يعرض 1 - 10 نتائج من 462 نتيجة بحث عن '"Microrred"', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Valedsaravi, Seyedamin

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    مرشدي الرسالة: El Aroudi Chaoui, Abdelali, Martínez Salamero, Luis

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 621.3

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية

    المؤلفون: García Elvira, David

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    مرشدي الرسالة: Valderrama Blavi, Hugo, Cid Pastor, Angel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 621.3

    وصف الملف: application/pdf

  3. 3
    رسالة جامعية

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica

    مرشدي الرسالة: García de Vicuña, José Luis, Castilla Fernández, Miguel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 621.3

    وصف الملف: application/pdf

  4. 4
    رسالة جامعية

    المؤلفون: Bosque Moncusi, Josep Maria

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    مرشدي الرسالة: Valderrama-Blavi, Hugo

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 621.3

    وصف الملف: application/pdf

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المصدر: Ingeniería; Vol. 29 No. 1 (2024): January-April; e19777 ; Ingeniería; Vol. 29 Núm. 1 (2024): Enero-Abril; e19777 ; 2344-8393 ; 0121-750X

    وصف الملف: application/pdf

    العلاقة: https://revistas.udistrital.edu.co/index.php/reving/article/view/19777/19798Test; Z. Shuai et al., “Microgrid stability: Classification and a review,” Renew. Sustain. Energy Rev., vol. 58, pp. 167-179, 2016. https://doi.org/10.1016/j.rser.2015.12.201Test; O. O. Approach, K. Rahbar, S. Member, J. Xu, and R. Zhang, “Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 124-134, 2015. https://doi.org/10.1109/TSG.2014.2359004Test; C. L. Nge, I. U. Ranaweera, O. M. Midtgård, and L. Norum, “A real-time energy management system for smart grid integrated photovoltaic generation with battery storage,” Renew. Energy, vol. 130, pp. 774-785, 2019. https://doi.org/10.1016/j.renene.2018.06.073Test; W. El-Baz, P. Tzscheutschler, and U. Wagner, “Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies,” Appl. Energy, vol. 241, pp. 625-639, 2019. https://doi.org/10.1016/j.apenergy.2019.02.049Test; K. Markov and N. Rajaković, “Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line,” Energy Convers. Manag., vol. 196, pp. 1105-1112, 2019. https://doi.org/10.1016/j.enconman.2019.05.048Test; T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973-1991, 2020. https://doi.org/10.1016/j.egyr.2020.07.020Test; L. Miller and R. Carriveau, “Energy demand curve variables – An overview of individual and systemic e ff ects,” Sustain. Energy Technol. Assessments, vol. 35, pp. 172-179, 2019. https://doi.org/10.1016/j.seta.2019.07.006Test; R. S. Jayashree and P. J. A. Kenis, “Micro fuel cells for portable applications,” AIChE Annu. Meet. Conf. Proc., no. 42, art. 3390, 2005.; E. Bullich-massagué, F. Díaz-gonzález, M. Aragüés-peñalba, F. Girbau-llistuella, P. Olivella-rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340-361, 2018. https://doi.org/10.1016/j.apenergy.2017.12.048Test; J. Shen, C. Jiang, Y. Liu, and X. Wang, “A microgrid energy management system and risk management under an electricity market environment,” IEEE Access, vol. 4, pp. 2349-2356, 2016. https://doi.org/10.1109/ACCESS.2016.2555926Test; D. Giaouris et al., “A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response,” Appl. Energy, vol. 226, pp. 546-559, 2018. https://doi.org/10.1016/j.apenergy.2018.05.113Test; D. Petreus, R. Etz, T. Patarau, and M. Cirstea, “An islanded microgrid energy management controller validated by using hardware-in-the-loop emulators,” Int. J. Electr. Power Energy Syst., vol. 106,. 