يعرض 1 - 10 نتائج من 346 نتيجة بحث عن '"Mazzarri, A."', وقت الاستعلام: 1.11s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Pertile, D., Gallo, G., Barra, F., Pasculli, A., Batistotti, P., Sparavigna, M., Vizzielli, G., Soriero, D., Graziano, G., Di Saverio, S., Meniconi, R. L., Guaitoli, E., Mazzarri, A., Aprile, A., Aprile, V., Botteri, E., Brascia, D., Cozza, V., Damarco, F., Di Marco, C., Gallazzi, M., Giovenzana, M., Giuffrida, M., Lanari, J., Lanza, G., Lo Surdo, P., Maglitto, F., Manitto, M., Minuzzo, A., Montelione, N., Palmieri, G., Pasqui, E., Perelli, F., Piovano, E., Portigliotti, L., Ribolla, M., Romano, A., Romboli, A., Sena, G., Settembrini, A., Sturiale, A., Velluti, F.

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/32557207; volume:72; issue:2; firstpage:269; lastpage:280; numberofpages:12; journal:UPDATES IN SURGERY; http://hdl.handle.net/11568/1149820Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85086733340

  2. 2
    دورية أكاديمية

    المساهمون: 1, Davide Pertile, 2, Gaetano Gallo, 3, Fabio Barra, 4, Alessandro Pasculli, 1, Paola Batistotti, 1, Marco Sparavigna, 5, Giuseppe Vizzielli, 1, Domenico Soriero, 6, Giusi Graziano, 7, Salomone Di Saverio, 8, Roberto Luca Meniconi, 9, Eleonora Guaitoli, Mazzarri 10, Andrea, Working Group (Alessandra Aprile, Spigc, Aprile, Vittorio, Botteri, Emanuele, Brascia, Debora, Cozza, Valerio, Damarco, Francesco, Di Marco, Carlo, Gallazzi, Mariasole, Giovenzana, Marco, Giuffrida, Mario, Lanari, Jacopo, Lanza, Giovanni, Lo Surdo, Pasquale, Maglitto, Fabio, Manitto, Mattia, Minuzzo, Alessio, Montelione, Nunzio, Palmieri, Gerardo, Pasqui, Edoardo, Perelli, Federica, Piovano, Elisa, Portigliotti, Luca, Ribolla, Marta, Romano, Angela, Romboli, Andrea, Sena, Giuseppe, Settembrini, Alberto, Sturiale, Alessandro, Velluti), Francesco

    العلاقة: info:eu-repo/semantics/altIdentifier/wos/WOS:000541075200001; journal:UPDATES IN SURGERY; http://hdl.handle.net/11588/857063Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85086733340

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المساهمون: Tursi, A., Brandimarte, G., Di Mario, F., Lanas, A., Scarpignato, C., Bafutto, M., Barbara, G., Bassotti, G., Binda, G. A., Biondi, A., Biondo, S., Cassieri, C., Crucitti, A., Dumitrascu, D. L., Elisei, W., Escalante, R., Herszenyi, L., Kruis, W., Kupcinskas, J., Adi, Lahat, Lecca, P. G., Maconi, G., Malfertheiner, P., Mazzarri, A., Mearin, F., Milosavljevic, T., Nardone, G., de Oliveira, E. C., Papa, A., Papagrigoriadis, S., Pera, M., Persiani, R., Picchio, M., Regula, J., Stimac, D., Stollman, N., Strate, L. L., Walker, M. M. D.

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/31930224; info:eu-repo/semantics/altIdentifier/wos/WOS:000536880600008; volume:28; issue:suppl. 4; firstpage:39; lastpage:43; numberofpages:5; journal:JOURNAL OF GASTROINTESTINAL AND LIVER DISEASES; http://hdl.handle.net/11573/1383781Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85077765261

  6. 6
    دورية أكاديمية

    المصدر: Ciencia e Ingenieria Neogranadina; Vol 29 No 1 (2019); 53-66 ; Ciencia e Ingeniería Neogranadina; Vol. 29 Núm. 1 (2019); 53-66 ; Ciencia e Ingeniería Neogranadina; v. 29 n. 1 (2019); 53-66 ; 1909-7735 ; 0124-8170

