يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Moraila Valenzuela, Carlos R."', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: CIENCIA ergo-sum; Vol. 27 Núm. 1 (2020): CIENCIA ergo-sum (marzo-junio 2020) ; 2395-8782 ; 1405-0269

    وصف الملف: application/pdf; text/html; application/zip

    العلاقة: https://cienciaergosum.uaemex.mx/article/view/10010/10702Test; https://cienciaergosum.uaemex.mx/article/view/10010/10717Test; https://cienciaergosum.uaemex.mx/article/view/10010/10718Test; Adafruit. (2017). Raspberry Pi. Disponible en https://www.adafruit.comTest; Barragan-Currea, J. (2015). Determinación, corrección y ajuste de coordenadas GPS para las fases de vuelo, aproximación y aterrizaje. Desarrollo de un sistema GBAS para el aeropuerto de Nemocón (Cundinamarca). Revista de Topográfia Azimut, 6(6), 1-14.; Benedetti, E., Dermanis, A., & Crespi, M. (2017). On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers. Advances in Space Research, 59(11), 2764-2778. https://doi.org/10.1016/j.asr.2017.02.005Test; Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J., & Ulrich, P. (2015). Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Engineering Geology, 195, 111-121. https://dx.doi.org/10.1016/j.enggeo.2015.05.020Test; Bhatti, J., & Humphreys, T. (2017). Hostile control of ships via false GPS signals: Demonstration and Detection. Navigation, 64(1), 51-66. https://doi.org/10.1002/navi.183Test; Biagi, L., Grec, F., Negretti, M., & Visconti, M. (2015). Local monitoring by low cost devices and free and open sources softwares (pp. 431-436). FOSS4G Europe 2015.; Cabral, J., Mendes, V., Figueiredo, P., Silveira, A., Pagarete, J., Ribeiro, A. & Ressurreição, R. (2017). Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics. Journal of Geodynamics, 112, 1-11. https://doi.org/10.1016/j.jog.2017.10.002Test; Calina, A., Jenica, C., & Alin, C. (2015). Study on building of planimetric network stakeout for a commercial space using combined technology GPS-Total Station. Scientific Papers-Series E-Land Reclamation Earth Observation & Surveying Environmental Engineering, 4, 127-134.; Chen, X., Cui, T., Fu, J., Peng, J., & Shan, J. (2016). Trend-residual dual modeling for detection of outliers in low-cost GPS trajectories. Sensors, 16(12), 1-16. https://doi.org/10.3390/s16122036Test; Díaz-Hernández, C. (2001). Redes de la base geodésica planimétrica de apoyo, en Manual de geodesia aplicada, principios y métodos (p. 25). Universidad Autónoma de Sinaloa.; Estey, L., & Wier, S. (2014). Teqc tutorial: Basics of Teqc use and Teqc products. Boulder, Colorado: UNAVCO. Disponible en http://www.unavco.orgTest; Ghilani, C. (2010). Measures of central tendency. In Adjustment computations: Spatial data analysis (5th ed., pp. 17-20). Wiley Sons, Inc.; Guerova, G., Jones, J., Dousa, J., Dick, G., de Haan, S., & Pottiaux, E. Bender, M. (2016). Review of the state-of-the-art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques Discussions, 9(11), 1-34. https://doi.org/10.5194/amt-2016-125Test; Herrera, A. M., Suhandri, H. F., Realini, E., Reguzzoni, M., & de Lacy, M. C. (2016). goGPS: Open-source MATLAB software. GPS solutions, 20(3), 595-603.; Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). Differential positioning. In GNSS global navigation satellite sistem (pp. 169-172). Springer Wien New York.; Huang, S., Zhang, Z., He, J., & Ke, T. (2016). Image Network Generation of Uncalibrated Uav Images With Low-Cost GPS Data. ISPRS-International archives of the photogrammetry, remote sensing and spatial information sciences, 41, 31-37. https://Id:10.5194/isprsarchives-xli-b3-31-2016Test; IIEG. (2011). Lineamientos Técnicos para la Red Geodésica Estatal y Especificaciones Relativas al uso de Técnicas de Posicionamiento por Satélite (pp. 1-43). Jalisco: Instituto de Información, Estadística y Geografía. Disponible en https://iieg.gob.mx/contenido/GeografiaMedioAmbiente/RedGeodesicaEstatalTest; INEGI. (1998). Normas técnicas para levantamientos geodésicos. Instituto Nacional de Estadística, Geografía e Informática. Disponible en http://www.inegi.org.mx/geo/contenidos/normastecnicas/default.aspxTest; INEGI. (2010). Norma técnica sobre estándares de exactitud posicional. Instituto Nacional de Estadística, Geografía e Informática. Disponible enhttp://www.inegi.org.mx/geo/contenidos/normastecnicas/default.aspx; INEGI. (2017). Red geodésica nacional activa. Instituto Nacional de Estadística, Geografía e Informática Disponible en http://www.inegi.org.mx/geo/contenidos/geodesia/rgna.aspx?p=22&dv=c1Test; Keskin, M., Sekerli, Y., & Kahraman, S. (2017). Performance of two low-cost GPS receivers for ground speed measurement under varying speed conditions. Precision Agriculture, 18(2), 264-277. https://doi.org/10.1007/s11119-016-9453-xTest; Klobuchar, J. