يعرض 1 - 10 نتائج من 67 نتيجة بحث عن '"Martino, Claudio"', وقت الاستعلام: 1.67s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    تقرير

    المصدر: D’Onghia , Madia and de Martino , Claudio (2018) Gli strumenti giuslavoristici di contrasto allo sfruttamento del lavoro in agricoltura nella legge n. 199 del 2016: ancora timide risposte a un fenomeno molto più complesso = Labor law instruments to contrast the exploitation of labor in agriculture in law n. 199 of 2016: still timid responses to a much more complex phenomenon. WP C.S.D.L.E. “Massimo D’Antona”.IT – 352/2018. [Policy Paper]

    وصف الملف: application/pdf

    الوصول الحر: http://aei.pitt.edu/102821Test/

  3. 3
    تقرير

    المؤلفون: De Martino, Claudio

    المصدر: De Martino, Claudio (2016) "Where is the Wealth?" Echoing the King's 2014 speech in light of the delay in the implementation of the new Constitution. Arab Citizenship Review No. 16, 19 February 2016. [Policy Paper]

    وصف الملف: application/pdf

    الوصول الحر: http://aei.pitt.edu/73635Test/

  4. 4
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    مصطلحات موضوعية: Inverse theory, Seismic noise, Volcano seismology, Calderas

    العلاقة: Geophysical Journal International; /230 (2022); http://hdl.handle.net/2122/16289Test