    وصف الملف: application/pdf; text/xml

    العلاقة: http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899/3331Test; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899/3373Test; Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification - a review. Renewable and sustainable energy reviews, 10(3), 248-268. DOI:10.1016/j.rser.2004.09.002; Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy conversion and management, 49(5), 1248-1257. DOI:10.1016/j.enconman.2007.08.010; Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467. DOI:10.1016/j.pecs.2012.03.002; Albernas-Carvajal, Y., Corsano, G., Morales-Zamora, M., González-Cortés, M., Santos-Herrero, R., & González-Suárez, E. (2014). Optimal design for an ethanol plant combining first and second-generation technologies. CT&F-Ciencia, Tecnología y Futuro, 5(5), 97-120.; Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F., (2009). Production of biodiesel from acid waste lard. Bioresource Technology, 100, 6355-6361 DOI:10.1016/j.biortech.2009.07.025; Apostolakou, A. A., Kookos, I. K., Marazioti, C., & Angelopoulos, K. C. (2009). Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Processing Technology, 90(7), 1023-1031. DOI:10.1016/j.fuproc.2009.04.017; Zięba, A., Drelinkiewicz, A., Chmielarz, P., Matachowski, L., & Stejskal, J. (2010). Transesterification of triacetin with methanol on various solid acid catalysts: A role of catalyst properties. Applied Catalysis A: General, 387(1), 13-25. DOI:10.1016/j.apcata.2010.07.060; Caetano, N. S., Silva, V. F., Melo, A. C., Martins, A. A., & Mata, T. M. (2014). Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy, 16(7), 1423-1430. DOI:10.1007/s10098-014-0773-0; Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion and Management, 49(1), 125-130. DOI:10.1016/j.enconman.2007.05.002; Demirbas, A. (2007). Biodiesel: a realistic fuel alternative for diesel engines. Springer Science & Business Media.; Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093. DOI:10.1016/j.rser.2012.01.003; Zuorro, A., & Lavecchia, R. (2011). Polyphenols and energy recovery from spent coffee grounds. Chem. Eng. Trans., 25, 285-290.DOI:10.3303/CET1125048; Páscoa, R. N., Magalhães, L. M., & Lopes, J. A. (2013). FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food research international, 51(2), 579-586. DOI:10.1016/j.foodres.2013. 01.035; International Coffee Organization. Data total production. En: http://www.ico.org/new_historical.asp?section=StatisticsTest; Instituto Nacional de Estadística. (2014) Informe Semestral de Consumo de Alimentos, primer semestre 2014. En: http://www.ine.gov.ve/index.php?option=com_content&id=740&Itemid=38;tmpl=componentTest; Soares, B., Gama, N., Freire, C. S., Barros‐Timmons, A., Brandão, I., Silva, R., Neto, C.P. & Ferreira, A. (2015). Spent coffee grounds as a renewable source for ecopolyols production. Journal of Chemical Technology and Biotechnology, 90(8), 1480-1488. DOI:10.1002/jctb.4457; Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. DOI:10.1016/j.seppur.2011.09.036; Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of agricultural and food chemistry, 61(17), 4162-4168. DOI:10.1021/jf4005719; Gomez-de la Cruz, F. J., Cruz-Peragon, F., Casanova-Pelaez, P. J., & Palomar-Carnicero, J. M. (2015). A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics. Fuel Processing Technology, 130, 188-196. DOI:10.1016/j.fuproc.2014.10.012; Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., & Kaltschmitt, M, (2012), Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70-76. DOI:10.1016/j.fuel.2012.01.023; Urribarrí, A., Zabala, A., Sánchez, J., Arenas, E., Chandler, C., Rincón, M., y Aiello Mazzarri, C. (2015). Evaluación del potencial de la borra de café como materia prima para la producción de biodiesel. Multiciencias, 14(2):129-139.; Zuorro, A. y Lavecchia, R. (2012). Spent coffee grounds as a valuable source phenolic compounds and bioenergy. Journal and cleaner production, 34: 49:56. DOI:10.1016/j.jclepro.2011.12.003; Pujol, D., Liu, C., Gominho, J., Olivella, M. À., Fiol, N., Villaescusa, I., & Pereira, H. (2013). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423-429. DOI:10.1016/j.indcrop.2013.07.056; Zuorro, A. (2015). Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Separation and Purification Technology, 152, 64-69. DOI:10.1016/j.seppur.2015.08.016; Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56(24), 11757-11760. DOI:10.1021/jf802487s [ Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P. y Casal, S. (2012). Espresso coffee residues: a valuable source of unextracted compounds. Journal of agricultural and food chemistry, 60(32), 7777-7784. DOI:10.1021/jf3018854; Camejo A. (2012). Producción de biodiesel por esterificación/ transesterificación de las grasas obtenidas de la borra de café. Trabajo de Grado. Universidad Rafael Urdaneta. Maracaibo-Venezuela, pp 110. http://200.35.84.131/portal/index.htmTest; ASTM D445-04 (2004), Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity), Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D1298-99 (1999), Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D664-04 (2004), Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D1796-97 (1997), Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure), Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D482-03 (2003), Standard Test Method for Ash from Petroleum Products, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; Oliveira, L, S., Franca, A, S., Camargos, R, R., & Ferraz, V, P, (2008). Coffee oil as a potential feedstock for biodiesel production. Bioresource Technology, 99(8), 3244-3250. DOI:10.1016/j.biortech.2007.05.074; Patil, P, D. & Deng, S, (2009). Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel, 88(7), 1302-1306. https://doi.org/10.1016/j.fuel.2009.01.016Test; Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable and sustainable energy reviews, 14(1), 200-216. DOI:10.1016/j.rser.2009.07.017; ASTM D93-16a, (2016)Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, ASTM International, West Conshohocken, PA, www.astm.org; López–Fontal, E, M., y Castaño–Castrillón, J, J, (1999). Características del aceite esencial obtenido de subproductos de la trilla de café pergamino. Cenicafé, 50(2), 119-125.; Zabala, A., 2012, Producción de biodiesel de residuos de café utilizando diferentes catalizadores. Trabajo de grado. Programa de Maestría en Ingeniería Química. Facultad de Ingeniería. Universidad del Zulia. Maracaibo, Venezuela, pp.71.; Bautista, L, F., Vicente, G., Rodríguez, R,, y Pacheco, M, (2009), Optimization of FAME production from waste cooking oil for biodiesel use, Biomass and Bioenergy, 33(5), 862-872. DOI:10.1016/j.biombioe.2009.01.009; Ma, F. y Hanna, M., A. (1999), Biodiesel production: A review, Bioresource technology, 70(1), 1-15. DOI:10.1016/S0960-8524(99)00025-5; Wang, Y., Ou, S., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252(1), 107-112. DOI:10.1016/j.molcata.2006.02.047; Berthe, M. H., Asfaw, A., Asfaw, N. (2013). Investigation of waste coffee ground as a potential raw material for biodiesel production. International Journal of Renewable Energy Research (IJRER), 3(4):854-860.; Anguebes, F.; Rangel, M.; Castelan, M.; Guerrero, A.; Cervantes, J. M.; Aguilar, M. & Herrera, W. A., (2011). Evaluación de la transesterificación del aceite de canola. Biocombustibles, 498, 238-242.; Martínez Ávila, O. M., Sánchez Castellanos, F. J., & Suárez Palacios, O. Y. (2007). Producción de ésteres etílicos a partir de aceite de palma RBD. Ingeniería e Investigación, 27 (2):34-43. DOI:10.15446/ing.investig; Yordanov, D. I., Tsonev, Z. B., Palichev, T. V., & Mustafa, Z. A., (2013). A new approach for production of coffee oil from waste coffee residue as a feedstock for biodiesel. Petroleum & Coal, 55 (2):74-81. http://www.vurup.sk/petroleum-coalTest; Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L., (2014). Spectrometric identification of organic compounds. John Wiley & Sons; Meena Devi, R., Subadevi, R., Paul Raj, S., & Sivakumar, M., (2015). Comparative Studies on Biodiesel from Rubber Seed Oil Using Homogeneous and Heterogeneous Catalysts. International Journal of Green Energy, 12(12):1215-1221. DOI:10.1080/15435075.2014.893879; Lafont, J. J., Páez, M. S., & Torres, Y. C., (2011). Análisis químico de mezclas biodiesel de aceite de cocina usado y diesel por espectroscopia infrarroja. Información tecnológica, 22(4):35-42. DOI:10.4067/S0718-07642011000400005; Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1 H and 13 C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92(3), 336-341. DOI:10.1016/j.fuproc.2010.09.025; Ortiz Tapia, M. del C., García Alamilla, P., Lagunes Gálvez, L. M., Arregoitia Quezada, M. I., García Alamilla, R., & León Chávez, M. A., (2016). Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente. Acta Universitaria, 26 (5): 3-10. DOI:10.15174/au.2016.910; Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. DOI:10.1016/j.rser.2011.07.143; Teixeira da Silva de La Salles, K., Meneghetti, S. M. P., Ferreira de La Salles, W., Meneghetti, M. R., dos Santos, I. C. F., da Silva, J. P. V., de Carvalho, S.H.V. & Soletti, J. I. (2010). Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel. Industrial crops and products. 32(3), 518-521. DOI:10.1016/j.indcrop.2010.06.026; Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700-1702. DOI:10.1016/j.fuel.2010.10.045; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899Test; http://hdl.handle.net/10654/33436Test