346-357, 2019. https://doi.org/10.1016/j.ijepes.2018.10.020Test; W. Su and J. Wang, “Energy management systems in microgrid operations,” Electr. J., vol. 25, no. 8, pp. 45-60, 2012. https://doi.org/10.1016/j.tej.2012.09.010Test; L. A. Dao, A. Dehghani-Pilehvarani, A. Markou, and L. Ferrarini, “A hierarchical distributed predictive control approach for microgrids energy management,” Sustain. Cities Soc., vol. 48, art. 101536, 2019. https://doi.org/10.1016/j.scs.2019.101536Test; T. Morstyn, B. Hredzak, and V. G. Agelidis, “Control strategies for microgrids with distributed energy storage systems: An overview,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3652-3666, 2018. https://doi.org/10.1109/TSG.2016.2637958Test; M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects,” Appl. Energy, vol. 222, pp. 1033-1055, 2018. https://doi.org/10.1016/j.apenergy.2018.04.103Test; T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, 2016. https://doi.org/10.1109/TPEL.2015.2478859Test; J. Pascual, J. Barricarte, P. Sanchis, and L. Marroyo, “Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting,” Appl. Energy, vol. 158, pp. 12-25, 2015. https://doi.org/10.1016/j.apenergy.2015.08.040Test; International Electrotechnical Commission, “IEC 61970-1:2005 %7C IEC Webstore %7C automation, cyber security, smart city, smart energy, smart grid,” pp 5-7 2005. https://webstore.iec.ch/publication/6208Test (accessed Oct. 16, 2020).; C. C. S. Duan and T. C. B. Liu, “Smart energy management system for optimal microgrid economic operation,” IET Rene. Power Gen., vol. 5, no. 3, pp. 258-267, 2011. https://doi.org/10.1049/iet-rpg.2010.0052Test; A. Ahmad Khan, M. Naeem, M. Iqbal, S. Qaisar, and A. Anpalagan, “A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids,” Renew. Sustain. Energy Rev., vol. 58, pp. 1664-1683, 2016. https://doi.org/10.1016/j.rser.2015.12.259Test; M. Hu, J. W. Xiao, S. C. Cui, and Y. W. Wang, “Distributed real-time demand response for energy management scheduling in smart grid,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 233-245, 2018. https://doi.org/10.1016/j.ijepes.2018.01.016Test; M. Elsied, A. Oukaour, T. Youssef, H. Gualous, and O. Mohammed, “An advanced real time energy management system for microgrids,” Energy, vol. 114, pp. 742-752, 2016. https://doi.org/10.1016/j.energy.2016.08.048Test; K. Say, M. John, and R. Dargaville, “Power to the people : Evolutionary market pressures from residential PV battery investments in Australia,” Energy Policy, vol. 134, art. 110977, 2019. https://doi.org/10.1016/j.enpol.2019.110977Test; T. R Nudell, M. Brignone, M. Robba, A. Bonfiglio, F. Delfino, and A. Annaswamy, “A dynamic market mechanism for combined heat and power microgrid energy management,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10033-10039, 2017. https://doi.org/10.1016/j.ifacol.2017.08.2040Test; S. Chalise, J. Sternhagen, T. M. Hansen, and R. Tonkoski, “Energy management of remote microgrids considering battery lifetime,” Electr. J., vol. 29, no. 6, pp. 1-10, 2016. https://doi.org/10.1016/j.tej.2016.07.003Test; J. Shen, C. Jiang, Y. Liu, and J. Qian, “Electric power components and systems a microgrid energy management system with demand response for providing grid peak shaving a microgrid energy management system with demand response for providing grid peak shaving,” Elec. Power Comp. Syst., vol. 44, no. 8, 2016. https://doi.org/10.1080/15325008.2016.1138344Test; S. Sukumar, H. Mokhlis, S. Mekhilef, and K. Naidu, “Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid,” Energy, vol. 118, pp. 1322-1333, 2017. https://doi.org/10.1016/j.energy.2016.11.018Test; G. Comodi et al., “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies,” Appl. Energy, vol. 137, pp. 854-866, 2015. https://doi.org/10.1016/j.apenergy.2014.07.068Test; M. H. Amrollahi, S. Mohammad, and T. Bathaee, “Techno-economic optimization of hybrid photovoltaic / wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response,” Appl. Energy, vol. 202, pp. 66-77, 2017. https://doi.org/10.1016/j.apenergy.2017.05.116Test; M. Střelec and J. Berka, "Microgrid energy management based on approximate dynamic programming," in IEEE PES ISGT Europe 2013, Lyngby, Denmark, 2013, pp. 