  5. 5
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    العلاقة: Remote Sensing; /14 (2022); Evans, J.R.; Allen, R.M.; Chung, A.I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J.F. Performance of Several Low-Cost Accelerometers. Seismol. Res. Lett. 2014, 85, 147–158. 2. Fu, J.; Li, Z.; Meng, H.; Wang, J.; Shan, X. Performance Evaluation of Low-Cost Seismic Sensors for Dense Earthquake Early Warning: 2018–2019 Field Testing in Southwest China. Sensors 2019, 19, 1999. 3. Rovithis, E.; Makra, K.; Savvaidis, A.; Kirtas, E. The accelerometric network of the Indes-Musa project in the Kalochori area: Configuration, documentation and preliminary data interpretation, Proceedings of the 14th International Congress, Thessaloniki May 2016. Bull. Geolog. Soc. Greece 2016, 50, 1110–1119. 4. Pierleoni, P.; Marzorati, S.; Ladina, C.; Raggiunto, S.; Belli, A.; Palma, L.; Cattaneo, M.; Valenti, S. Performance Evaluation of a Low-Cost Sensing Unit for Seismic Applications: Field Testing During Seismic Events of 2016–2017 in Central Italy. IEEE Sens. J. 2018, 18, 6644–6658. 5. Papanikolaou, V.K.; Karakostas, C.Z.; Theodoulidis, N.P. A Low-Cost Instrumentation System for Seismic Hazard Assessment in Urban Areas. Sensors 2021, 21, 3618. https://doi.org/10.3390/s21113618Test. 6. Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, 2124. https://doi.org/10.3390/s22062124Test. 7. Federici, F.; Graziosi, F.; Faccio, M.; Gattulli, V.; Lepidi, M.; Potenza, F. An integrated approach to the design of Wireless Sensor Networks for structural health monitoring. Int. J. Distrib. Sens. Netw. 2012, 8, 594842. https://doi.org/10.1155/2012/594842Test. 8. Lin, J.F.; Li, X.Y.; Wang, J.; Wang, L.X.; Hu, X.X.; Liu, J.X. Study of Building Safety Monitoring by Using Cost-Effective MEMS Accelerometers for Rapid After-Earthquake Assessment with Missing Data. Sensors 2021, 21, 7327. https://doi.org/10.3390/s21217327Test. 9. Francisco, J.; Pallarés, M.B.; Bartoli, G.; Pallarés, L. Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review. Constr. Build. Mater. 2021, 297, 123768. https://doi.org/10.1016/j.conbuildmat.2021.123768Test. 10. Liang, Q.; Tani, A.; Yamabe, Y. Fundamental Tests on a Structural Health Monitoring System for Building Structures Using a Single-board Microcontroller. J. Asian Arch. Build. Eng. 2015, 14, 663–670. 11. Picozzi, M.; Emolo, A.; Martino, C.; Zollo, A.; Miranda, N.; Verderame, G.; Boxberger, T. and the REAKT Working, Group Earthquake Early Warning System for Schools: A Feasibility Study in Southern Italy. Seism. Res. Lett. 2015, 86, 2A. 12. Dolce, M.; Nicoletti, M.; De Santis, A.; Marchesini, S.; Spina, D.; Talanas, F. Osservatorio sismico delle strutture: The Italian structural seismic monitoring network. Bull. Earth. Eng. 2017, 15, 621–641. 13. Groos, J.C.; Ritter, J.R.R. Time domain classification and quantification of seismic noise in an urban environment. Geophys. J. Int. 2009, 179, 1213–1231. https://doi.org/10.1111/j.1365-246x.2009.04343.xTest. 14. Diaz, J.; Schimmel, M.; Ruiz, M.; Carbonell, R. Seismometers Within Cities: A Tool to Connect Earth Sciences and Society. Front. Earth Sci. 2020, 8, 9. https://doi.org/10.3389/feart.2020.00009Test. 15. Vassallo, M.; De Matteis, R.; Bobbio, A.; Di Giulio, G.; Adinolfi, G.M.; Cantore, L.; Cogliano, R.; Fodarella, A.; Maresca, R.; Pucillo, S.; et al. Seismic noise cross-correlation in the urban area of Benevento city (Southern Italy). Geophys. J. Int. 2019, 217, 1524–1542. https://doi.org/10.1093/gji/ggz101Test. 16. Olivito, R.S.; Porzio, S.; Scuro, C.; Carnì, D.L.; Lamonaca, F. Inventory and monitoring of historical cultural heritage buildings at the territorial scale. A preliminary study of SHM based on CARTIS approach. Acta IMEKO 2021, 10, 9. 17. Azzara, R.M.; Girardi, M.; Iafolla, V.; Padovani, C.; Pellegrini, D. Long-Term Dynamic Monitoring of Medieval Masonry Towers. Front. Built Environ. 2020, 6, 9. https://doi.org/10.3389/fbuil.2020.00009Test. 18. Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F.; Makris, J.P.; Kouli, M. Strong Ground Motion Sensor Network for Civil Protection Rapid Decision Support Systems. Sensors 2021, 21, 2833. https://doi.org/10.3390/s21082833Test. 19. De Luca, G.; Marcucci, S.; Milana, G.; Sano, T. Evidence of Low-Frequency Amplification in the City of L’Aquila, Central Italy, through a Multidisciplinary Approach Including Strong- and WeakMotion Data, Ambient Noise, and Numerical Modeling. Bull. Seismol. Soc. Am. 2005, 95, 1469–1481. https://doi.org/10.1785/0120030253Test. 20. Bindi, D.; Pacor, F.; Luzi, L.; Massa, M.; Ameri, G. The Mw 6.3, 2009 L’Aquila earthquake: Source, path and site effects from spectral analysis of strong motion data. Geophys. J. Int. 2009, 179, 1573–1579 21. Sextos, A.; De Risi, R.; Pagliaroli, A.; Foti, F.; Passeri, F.; Ausilio, E.; Cairo, R.; Capatti, M.C.; Chiabrando, F.; Chiaradonna, A.; et al. Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthq. Spectra 2019, 34, 1639–1669. 22. Di Giulio, G.; Azzara, R.M.; Cultrera, G.; Giammarinaro, M.S.; Vallone, P.; Rovelli, A. Effect of Local Geology on Ground Motion in the City of Palermo, Italy, as Inferred from Aftershocks of the 6 September 2002 Mw 5.9 Earthquake. Bull. Seismol. Soc. Am. 2005, 95, 2328–2341. https://doi.org/10.1785/0120040219Test. 23. Nof, R.N.; Chung, A.I.; Rademacher, H.; Dengler, L.; Allen, R.M. MEMS Accelerometer Mini-Array (MAMA): A Low-Cost Implementation for Earthquake Early Warning Enhancement. Earthq. Spectra 2019, 35, 21–38. 24. Chung, A.I.; Cochran, E.S.; Kaiser, A.E.; Christensen, C.M.; Yildirim, B.; Lawrence, J.F. Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network. Bull. Seismol. Soc. Am. 2015, 105, 1314–1323. 25. Clayton, R.W.; Heaton, T.; Kohler, M.; Chandy, M.; Guy, R.; Bunn, J. Community seismic network: A dense array to sense earthquake strong motion. Seismol. Res. Lett. 2015, 86, 1354–1363. 26. Horiuchi, S.; Horiuchi, Y.; Yamamoto, S.; Nakamura, H.; Wu, C.; Rydelek, P.A.; Kachi, M. Home seismometer for earthquake early warning. Geophys. Res. Lett. 2009, 36. https://doi.org/10.1029/2008GL036572Test. 27. Zheng, H.; Shi, G.; Zeng, T.; Li, B. Wireless earthquake alarm design based on MEMS accelerometer. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–19 April 2011; pp. 5481–5484. 28. Peng, C.; Peng, J.; Chen, Q.; Ma, Q.; Yang, J. Performance Evaluation of a Dense MEMS-Based Seismic Sensor Array Deployed in the Sichuan-Yunnan Border Region for Earthquake Early Warning. Micromachines 2019, 10, 735. https://doi.org/10.3390/mi10110735Test. 29. Yang, B.M.; Mittal, H.; Wu, Y.-M. Real-Time Production of PGA, PGV, Intensity, and Sa Shakemaps Using Dense MEMS-Based Sensors in Taiwan. Sensors 2021, 21, 943. https://doi.org/10.3390/s21030943Test. 30. Lawrence, J.F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C.M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, D.; et al. Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake. Bull. Seismol. Soc. Am. 2014, 104, 184–192. https://doi.org/10.1785/0120120196Test. 31. Tanırcan, G.; Hakan Alçık, H.; Beyen, K. Reliability of MEMS accelerometers for instrumental intensity mapping of earthquakes. Ann. Geophys. 2017, 60 (Suppl. 6), SE673. https://doi.org/10.4401/ag-7501Test. 32. Holland, A. Earthquake data recorded by the MEMS accelerometer: Field testing in Idaho. Seismol. Res. Lett. 2003, 74, 20–26. 33. Pozzi, M.; Zonta, D.; Trapani, D.; Athanasopoulos, N.; Amditis, A.; Bimpas, M.; Garetsos, A.; Stratakos, Y.; Ulieru, D. MEMSbased sensors for post-earthquake damage assessment. J. Phys. Conf. Ser. 2011, 305, 012100. 34. Kim, Y.; Kang, T.S.; Rhie, J. Development and Application of a Real-Time Warning System Based on a MEMS Seismic Network and Response Procedure for the Day of the National College Entrance Examination in South Korea. Seismol. Res. Lett. 2017, 88, 1322–1326. 35. Peng, C.; Chen, Y.; Chen, Q.; Yang, J.; Wang, H.; Zhu, X.; Xu, Z.; Zheng, Y. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning. Comput. Geosci. 2017, 100, 179–187. 36. Lynch, J.P.; Loh, K.J. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. https://doi.org/10.1177/0583102406061499Test. 37. Gattulli, G.; Marco Lepidi, M.; Potenza, F. Dynamic testing and health monitoring of historic and modern civil structures in Italy. Struct. Monit. Maint. 