  7. 7
  8. 8
    كتاب

    المساهمون: Volterrani, D, Erba, PA, Strauss, HW, Mariani, G, Larson, SM, Guidoccio, F, Mazzarri, S, Depalo, T, Orsini, F, Erba, P

    العلاقة: info:eu-repo/semantics/altIdentifier/isbn/9783031054938; ispartofbook:Antibody; Auger-electron emitters; Ligand; Peptide; Targeted therapies; Α-Emitters; Β- Emitters; firstpage:217; lastpage:243; numberofpages:27; alleditors:Volterrani, D; Erba, PA; Strauss, HW; Mariani, G; Larson, SM; https://hdl.handle.net/10281/424702Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85153820757

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: Ciencia e Ingenieria Neogranadina; Vol. 29 No. 1 (2019); 53-66 ; Ciencia e Ingeniería Neogranadina; Vol. 29 Núm. 1 (2019); 53-66 ; Ciencia e Ingeniería Neogranadina; v. 29 n. 1 (2019); 53-66 ; 1909-7735 ; 0124-8170

    وصف الملف: application/pdf; text/xml

    العلاقة: http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899/3331Test; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899/3373Test; Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification - a review. Renewable and sustainable energy reviews, 10(3), 248-268. DOI:10.1016/j.rser.2004.09.002; Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy conversion and management, 49(5), 1248-1257. DOI:10.1016/j.enconman.2007.08.010; Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467. DOI:10.1016/j.pecs.2012.03.002; Albernas-Carvajal, Y., Corsano, G., Morales-Zamora, M., González-Cortés, M., Santos-Herrero, R., & González-Suárez, E. (2014). Optimal design for an ethanol plant combining first and second-generation technologies. CT&F-Ciencia, Tecnología y Futuro, 5(5), 97-120.; Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F., (2009). Production of biodiesel from acid waste lard. Bioresource Technology, 100, 6355-6361 DOI:10.1016/j.biortech.2009.07.025; Apostolakou, A. A., Kookos, I. K., Marazioti, C., & Angelopoulos, K. C. (2009). Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Processing Technology, 90(7), 1023-1031. DOI:10.1016/j.fuproc.2009.04.017; Zięba, A., Drelinkiewicz, A., Chmielarz, P., Matachowski, L., & Stejskal, J. (2010). Transesterification of triacetin with methanol on various solid acid catalysts: A role of catalyst properties. Applied Catalysis A: General, 387(1), 13-25. DOI:10.1016/j.apcata.2010.07.060; Caetano, N. S., Silva, V. F., Melo, A. C., Martins, A. A., & Mata, T. M. (2014). Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy, 16(7), 1423-1430. DOI:10.1007/s10098-014-0773-0; Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion and Management, 49(1), 125-130. DOI:10.1016/j.enconman.2007.05.002; Demirbas, A. (2007). Biodiesel: a realistic fuel alternative for diesel engines. Springer Science & Business Media.; Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093. DOI:10.1016/j.rser.2012.01.003; Zuorro, A., & Lavecchia, R. (2011). Polyphenols and energy recovery from spent coffee grounds. Chem. Eng. Trans., 25, 285-290.DOI:10.3303/CET1125048; Páscoa, R. N., Magalhães, L. M., & Lopes, J. A. (2013). FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food research international, 51(2), 579-586. DOI:10.1016/j.foodres.2013. 