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695439Test; S. Golshannavaz, S. Afsharnia, and P. Siano, “A comprehensive stochastic energy management system in reconfigurable microgrids,” Int. J. Energy, Res., vol. 40, no. 11, pp. 1518-1531, 2016. https://doi.org/10.1002/er.3536Test; J. Radosavljevi, M. Jevti, and D. Klimenta, “Engineering optimization energy and operation management of a microgrid using particle swarm optimization,” Energy Opt., vol. 48, no. 5, pp. 811-813, 2015. https://doi.org/10.1080/0305215X.2015.1057135Test; M. Marzband, E. Yousefnejad, A. Sumper, and J. L. Domínguez-García, "Real time experimental implementation of optimum energy management system in stand-alone Microgrid by using multi-layer ant colony optimization," Int. J. Electr. Power Energy Syst., vol. 75, pp. 265-274, 2016. https://doi.org/10.1016/j.ijepes.2015.09.010Test; M. Marzband, M. Ghadimi, A. Sumper, and J. L. Domínguez-garcía, “Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode,” Appl. Energy, vol. 128, pp. 164-174, 2014. https://doi.org/10.1016/j.apenergy.2014.04.056Test; D. Arcos-Aviles, J. Pascual, F. Guinjoan, L. Marroyo, P. Sanchis, and M. P. Marietta, “Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting,” Appl. Energy, vol. 205, pp. 69-84, 2017. https://doi.org/10.1016/j.apenergy.2017.07.123Test; Y.-K. Chen, Y.-C. Wu, C.-C. Song, and Y.-S. Chen, "Design and implementation of energy management system with fuzzy control for DC microgrid systems," IEEE Trans. Power Elect., vol. 28, no. 4, pp. 1563-1570, April 2013. https://doi.org/10.1109/TPEL.2012.2210446Test; T. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sadhana - Acad. Proc. Eng. Sci., vol. 41, no. 7, pp. 755-769, 2016. https://doi.org/10.1007/s12046-016-0515-6Test; A. Anvari-moghaddam, A. Rahimi-kian, M. S. Mirian, and J. M. Guerrero, “A multi-agent based energy management solution for integrated buildings and microgrid system,” Appl. Energy, vol. 203, pp. 41-56, 2017. https://doi.org/10.1016/j.apenergy.2017.06.007Test; C. Corchero and M. Cruz-zambrano, “Optimal energy management for a residential microgrid including a vehicle-to-grid system,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2163-2172, 2014. https://doi.org/10.1109/TSG.2014.2318836Test; A. G. Tsikalakis and N. D. Hatziargyriou, "Centralized control for optimizing microgrids operation," IEEE Trans. Energy Conv., vol. 23, no. 1, pp. 241-248, March 2008. https://doi.org/10.1109/TEC.2007.914686Test; N. Anglani, G. Oriti, and M. Colombini, “Optimized energy management system to reduce fuel consumption in remote military microgrids,” IEEE Trans. Ind. App., vol. 53, no. 6, pp. 5777-5785, 2017. https://doi.org/10.1109/TIA.2017.2734045Test; B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, and F. L. G. Jiménez-estévez, “Continuous optimal control approaches to microgrid energy management,” Energy Syst., vol. 9, pp. 59-77, 2017. https://doi.org/10.1007/s12667-016-0228-2Test; J. B. Almada, R. P. S. Leão, R. F. Sampaio, and G. C. Barroso, “A centralized and heuristic approach for energy management of an AC microgrid,” Renew. Sustain. Energy Rev., vol. 60, pp. 1396-1404, 2016. https://doi.org/10.1016/j.rser.2016.03.002Test; K. Hassan Youssef, “Optimal management of unbalanced smart microgrids for scheduled and unscheduled multiple transitions between grid-connected and islanded modes,” Electr. Power Syst. Res., vol. 141, pp. 104-113, 2016. https://doi.org/10.1016/j.epsr.2016.07.015Test; A. Choudar, D. Boukhetala, S. Barkat, and J. Brucker, “A local energy management of a hybrid PV -storage based distributed generation for microgrids,” Energy Convers. Manag., vol. 90, pp. 21-33, 2015. https://doi.org/10.1016/j.enconman.2014.10.067Test; P. P. Vergara, J. C. López, L. C. P. Silva, and M. J. Rider, “Security-constrained optimal energy management system for three-phase residential microgrids,” Electr. Power Syst. Res., vol. 146, pp. 371-382, 2017. https://doi.org/10.1016/j.epsr.2017.02.012Test; H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. Francois, and S. Member, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electronics, vol. 58, no. 10, pp. 4583-4592, 2011.; M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication,” Energy Build., vol. 59, pp. 236-243, 2013. https://doi.org/10.1016/j.enbuild.2012.12.039Test; A. Askarzadeh, “A memory-based genetic algorithm for optimization of power generation in a microgrid,” IEEE