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions On Aerospace And Electronic Systems, AES, 23(3), 325-331. https://doi.org/10.1109/taes.1987.310829Test; Korpilo, S., Virtanen, T., & Lehvävirta, S. (2017). Smartphone GPS tracking-Inexpensive and efficient data collection on recreational movement. Landscape And Urban Planning, 157, 608-617. https://dx.doi.org/10.1016/j.landurbplan.2016.08.005Test; Krenn, P., Titze, S., Oja, P., Jones, A., & Ogilvie, D. (2011). Use of Global Positioning Systems to study physical activity and the environment. American Journal of Preventive Medicine, 41(5), 508-515. https://doi.org/10.1016/j.amepre.2011.06.046Test; Leica Geosystems AG. (2006). Leica SR20 (pp. 1-4). Heerbrugg, Suiza: Leica Geosystems AG. Disponible en http://w3.Leica-geosystems.com/downloads123/zz/gpsgis/sr20/brochures/SR20Test Brochure_es.pdf; Leica Geosystems AG. (2017). Leica Geo Office, online help (p.1021). Switzeland: Leica Geosystems AG.; Leick, A., Rapoport, L., & Tatarnikov, D. (2015). Satellite systems. In GPS Satellite surveying (4th ed., p. 226). John Wiley & Sons, Inc.; Leonard, J., & Bahr, A. (2016). Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering (pp. 341-358). Springer International Publishing.; Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2016). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems, 62(1), 15-30. https://doi.org/10.1007/s11235-015-9979-7Test; Matias, B., Oliveira, H., Almeira, J., Dias, A., Ferreira, H., Martins, A., & Silva, E. (2015). High-accuracy low-cost RTK-GPS for an unmannned surface vehicle. In OCEANS 2015-Genova (pp. 1-4). IEEE.; Monjardin, S., Pacheco, C., Plata, W., Corrales, G., Romero, R., & Beltran, J. (2016). Processing and deep analysis of hot spot areas of deforestation using remote sensing and geographic information system techniques. Case study: State Sinaloa, México. Scientific Research Publishing, 295-304.; Negrel, J., Gerland, S., Doulgeris, A., Lauknes, T., & Rouyet, L. (2017). On the potential of hand-held GPS tracking of fjord ice features for remote-sensing validation. Annals of Glaciology, 59,73-180. https://doi.org/10.1017/aog.2017.35Test; Realini, E., & Reguzzoni, M. (2013). GoGPS: Open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning. Measurement Science and technology, 24(11), 115010.; Ren, X., Zhang, X., Xie, W., Zhang, K., Yuan, Y., & Li, X. (2016). Global ionospheric modelling using multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Scientific Reports, 6(1). https://doi.org/10.1038/srep33499Test; Rodríguez-Pérez, J., Álvarez, M., & Sanz-Ablanedo, E. (2007). Assessment of low-cost GPS receiver accuracy and precision in forest environments. Journal of Surveying Engineering, 133(4), 159-167. https://doi.org/10.1061Test/(asce)0733-9453(2007)133:4(159); Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph Series, 15(4), 247-251.https://doi.org/10.1029/GM015p0247Test; Samad, A., Waheed Mir, A., Hamid Chaudry, M., Hamid, Q., Samad, N., & Haris, M. (2016). Establishment of geodetic baseline. Science International, 28(1).; Schwieger, V. (2009). High-Sensitivity GPS-an availability, reliability and accuracy test. Bulletin Des Sciences Géographiques, 23. Disponible en http://www.webreview.dz/spip.php?article1649Test; Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. International Symposium On GPS/GNSS, 1-6.; Takasu, T., & Yasuda, A. (2013). RTKLIB ver. 2.4.2 Manual (pp. 1-181). Disponible en http://www.rtklib.com/rtklib.htmTest; Tallysman TW4721. (2017). Disponible en http://www.tallysman.com/index.php/gnss/products/antennas-gpsbeidougalileoglonass/tw4721Test/; Tomaštík, J., Tomaštík, J., Saloň, Š., & Piroh, R. (2017). Horizontal accuracy and applicability of smartphone GNSS positioning in forests. Forestry, 90(2), 187-198. https://doi.org/10.1093/forestry/cpw031Test; Tsakiri, M., Sioulis, A., & Piniotis, G. (2016). The use of low-cost, single-frequency GNSS receivers in mapping surveys. Survey Review, 50(358), 46-56. https://doi.org/10.1080/00396265.2016.1222344Test; Tsakiri, M., Sioulis, A., & Piniotis, G. (2017). Compliance of low-cost, single-frequency GNSS receivers to standards consistent with ISO for control surveying. International Journal of Metrology and Quality Engineering, 8, 11. https://doi.org/10.1051/ijmqe/2017006Test; Van Digglen, F. (2009). Signal strengths in practice and attenuation through different materials. In A-GPS: Assisted GPS, GNSS, and SBAS (pp. 215-216).; Zhang, S., Teizer, J., Pradhananga, N., & Eastman, C. (2015). Workforce location tracking to model, visualize and analyze workspace requirements in building information models for construction safety planning. Automation in Construction, 60, 74-86. https://doi.org/10.1016/j.autcon.2015.09.009Test; https://cienciaergosum.uaemex.mx/article/view/10010Test

  2. 2
    دورية أكاديمية
  3. 3