يعرض 1 - 10 نتائج من 123 نتيجة بحث عن '"Mitochondrial creatine kinase"', وقت الاستعلام: 1.35s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: Université d'Évry-Val-d'Essonne (UEVE), Université Paris-Saclay, Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587), Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Signalisation et physiopathologie cardiovasculaire (CARPAT (UMRS1180)), Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM)

    المصدر: ISSN: 0531-5565.

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/33515657; hal-03356963; https://hal.inrae.fr/hal-03356963Test; https://hal.inrae.fr/hal-03356963/documentTest; https://hal.inrae.fr/hal-03356963/file/S0531556521000218.pdfTest; PII: S0531-5565(21)00021-8; PUBMED: 33515657; WOS: 000620913900006

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Zhu, Lingxin; Tang, Yi; Li, Xiao-Yan; Kerk, Samuel A; Lyssiotis, Costas A; Feng, Wenqing; Sun, Xiaoyue; Hespe, Geoffrey E; Wang, Zijun; Stemmler, Marc P; Brabletz, Simone; Brabletz, Thomas; Keller, Evan T; Ma, Jun; Cho, Jung-Sun; Yang, Jingwen; Weiss, Stephen J (2023). "A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling." The EMBO Journal (7): n/a-n/a.; https://hdl.handle.net/2027.42/176046Test; The EMBO Journal; Stemmler MP, Eccles RL, Brabletz S, Brabletz T ( 2019 ) Non-redundant functions of EMT transcription factors. Nat Cell Biol 21: 102 – 112; Schlattner U, Tokarska-Schlattner M, Wallimann T ( 2006 ) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164 – 180; Schroder K ( 2019 ) NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med 132: 67 – 72; Shang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W, Wortman M, Zheng Y ( 2013 ) Small-molecule inhibitors targeting G-protein-coupled rho guanine nucleotide exchange factors. Proc Natl Acad Sci U S A 110: 3155 – 3160; Sims NA, Martin TJ ( 2020 ) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82: 507 – 529; Srivastava AK, Bhattacharyya S, Castillo G, Miyakoshi N, Mohan S, Baylink DJ ( 2000 ) Development and evaluation of C-telopeptide enzyme-linked immunoassay for measurement of bone resorption in mouse serum. Bone 27: 529 – 533; Takagi T, Moribe H, Kondoh H, Higashi Y ( 1998 ) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125: 21 – 31; Takayanagi H ( 2007 ) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7: 292 – 304; Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J et al ( 2009 ) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15: 757 – 765; Tang Y, Feinberg T, Keller ET, Li XY, Weiss SJ ( 2016 ) Snail/slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 18: 917 – 929; Teitelbaum SL ( 2011 ) The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci 1240: 14 – 17; Teitelbaum SL, Ross FP ( 2003 ) Genetic regulation of osteoclast development and function. Nat Rev Genet 4: 638 – 649; Touaitahuata H, Blangy A, Vives V ( 2014 ) Modulation of osteoclast differentiation and bone resorption by rho GTPases. Small GTPases 5: e28119; Tsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T et al ( 2020 ) Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 2: 1382 – 1390; Uehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, Murakami K, Nishita M, Nakamura T, Kato S et al ( 2017 ) Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal 10: eaan0023; Vandewalle C, Van Roy F, Berx G ( 2009 ) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66: 773 – 787; Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM ( 1992 ) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21 – 40; Wallimann T, Tokarska-Schlattner M, Schlattner U ( 2011 ) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40: 1271 – 1296; Weivoda MM, Oursler MJ ( 2014 ) The roles of small GTPases in osteoclast biology. Orthop Muscular Syst 3: 1000161; Wu M, Chen W, Lu Y, Zhu G, Hao L, Li YP ( 2017 ) Galpha13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3beta-NFATc1 signalling pathway. Nat Commun 8: 13700; Wu D, Harrison DL, Szasz T, Yeh CF, Shentu TP, Meliton A, Huang RT, Zhou Z, Mutlu GM, Huang J et al ( 2021 ) Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat Metab 3: 714 – 727; Xu WY, Hu QS, Qin Y, Zhang B, Liu WS, Ni QX, Xu J, Yu XJ ( 2018 ) Zinc finger E-box-binding homeobox 1 mediates aerobic glycolysis via suppression of sirtuin 3 in pancreatic cancer. World J Gastroenterol 24: 4893 – 4905; Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y et al ( 2020a ) Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 22: 49 – 59; Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y et al ( 2020b ) Gene Expression Omnibus GSE125088 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125088Test ). [DATASET]; Zaidi M ( 2007 ) Skeletal remodeling in health and disease. Nat Med 13: 791 – 801; Zeng R, Faccio R, Novack DV ( 2015 ) Alternative