01.035; International Coffee Organization. Data total production. En: http://www.ico.org/new_historical.asp?section=StatisticsTest; Instituto Nacional de Estadística. (2014) Informe Semestral de Consumo de Alimentos, primer semestre 2014. En: http://www.ine.gov.ve/index.php?option=com_content&id=740&Itemid=38;tmpl=componentTest; Soares, B., Gama, N., Freire, C. S., Barros‐Timmons, A., Brandão, I., Silva, R., Neto, C.P. & Ferreira, A. (2015). Spent coffee grounds as a renewable source for ecopolyols production. Journal of Chemical Technology and Biotechnology, 90(8), 1480-1488. DOI:10.1002/jctb.4457; Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. DOI:10.1016/j.seppur.2011.09.036; Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of agricultural and food chemistry, 61(17), 4162-4168. DOI:10.1021/jf4005719; Gomez-de la Cruz, F. J., Cruz-Peragon, F., Casanova-Pelaez, P. J., & Palomar-Carnicero, J. M. (2015). A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics. Fuel Processing Technology, 130, 188-196. DOI:10.1016/j.fuproc.2014.10.012; Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., & Kaltschmitt, M, (2012), Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70-76. DOI:10.1016/j.fuel.2012.01.023; Urribarrí, A., Zabala, A., Sánchez, J., Arenas, E., Chandler, C., Rincón, M., y Aiello Mazzarri, C. (2015). Evaluación del potencial de la borra de café como materia prima para la producción de biodiesel. Multiciencias, 14(2):129-139.; Zuorro, A. y Lavecchia, R. (2012). Spent coffee grounds as a valuable source phenolic compounds and bioenergy. Journal and cleaner production, 34: 49:56. DOI:10.1016/j.jclepro.2011.12.003; Pujol, D., Liu, C., Gominho, J., Olivella, M. À., Fiol, N., Villaescusa, I., & Pereira, H. (2013). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423-429. DOI:10.1016/j.indcrop.2013.07.056; Zuorro, A. (2015). Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Separation and Purification Technology, 152, 64-69. DOI:10.1016/j.seppur.2015.08.016; Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56(24), 11757-11760. DOI:10.1021/jf802487s [ Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P. y Casal, S. (2012). Espresso coffee residues: a valuable source of unextracted compounds. Journal of agricultural and food chemistry, 60(32), 7777-7784. DOI:10.1021/jf3018854; Camejo A. (2012). Producción de biodiesel por esterificación/ transesterificación de las grasas obtenidas de la borra de café. Trabajo de Grado. Universidad Rafael Urdaneta. Maracaibo-Venezuela, pp 110. http://200.35.84.131/portal/index.htmTest; ASTM D445-04 (2004), Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity), Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D1298-99 (1999), Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D664-04 (2004), Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D1796-97 (1997), Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure), Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; ASTM D482-03 (2003), Standard Test Method for Ash from Petroleum Products, Annual Book of ASTM Standards, Section 5- Petroleum Products, Lubricants, and Fossil Fuels, American Society for Testing and Materials, Philadelphia, www.astm.org; Oliveira, L, S., Franca, A, S., Camargos, R, R., & Ferraz, V, P, (2008). Coffee oil as a potential feedstock for biodiesel production. Bioresource Technology, 99(8), 3244-3250. DOI:10.1016/j.biortech.2007.05.074; Patil, P, D. & Deng, S, (2009). Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel, 88(7), 1302-1306. https://doi.org/10.1016/j.fuel.2009.01.016Test; Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable and sustainable energy reviews, 14(1), 200-216. DOI:10.1016/j.rser.2009.07.017; ASTM D93-16a, (2016)Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, ASTM International, West Conshohocken, PA, www.astm.org; López–Fontal, E, M., y Castaño–Castrillón, J, J, (1999). Características del aceite esencial obtenido de subproductos de la trilla de café pergamino. Cenicafé, 50(2), 119-125.; Zabala, A., 2012, Producción de biodiesel de residuos de café utilizando diferentes catalizadores. Trabajo de grado. Programa de Maestría en Ingeniería Química. Facultad de Ingeniería. Universidad del Zulia. Maracaibo, Venezuela, pp.71.; Bautista, L, F., Vicente, G., Rodríguez, R,, y Pacheco, M, (2009), Optimization of FAME production from waste cooking oil for biodiesel use, Biomass and Bioenergy, 33(5), 862-872. DOI:10.1016/j.biombioe.2009.01.009; Ma, F. y Hanna, M., A. (1999), Biodiesel production: A review, Bioresource technology, 70(1), 1-15. DOI:10.1016/S0960-8524(99)00025-5; Wang, Y., Ou, S., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252(1), 107-112. DOI:10.1016/j.molcata.2006.02.047; Berthe, M. H., Asfaw, A., Asfaw, N. (2013). Investigation of waste coffee ground as a potential raw material for biodiesel production. International Journal of Renewable Energy Research (IJRER), 3(4):854-860.; Anguebes, F.; Rangel, M.; Castelan, M.; Guerrero, A.; Cervantes, J. M.; Aguilar, M. & Herrera, W. A., (2011). Evaluación de la transesterificación del aceite de canola. Biocombustibles, 498, 238-242.; Martínez Ávila, O. M., Sánchez Castellanos, F. J., & Suárez Palacios, O. Y. (2007). Producción de ésteres etílicos a partir de aceite de palma RBD. Ingeniería e Investigación, 27 (2):34-43. DOI:10.15446/ing.investig; Yordanov, D. I., Tsonev, Z. B., Palichev, T. V., & Mustafa, Z. A., (2013). A new approach for production of coffee oil from waste coffee residue as a feedstock for biodiesel. Petroleum & Coal, 55 (2):74-81. http://www.vurup.sk/petroleum-coalTest; Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L., (2014). Spectrometric identification of organic compounds. John Wiley & Sons; Meena Devi, R., Subadevi, R., Paul Raj, S., & Sivakumar, M., (2015). Comparative Studies on Biodiesel from Rubber Seed Oil Using Homogeneous and Heterogeneous Catalysts. International Journal of Green Energy, 12(12):1215-1221. DOI:10.1080/15435075.2014.893879; Lafont, J. J., Páez, M. S., & Torres, Y. C., (2011). Análisis químico de mezclas biodiesel de aceite de cocina usado y diesel por espectroscopia infrarroja. Información tecnológica, 22(4):35-42. DOI:10.4067/S0718-07642011000400005; Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1 H and 13 C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92(3), 336-341. DOI:10.1016/j.fuproc.2010.09.025; Ortiz Tapia, M. del C., García Alamilla, P., Lagunes Gálvez, L. M., Arregoitia Quezada, M. I., García Alamilla, R., & León Chávez, M. A., (2016). Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente. Acta Universitaria, 26 (5): 3-10. DOI:10.15174/au.2016.910; Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. DOI:10.1016/j.rser.2011.07.143; Teixeira da Silva de La Salles, K., Meneghetti, S. M. P., Ferreira de La Salles, W., Meneghetti, M. R., dos Santos, I. C. F., da Silva, J. P. V., de Carvalho, S.H.V. & Soletti, J. I. (2010). Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel. Industrial crops and products. 32(3), 518-521. DOI:10.1016/j.indcrop.2010.06.026; Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700-1702. DOI:10.1016/j.fuel.2010.10.045; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/2899Test