 ) Non‐random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925 – 928.; Stace, C. ( 2010 ) New flora of the British Isles, 3rd edition. Cambridge, UK: Cambridge University Press, p. 1232.; Svanbäck, R. & Bolnik, D.I. ( 2007 ) Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B, 274 ( 1161 ), 839 – 844.; Thompson, J. ( 1998 ) (1998) Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13 ( 8 ), 329 – 332.; Valdovinos, F.S., Brosi, B.J., Briggs, H.M., Moisset de Espanés, P., Ramos‐Jiliberto, R. & Martinez, N.D. ( 2016 ) Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 19, 1277 – 1286.; Valdovinos, F.S., Moisset de Espanés, P., Flores, J.D. & Ramos‐Jiliberto, R. ( 2013 ) Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos, 122 ( 6 ), 907 – 917.; Voss, E.G. & Reznicek, A.A. ( 2012 ) Field manual of Michigan flora. Ann Arbor, USA: University of Michigan Press.; Wang, X.‐Y., Tang, J., Wu, T., Wu, D. & Huang, S.‐Q. ( 2019 ) Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401 – 1406.; Waser, N.M., Chittka, L., Price, M.V., Williams, N.M. & Ollerton, J. ( 1996 ) Generalization in pollination systems, and why it matters. Ecology, 77 ( 4 ), 1043 – 1060.; Westerkamp, C. ( 1996 ) Pollen in bee–flower relations. Some considerations on melittophily. Botanica Acta, 109, 325 – 332.; Westrich, P.H. ( 1989 ) Die Wildbienen Baden‐Wuirttembergs. Volumes I and II. Stuttgart, Germany: Ulmer Verlag.; Williams, N.M., Minckley, R.L. & Silveira, F.A. ( 2001 ) Variation in native bee communities and its implications for detecting community changes. Conservation Ecology, 5, 7.; Wood, T.J., Gibbs, J., Graham, K.K. & Isaacs, R. ( 2019 ) Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology, 100 ( 6 ), e02697.; Wood, T.J. & Roberts, S.P.M. ( 2018 ) Constrained patterns of pollen use in Nearctic Andrena (Hymenoptera: Andrenidae) compared with their Palaearctic counterparts. Biological Journal of the Linnean Society, 124, 732 – 746.; Encinas‐Viso, F., Revilla, T.A. & Etienne, R.S. ( 2012 ) Phenology drives mutualistic network structure and diversity. Ecology letters, 15 ( 3 ), 198 – 208.; Fordyce, J.A., Nice, C.C., Hamm, C.A. & Forister, M.L. ( 2016 ) Quantifying diet breadth through ordination of host association. Ecology, 97, 842 – 849.; Alarcón, R. ( 2010 ) Congruence between visitation and pollen‐transport networks in a California plant‐pollinator community. Oikos, 119, 35 – 44.; Ali, J.G. & Agrawal, A.A. ( 2012 ) Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17 ( 5 ), 293 – 302.; Ascher, J.S. & Pickering, J. ( 2020 ) Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_speciesTest; Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A. & Wood, E.F. ( 2018 ) Present and future Köppen‐Geiger climate classification maps at 1‐km resolution. Scientific Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214Test; Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T. et al. ( 2006 ) Parallel declines in pollinators and insect‐pollinated plants in Britain and the Netherlands. Science, 313 ( 5785 ), 351 – 354.; Bommarco, R., Biesmeijer, J.C., Meyer, B., Potts, S.G., Pöyry, J., Roberts, S.P. et al. ( 2010 ) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B, 277 ( 1690 ), 2075 – 2082.; Boyle, W.A., Conway, C.J. & Bronstein, J.L. ( 2011 ) Why do some, but not all, tropical birds migrate? A comparative study of diet breadth and fruit preference. Evolutionary Ecology, 25 ( 1 ), 219 – 236.; Brady, S.G., Sipes, S., Pearson, A. & Danforth, B.N. ( 2006 ) Recent and simultaneous origins of eusociality in halictid bees. Proceedings of the Royal Society B, 273, 1643 – 1649.; Brochu, K.K., van Dyke, M.T., Milano, N.J., Petersen, J.D., McArt, S.H., Nault, B.A. et al. ( 2020 ) Pollen defenses negatively impact foraging and fitness in a generalist bee ( Bombus impatiens: Apidae). Scientific Reports, 10, 3112.; Bronstein, J.L. ( 1994 ) Our current understanding of mutualism. The Quarterly Review of Biology, 69 ( 1 ), 31 – 51.; Burkle, L.A. & Alarcón, R. ( 2011 ) The future of plant‐pollinator diversity: understanding interaction networks across time, space, and global change. American Journal of Botany, 98, 528 – 538.; Burkle, L.A., Marlin, J.C. & Knight, T.M. ( 2013 ) Plant‐pollinator interactions over 120 years: loss of species, co‐occurrence, and function. Science, 339 ( 6127 ), 1611 – 1615.; CaraDonna, P.J., Petry, W.K., Brennan, R.M., Cunningham, J.L., Bronstein, J.L., Waser, N.M. et al. ( 2017 ) Interaction rewiring and the rapid turnover of plant‐pollinator networks. Ecology Letters, 20, 385 – 394.; Danforth, B.N., Minckley, R.L. & Neff, J.L. ( 2019 ) The solitary bees: biology, evolution, conservation. Princeton University Press, p. 418.; Desharnais, B., Camirand‐Lemyre, F., Mireault, P. & Skinner, C.D. ( 2015 ) Determination of confidence intervals in non‐normal data: application of the bootstrap to cocaine concentration in femoral blood. Journal of analytical toxicology, 39 ( 2 ), 113 – 117.; deVries, M.S. ( 2017 ) The role of feeding morphology and competition in governing the diet breadth of sympatric stomatopod crustaceans. Biology Letters, 13 ( 4 ), 20170055.; Dorado, J., Vázquez, D.P., Stevani, E.L. & Chacoff, N.P. ( 2011 ) Rareness and specialization in plant‐pollinator networks. Ecology, 92, 19 – 25.