يعرض 1 - 10 نتائج من 54 نتيجة بحث عن '"Martínez-Pabón, María Cecilia"', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    كتاب
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Universitas Odontologica; Vol. 24 No. 54-55 (2004): Universitas Odontologica; 151-159 ; Universitas Odontologica; Vol. 24 Núm. 54-55 (2004): Universitas Odontologica; 151-159 ; Uiversitas Odontologica; v. 24 n. 54-55 (2004): Universitas Odontologica; 151-159 ; 2027-3444 ; 0120-4319

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Universitas Odontologica; Vol. 39 (2020) ; Uiversitas Odontologica; v. 39 (2020) ; 2027-3444 ; 0120-4319

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 49 Núm. 1 (2020) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 49 n. 1 (2020) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 49 No. 1 (2020) ; 1909-6356 ; 0034-7418

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87006/75461Test; P. Marsh, D. Head, D. Devine, Ecological approaches to oral biofilms: Control without killing, Caries Res., 49, 46-54 (2015).; World Health Organization (WHO), Oral health. URL: https://www.who.int/news-room/fact-sheets/detail/oral-healthTest, accessed August 2019.; Ministerio Nacional de Salud y Protección Social (MINSALUD). IV estudio nacional de salud bucal (ENSAB). URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB-IV-Situacion-Bucal-Actual.pdfTest, accessed January 2019.; P. Kolenbrander, Oral microbial communities: Biofilms, interactions, and genetic systems, Annu. Rev. Microbiol., 54, 413-437 (2000).; P. Kalesinskas, T. Kačergius, A. Ambrozaitis, V. Pečiulienė, D. Ericson, Reducing dental plaque formation and caries development. A review of current methods and implications for novel pharmaceuticals, Stomatol. Balt. Dent. Maxillofac. J., 16, 44-52 (2014).; N.C.C. Silva, A. Fernandes Júnior, Biological properties of medicinal plants: A review of their antimicrobial activity, J. Venom. Anim. Toxins Incl. Trop. Dis., 16, 402-413 (2010).; G. Lang, G. Buchbauer, A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review, Flavour Fragr. J., 27, 13-39 (2012).; A. Bouyahya, F.E. Guaouguaou, N. Dakka, Y. Bakri, Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth) and their main compounds, Asian Pacific J. Trop. Dis., 7, 628-640 (2017).; I.A. Freires, C. Denny, B. Benso, S.M. Alencar, P.L. Rosalen, Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review, Molecules, 20, 7329-7358 (2015).; F. Nazzaro, F. Fratianni, R. Coppola, V. De Feo, Essential oils and antifungal activity, Pharmaceuticals, 10, 2-20 (2017).; L.S. Ramírez, D.M. Castaño, Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal, Sci. Tech. Año XV., 42, 263-268 (2009).; N.S. Radulovic, P.D. Blagojevic, Z.Z. Stojanovic-Radic, N.M. Stojanovic, Antimicrobial plant metabolites: Structural diversity and mechanism of action, Curr. Med. Chem., 20, 932-952 (2013).; M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 6, 71-79 (2016).; M. Erriu, F.M.G. Pili, E. Tuveri, D. Pigliacampo, A. Scano, C. Montaldo, V. Piras, G. Denotti, A. Pilloni, V. Garau, G. Orrù, Oil essential mouthwashes antibacterial activity against Aggregatibacter actinomycetemcomitans: A comparison between antibiofilm and antiplanktonic effects, Int. J. Dent., 2013, 1-5 (2013).; S.K. Filoche, K. Soma, C.H. Sissons, Antimicrobial effects of essential oils in combination with chlorhexidine digluconate, Oral Microbiol. Immunol., 20, 221-225 (2005).; C. Vlachojannis, S. Chrubasik-Hausmann, E. Hellwig, A. Al-Ahmad, A Preliminary investigation on the antimicrobial activity of Listerine®, its components, and of mixtures thereof, Phytother. Res., 29, 1590-1594 (2015).; S. Bhattacharya, S. Virani, M. Zavro, G. Haas, Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents, Econ. Bot., 57, 118-125 (2003).; M.Y. Memar, P. Raei, N. Alizadeh, M.A. Aghdam, H.S. Kafil, Carvacrol and thymol: Strong antimicrobial agents against resistant isolates, Rev. Med. Microbiol., 28, 63-68 (2017).; A. Marchese, I.E. Orhan, M. Daglia, R. Barbieri, A. Di Lorenzo, S.F. Nabavi, O. Gortzi, M. Izadi, S. Nabavi, Antibacterial and antifungal activities of thymol: A brief review of the literature, Food Chem., 210, 402-414 (2016).; National Center for Biotechnology Information-NCBI. PubChem Compound Database. URL: https://www.ncbi.nlm.nih.gov/pccompoundTest/, accessed February 2019.; A. Giweli, A.M. Džamic, M. Soković, M.S. Ristić, P.D. Marin, Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya, Molecules, 17, 4836-4850 (2012).; C. Kohlert, G. Schindler, R.W. Marz, G. Abel, B. Brinkhaus, H. Derendorf, E. Gräfe, M. Veit, Systemic availability and pharmacokinetics of thymol in humans, J. Clin. Pharmacol., 42, 731-737 (2002).; M. Llana-Ruiz-Cabello, D. Gutierrez-Praena, S. Pichardo, F.J. Moreno, J.M. Bermudez, S. Aucejo, A.M. Cameán, Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2, Food