NF-kappaB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms. J Bone Miner Res 30: 2287 – 2299; Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ et al ( 2013 ) Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4: 2935; Zhang J, Wang J, Xing H, Li Q, Zhao Q, Li J ( 2016 ) Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells. Mol Cell Biochem 411: 331 – 340; Zhang Y, Rohatgi N, Veis DJ, Schilling J, Teitelbaum SL, Zou W ( 2018 ) PGC1beta organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation. J Bone Miner Res 33: 1114 – 1125; Zhang K, Zhao H, Sheng Y, Chen X, Xu P, Wang J, Ji Z, He Y, Gao WQ, Zhu HH ( 2022 ) Zeb1 sustains hematopoietic stem cell functions by suppressing mitofusin-2-mediated mitochondrial fusion. Cell Death Dis 13: 735; Zhao X, Lin S, Li H, Si S, Wang Z ( 2021 ) Myeloperoxidase controls bone turnover by suppressing osteoclast differentiation through modulating reactive oxygen species level. J Bone Miner Res 36: 591 – 603; Zhou B, Jin W ( 2020 ) Visualization of single cell RNA-seq data using t-SNE in R. Methods Mol Biol 2117: 159 – 167; Zhou Y, Lin F, Wan T, Chen A, Wang H, Jiang B, Zhao W, Liao S, Wang S, Li G et al ( 2021 ) ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM. Theranostics 11: 5926 – 5938; Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ ( 2020 ) Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 12: eaaw6143; Zhu X, Yan F, Liu L, Huang Q ( 2022 ) ZEB1 regulates bone metabolism in osteoporotic rats through inducing POLDIP2 transcription. J Orthop Surg Res 17: 423; Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL ( 2007 ) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176: 877 – 888; Zou W, Rohatgi N, Chen TH, Schilling J, Abu-Amer Y, Teitelbaum SL ( 2016 ) PPAR-gamma regulates pharmacological but not physiological or pathological osteoclast formation. Nat Med 22: 1203 – 1205; Chang EJ, Ha J, Oerlemans F, Lee YJ, Lee SW, Ryu J, Kim HJ, Lee Y, Kim HM, Choi JY et al ( 2008 ) Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nat Med 14: 966 – 972; Chen W, Gong P, Guo J, Li H, Li R, Xing W, Yang Z, Guan Y ( 2018 ) Glycolysis regulates pollen tube polarity via rho GTPase signaling. PLoS Genet 14: e1007373; Compston JE, McClung MR, Leslie WD ( 2019 ) Osteoporosis. Lancet 393: 364 – 376; Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A et al ( 2021 ) Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 131: e129115; Arnett TR, Orriss IR ( 2018 ) Metabolic properties of the osteoclast. Bone 115: 25 – 30; Aucher A, Rudnicka D, Davis DM ( 2013 ) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191: 6250 – 6260; Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguere V, van der Meulen M, Park-Min KH ( 2017 ) MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRalpha. J Clin Invest 127: 2555 – 2568; de Barrios O, Sanchez-Moral L, Cortes M, Ninfali C, Profitos-Peleja N, Martinez-Campanario MC, Siles L, Del Campo R, Fernandez-Acenero MJ, Darling DS et al ( 2019 ) ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 68: 2129 – 2141; Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H et al ( 2014 ) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H 2 O 2 accumulation. Nat Commun 5: 3773; Bellido T, Delgado-Calle J ( 2020 ) Ex vivo organ cultures as models to study bone biology. JBMR Plus 4: 10; Bellon E, Luyten FP, Tylzanowski P ( 2009 ) Delta-EF1 is a negative regulator of Ihh in the developing growth plate. J Cell Biol 187: 685 – 699; Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, Nwosu ZC, Zhang L, Czerwonka A, Pawlowska A et al ( 2020 ) Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585: 277 – 282; Blangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V ( 2020 ) The osteoclast cytoskeleton – current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 133: jcs244798; Boyle WJ, Simonet WS, Lacey DL ( 2003 ) Osteoclast differentiation and activation. Nature 423: 337 – 342; Brabletz S, Lasierra Losada M, Schmalhofer O, Mitschke J, Krebs A, Brabletz T, Stemmler MP ( 2017 ) Generation and characterization of mice for conditional inactivation of Zeb1. Genesis 55: e23024; Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD ( 2010 ) Osteoclasts are important for bone angiogenesis. Blood 115: 140 – 149; Callaway DA, Jiang JX ( 2015 ) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33: 359 – 370; Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM ( 2013 ) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28: 2 – 17; Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR ( 2013 ) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15 – 21; Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W ( 2002 ) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17: 77 – 90; Feldker N, Ferrazzi F, Schuhwerk H, Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D, Bonisch U et al ( 2020 ) Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J 39: e103209; Feng X, Novack DV, Faccio R, Ory DS, Aya K, Boyer MI, McHugh KP, Ross FP, Teitelbaum SL ( 2001 ) A Glanzmann’s mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Invest 107: 1137 – 1144; Fenouille N, Bassil CF, Ben-Sahra I, Benajiba L, Alexe G, Ramos A, Pikman Y, Conway AS, Burgess MR, Li Q et al ( 2017 ) The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nat Med 23: 301 – 313; Ferron M, Settembre C, Shimazu J, Lacombe J, Kato S, Rawlings DJ, Ballabio A, Karsenty G ( 2013 ) A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev 27: 955 – 969; Francou A, Anderson KV ( 2020 ) The epithelial-to-mesenchymal transition (EMT) in development and cancer. Annu Rev Cancer Biol 4: 197 – 220; Fu R, Lv WC, Xu Y, Gong MY, Chen XJ, Jiang N, Xu Y, Yao QQ, Di L, Lu T et al ( 2020 ) Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun 11: 460; Furter R, Furter-Graves EM, Wallimann T ( 1993 ) Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32: 7022 – 7029; Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM ( 2003 ) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 18: 859 – 867; Ginhoux F, Jung S ( 2014 ) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14: 392 – 404; Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M et al ( 2013 ) NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 123: 4731 – 4738; Guo Y, Lu X, Chen Y, Rendon B, Mitchell RA, Cuatrecasas M, Cortes M, Postigo A, Liu Y, Dean DC ( 2021 ) Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. Sci Adv 7: eabd7455; Han X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J, Wang Y ( 2021 ) ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat 188: 329 – 342; Han X, Long Y, Duan X, Liu Z, Hu X, Zhou J, Li N, Wang Y, Qin J ( 2022 ) ZEB1 induces ROS generation through directly promoting MCT4 transcription to facilitate breast cancer. Exp Cell Res 412: 113044; Holmes T, Brown AW, Suggitt M, Shaw LA, Simpson L, Harrity JPA, Tozer GM, Kanthou C ( 2020 ) The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Sci Rep 10: 9926; Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM ( 2004 ) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101: 17192 – 17197; Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A, Ikeda K ( 2013 ) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28: 2392 – 2399; Izawa T, Rohatgi N, Fukunaga T, Wang QT, Silva MJ, Gardner MJ, McDaniel ML, Abumrad NA, Semenkovich CF, Teitelbaum SL et al ( 2015 ) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11: 1625 – 1637; Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, Rauner M, Yadav VK, Crozet L, Bohm M et al ( 2019 ) Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568: 541 – 545; Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W et al ( 2022 ) Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis 13: 206; Jiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, Lempicki RA ( 2012 ) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28: 1805 – 1806; Kalyanaraman B, Hardy M, Podsiadly R, Cheng G, Zielonka J ( 2017 ) Recent developments in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys 617: 38 – 47; Kang IS, Kim C ( 2016 ) NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 6: 38014; Kazak L, Cohen P ( 2020 ) Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat Rev Endocrinol 16: 421 – 436; Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al ( 2015 ) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163: 643 – 655; Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D et al ( 2017 ) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26: 660 – 671; Khoury BM, Bigelow EM, Smith LM, Schlecht SH, Scheller EL, Andarawis-Puri N, Jepsen KJ ( 2015 ) The use of nano-computed tomography to enhance musculoskeletal research. Connect Tissue Res 56: 106 – 119; Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM ( 2010 ) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca 2+ oscillations essential for osteoclastogenesis. J Biol Chem 285: 6913 – 6921; Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P et al ( 2017 ) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19: 518 – 529; Kurmi K, Hitosugi S, Yu J, Boakye-Agyeman F, Wiese EK, Larson TR, Dai Q, Machida YJ, Lou Z, Wang L et al ( 2018 ) Tyrosine phosphorylation of mitochondrial creatine kinase 1 enhances a druggable tumor energy shuttle pathway. Cell Metab 28: 833 – 847; Kurotaki D, Yoshida H, Tamura T ( 2020 ) Epigenetic and transcriptional regulation of osteoclast differentiation. Bone 138: 115471; Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M et al ( 2016 ) ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126: 3219 – 