2016, 3, 71–90. https://doi.org/10.12989/smm.2016.3.1.071Test. 38. Azzaro, R.; Barbano, M.S.; Moroni, A.; Mucciarelli, M.; Stucchi, M. The seismic history of Catania. J. Seismol. 1999, 3, 235–252. 39. Azzaro, R.; Barbano, M.S. Analysis of seismicity of Southeastern Sicily: Proposal of a tectonic interpretation. Ann. Geophys. 2000, 43, 171–188. 40. Patanè, D.; Malfitana, D.; Mazzaglia, A. Dalla conoscenza all’azione. Il progetto PON EWAS: Un sistema di allerta precoce per la salvaguardia del patrimonio culturale. In Monitoraggio e Manutenzione Delle Aree Archeologiche Cambiamenti Climatici, Dissesto Idrogeologico, Degrado Chimico-Ambientale, AA.VV. Atti del Convegno Internazionale di Studi, Roma, Curia Iulia, 20–21 Marzo 2019, Collana Bibliotheca Archaeologica; L’ERMA di BRETSCHNEIDER: Roma, Italy, 2020; Volume 65, pp. 187–197. 41. Fertitta, G.; Costanza, A.; D’anna, G.; Patanè, D. The Earth Lab 5s (ETL3D/5s) seismic sensor. Design and test. Ann. Geophys. 2020, 63, 2. https://doi.org/10.4401/ag-7857Test. 42. Ribeiro, R.R.; Lameiras, R.M. Evaluation of low-cost MEMS accelerometers for SHM: Frequency and damping identification of civil structures. Ibero-Latin American congress on computational methods in engineering. Lat. Am. J. Solids Struct. 2019, 16, 7. https://doi.org/10.1590/1679-78255308Test. 43. CEN European Committee for Standardization. EUROCODE 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Action and Rules for Buildings; CEN European Committee for Standardization: Bruxelles, Belgium, 2003. 44. Russo, E.; Felicetta, C.; D’Amico, M.; Sgobba, S.; Lanzano, G.; Mascandola, C.; Pacor, F.; Luzi, L. Italian Accelerometric Archive v3.2—Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale; CEN: Bruxelles, Belgium, 2022; https://doi.org/10.13127/itaca.3.2Test. 45. Faenza, L.; Michelini, A. Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys. J. Int. 2010, 180, 1138–1152. 46. Faenza, L.; Michelini, A. Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy. Geophys. J. Int. 2011, 186, 1415–1439. 47. Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.H.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. Database Macrosismico Italiano (DBMI15); versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. https://doi.org/10.13127/DBMI/DBMI15.4Test. 48. Magli, A.; Branca, S.; Speranza, F.; Risica, G.; Siravo, G.; Giordano, G. Paleomagnetic dating of prehistoric lava flows from the urban district of Catania (Etna volcano, Italy). GSA Bull. 2022, 134, 616–662. 49. Sivori, D.; Cattari, S.; Lepidi, M. A methodological framework to relate the earthquake-induced frequency reduction to structural damage in masonry buildings. Bull. Earthq. Eng. 2022, 1–36. https://doi.org/10.1007/s10518-022-01345-8Test. 50. Kouris, L.A.S.; Penna, A.; Magenes, G. Dynamic modification and damage propagation of a two-storey full-scale masonry building. Adv. Civ. Eng. 2019, 2019, 2396452. https://doi.org/10.1155/2019/2396452Test.; http://hdl.handle.net/2122/16092Test; https://www.mdpi.com/2072-4292/14/11/2583Test

  6. 6
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Università degli Studi della Calabria, Cosenza, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    مصطلحات موضوعية: Furher Project, Seismic noise, Mefite d'Ansanto

    العلاقة: vEGU21: Gather Online %7C 19–30 April 2021; http://hdl.handle.net/2122/14643Test

  7. 7
  8. 8
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    العلاقة: MVC_2019-2; http://hdl.handle.net/2122/14820Test

  9. 9
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia

    العلاقة: MVC_2019-1; http://hdl.handle.net/2122/14589Test

  10. 10
    دورية أكاديمية

    المساهمون: Picozzi, Matteo, Zollo, Aldo, Brondi, Piero, Colombelli, Simona, Elia, Luca, Martino, Claudio

    العلاقة: info:eu-repo/semantics/altIdentifier/wos/WOS:000354563200023; volume:120; issue:4; firstpage:2446; lastpage:2465; numberofpages:20; journal:JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH; http://hdl.handle.net/11588/614023Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84929309323