Trans. Sust. Energy, vol. 9, no. 3, pp. 1081-1089, 2017. https://doi.org/10.1109/TSTE.2017.2765483Test; N. Tiwari and L. Srivastava, "Generation scheduling and micro-grid energy management using differential evolution algorithm," 2016 Int. Conf. Circuit, Power Comp. Tech. (ICCPCT), Nagercoil, India, 2016, pp. 1-7. https://doi.org/10.1109/ICCPCT.2016.7530218Test; T. Niknam, F. Golestaneh, and A. Malekpour, “Probabilistic energy and operation management of a microgrid containing wind / photovoltaic / fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm,” Energy, vol. 43, no. 1, pp. 427-437, 2012. https://doi.org/10.1016/j.energy.2012.03.064Test; M. Motevasel and T. Niknam, “Multi-objective energy management of CHP (combined heat and power)-based micro-grid,” Energy, vol. 51, pp. 123-136, 2013. https://doi.org/10.1016/j.energy.2012.11.035Test; M. Motevasel and A. R. Seifi, “Expert energy management of a micro-grid considering wind energy uncertainty,” Energy Convers. Manag., vol. 83, pp. 58-72, 2014. https://doi.org/10.1016/j.enconman.2014.03.022Test; G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “A fuzzy logic energy management system for polygeneration microgrids,” Renew. Energy, vol. 41, pp. 315-327, 2012. https://doi.org/10.1016/j.renene.2011.11.019Test; D. Tenfen and E. C. Finardi, “A mixed integer linear programming model for the energy management problem of microgrids,” Electr. Power Syst. Res., vol. 122, pp. 19-28, 2015. https://doi.org/10.1016/j.epsr.2014.12.019Test; M. Abedini, M. H. Moradi, and S. M. Hosseinian, “Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm,” Renew. Energy, vol. 90, pp. 430-439, 2016. https://doi.org/10.1016/j.renene.2016.01.014Test; G. K. Venayagamoorthy and R. Sharma, “Dynamic energy management system for a smart microgrid,” IEEE Trans. Neural Networks Learning Syst., vol. 27, no. 8, pp. 1-14, 2016. http://dx.doi.org/10.1109/TNNLS.2016.2514358Test; E. De Santis, A. Rizzi, and A. Sadeghian, “Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids,” Appl. Soft Comput. J., vol. 60, pp. 135-149, 2017. https://doi.org/10.1016/j.asoc.2017.05.059Test; C. S. Karavas, G. Kyriakarakos, K. G. Arvanitis, and G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manag., vol. 103, pp. 166-179, 2015. https://doi.org/10.1016/j.enconman.2015.06.021Test; H. S. V. S. K. Nunna, A. M. Saklani, A. Sesetti, S. Battula, S. Doolla, and D. Srinivasan, “Multi-agent based demand response management system for combined operation of smart microgrids,” Sustain. Energy, Grids Networks, vol. 6, pp. 25-34, 2016. https://doi.org/10.1016/j.segan.2016.01.002Test; L. Ma, N. Liu, J. Zhang, and W. Tushar, “Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach,” IEEE Tran. Ind. Informatics, vol. 12, no. 5, 2016. https://doi.org/10.1109/TII.2016.2578184Test; G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou, "Leader-follower strategies for energy management of multi-microgrids," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909-1916, Dec. 2013. https://doi.org/10.1109/TSG.2013.2256941Test; H. S. V. S. Kumar Nunna and S. Doolla, "Energy management in microgrids using demand response and distributed storage – A multiagent approach," IEEE Trans. Power Delivery, vol. 28, no. 2, pp. 939-947, April 2013. https://doi.org/10.1109/TPWRD.2013.2239665Test; L. Kumar, S. R. K, A. Verma, B. K. Panigrahi, and R. Kumar, “An operation window constrained strategic energy management (OWCSEM ) of micro grid with electric vehicle and distributed resources,” IET Gen. Trans. Dist., vol. 11, no. 3, 615-626. https://doi.org/10.1049/iet-gtd.2016.0654Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/19777Test

  10. 10
    دورية أكاديمية

    المساهمون: Ruiz Pineda, Luis Fernando

    مصطلحات موضوعية: Eólico, Microrred, Solar, Wind, Microgrid

    وصف الملف: application/pdf

    العلاقة: APA 7th - Caldas Vargas, N. y Romero Montoya, C. S. (2024) Diseño de una Microred híbrida soportada en un tráiler comercial para una vivienda promedio en la Isla de Providencia, Colombia. [Artículo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/9562Test; https://hdl.handle.net/20.500.11839/9562Test