3235; Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY ( 2005 ) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106: 852 – 859; Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, Baldini N, Avnet S ( 2016 ) Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 79: 168 – 180; Li B, Lee WC, Song C, Ye L, Abel ED, Long F ( 2020 ) Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J 34: 11058 – 11067; Liao Y, Smyth GK, Shi W ( 2014 ) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923 – 930; Ling W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, Manolagas SC, Almeida M, Kim HN ( 2021 ) Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight 6: e146728; Little AC, Kovalenko I, Goo LE, Hong HS, Kerk SA, Yates JA, Purohit V, Lombard DB, Merajver SD, Lyssiotis CA ( 2020 ) High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol 3: 271; Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC ( 2008 ) Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 135: 579 – 588; Love MI, Huber W, Anders S ( 2014 ) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550; Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al ( 2015 ) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161: 1202 – 1214; Masin M, Vazquez J, Rossi S, Groeneveld S, Samson N, Schwalie PC, Deplancke B, Frawley LE, Gouttenoire J, Moradpour D et al ( 2014 ) GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer Metab 2: 11; Mathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R, Grone HJ, Feuerborn A ( 2015 ) Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 16: 321 – 331; Morel AP, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, Devouassoux-Shisheboran M, Combaret V, Finetti P, Chassot C et al ( 2017 ) A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 23: 568 – 578; Murata K, Fang C, Terao C, Giannopoulou EG, Lee YJ, Lee MJ, Mun SH, Bae S, Qiao Y, Yuan R et al ( 2017 ) Hypoxia-sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis. Immunity 47: 66 – 79; Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y et al ( 2022 ) Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4: 651 – 662; Nagai Y, Osawa K, Fukushima H, Tamura Y, Aoki K, Ohya K, Yasuda H, Hikiji H, Takahashi M, Seta Y et al ( 2013 ) p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 28: 2449 – 2462; Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al ( 2011 ) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12: 222 – 230; Nakano S, Inoue K, Xu C, Deng Z, Syrovatkina V, Vitone G, Zhao L, Huang XY, Zhao B ( 2019 ) G-protein Galpha13 functions as a cytoskeletal and mitochondrial regulator to restrain osteoclast function. Sci Rep 9: 4236; Nieto MA, Huang RY, Jackson RA, Thiery JP ( 2016 ) Emt: 2016. Cell 166: 21 – 45; Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H et al ( 2015 ) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21: 281 – 287; Postigo AA, Dean DC ( 1999 ) Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 19: 7961 – 7971; Postigo AA, Dean DC ( 2000 ) Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc Natl Acad Sci U S A 97: 6391 – 6396; Rahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, Jedrychowski MP, Vergnes L, Reue K, Spiegelman BM et al ( 2021 ) Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590: 480 – 485; Raynaud-Messina B, Bracq L, Dupont M, Souriant S, Usmani SM, Proag A, Pingris K, Soldan V, Thibault C, Capilla F et al ( 2018 ) Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss. Proc Natl Acad Sci U S A 115: E2556 – E2565; Rosmaninho P, Mukusch S, Piscopo V, Teixeira V, Raposo AA, Warta R, Bennewitz R, Tang Y, Herold-Mende C, Stifani S et al ( 2018 ) Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO J 37: e97115; Ruh M, Stemmler MP, Frisch I, Fuchs K, van Roey R, Kleemann J, Roas M, Schuhwerk H, Eccles RL, Agaimy A et al ( 2021 ) The EMT transcription factor ZEB1 blocks osteoblastic differentiation in bone development and osteosarcoma. J Pathol 254: 199 – 211; Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC et al ( 2001 ) Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152: 181 – 195

  5. 5
    دورية أكاديمية
  6. 6
  7. 7
  8. 8
  9. 9
    دورية أكاديمية

    المساهمون: School of Biological Sciences

    وصف الملف: 10 p.; application/pdf

    العلاقة: Molecular Brain; Adav, S. S., Gallart-Palau, X., Tan, K. H., Lim, S. K., Tam, J. P., & Sze, S. K. (2016). Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues. Molecular Brain, 9, 20-.; https://hdl.handle.net/10356/82857Test; http://hdl.handle.net/10220/40312Test

  10. 10

    المساهمون: Biomedical Engineering and Physics, ACS - Microcirculation, Amsterdam Neuroscience - Neurovascular Disorders

    المصدر: Amino Acids, 52, 6-7, pp. 1033-1041
    Amino Acids, 52, 1033-1041
    Amino acids, 52(6-7), 1033-1041. Springer Wien

    وصف الملف: application/pdf