Chem. Toxicol., 64, 281-290 (2014).; I. Bassanetti, M. Carcelli, A. Buschini. S. Montalbano, G. Leonardi, P. Pelagatti, G. Tosi, P. Massi, L. Fiorentini, D. Rogolino, Investigation of antibacterial activity of new classes of essential oils derivatives, Food Control, 73, 606-612 (2017).; M.F. Nagoor Meeran, H. Javed, H. Al Taee, S. Azimullah, S. Ojha, Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development, Front. Pharmacol., 8, 1-34 (2017).; M. Davoodi, G. Kavoosi, R. Shakeri, Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials, Int. J. Biol. Macromol., 104, 173-179 (2017).; Food and Drug Administration - FDA. Substances Added to Food (formerly EAFUS). URL: https://bit.ly/2RW9U8LTest, accessed February 2019.; M. Höferl, G. Buchbauer, L. Jirovetz, E. Schmidt, A. Stoyanova, Z. Denkova, A. Slavchev, M. Geissler, Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents, J. Essent. Oil Res., 21(5), 459-463 (2009).; T-H. Wang, S-M. Hsia, C-H. Wu, S-Y. Ko, M.Y. Chen, Y-H. Shih, T-M.;Shieh, L-C. Chuang, C-Y. Wu, Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms, PLoS One, 11(9), 1-17 (2016).; M. Soković, J. Glamočlija, P. Marin, D. Brkić, L. J. L. D. Griensven, Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model, Molecules, 15(11), 7532-7546 (2010).; N. Mandras, A. Nostro, J. Roana, D. Scalas, G. Banche, V. Ghisetti, S. Del Re, G. Fucale, A.M. Cuffini, W. Tullio, Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida, BMC Complement. Altern. Med., 16(1), 1-7 (2016).; L.A. Vale-Silva, M.J. Goncalves, C. Cavaleiro, L. Salgueiro, E. Pinto, Antifungal activity of the essential oil of thymus x viciosoi against Candida, Cryptococcus, Aspergillus and Dermatophyte species, Planta Med., 76(9), 882-888 (2010).; D. Trombetta, F. Castelli, M.G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, G. Bisignano, Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother., 49(6), 2474-2478 (2005).; N. Samber, A. Khan, A. Varma, N. Manzoor, Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components, Pharm Biol., 53(10), 1496-1504 (2015).; M. Mahboubi, N. Kazempour, M. Valian, Antimicrobial activity of natural respitol-B and its main components against poultry microorganisms, Pakistan J. Biol. Sci., 16(19), 1065-1068 (2013).; M. Bhowal, M. Gopal, Eucalyptol: Safety and pharmacological profile, RGUHS J. Pharm. Sci., 5(4), 125-131 (2016).; H. Zengin, A.H. Baysal, Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy, Molecules.;19(11):17773-17798 (2014).; R. Manchado, S. Tamames, M. López, L. Mohedano, M. D´Agostino, J. Veiga, Revisiones sistemáticas exploratorias, Med. Segur. Trab., 55(216), 12-19 (2009).; R. Armstrong, B. Hall, J. Doyle, E. Waters, “Scoping the scope” of a Cochrane review, J. Public Health, 33(1), 147-150 (2011).; M.S. Ali-Shtayeh, M.A. Al-Nuri, R.M. Yaghmour, Y.R. Faidi, Antimicrobial activity of Micromeria nervosa from the Palestinian area, J. Ethnopharmacol., 58(3), 143-147 (1997).; A. Ahmad, A. Khan, F. Akhtar, S. Yousuf, I. Xess, L.A. Khan, N. Manzoor, Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida, Eur. J. Clin. Microbiol. Infect. Dis., 30(1), 41-50 (2011).; A. Ahmad, A. Khan, S. Yousuf, L.A. Khan, N. Manzoor, Proton translocating ATPase mediated fungicidal activity of eugenol and thymol, Fitoterapia, 81(8), 1157-1162 (2010).; H. Rostami, M. Kazemi, S. Shafiei, Antibacterial activity of Lavandula officinalis and Melissa officinalis against some human pathogenic bacteria, Asian J. Biochem., 7(3), 133-142 (2012).; C.C. Liolios, O. Gortzi, S. Lalas, J. Tsaknis, I. Chinou, Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity, Food Chem., 112(1), 77-83 (2009).; L.J. Lai, J.M. Chiu, R.Y. Chiou, Fresh preservation of alfalfa sprouts and mushroom slices by soaking with thymol and resveratrol solutions, Food Sci. Nutr., 5(3), 776-783 (2017).; A. Chan, D. Ager, I. Thompson, Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors, J. Microbiol. Methods, 93(3), 209-217 (2013).; P. Nagle, Y. Pawar, A. Sonawane, S. Bhosale, D. More, Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents, Med. Chem. Res., 23(2), 918-926 (2014).; S. Ćavar, M. Maksimović, M.E. Šolić, A. Jerković-Mujkić, R. Bešta, Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils, Food Chem., 111(3), 648-653 (2008).; S.K. Doke, J.S. Raut, S. Dhawale, S.M. Karuppayil, Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin, J. Gen. Appl. Microbiol., 60(5), 163-168 (2014).; J. Raut, R.B. Shinde, N.M. Chauhan, S.M. Karuppayil, Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans, Biofouling, 29(1), 87-96 (2013).; J.Y. Chung, J.H. Choo, M.H. Lee, J.K. Hwang, Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans, Phytomedicine, 13(4), 261-266 (2006).; J-K. Hwang, J-Y. Chung, N-I. Baek, J-H. Park, Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans, Int. J. Antimicrob. Agents, 23(4), 377-381 (2004).; S.T. Khan, M. Khan, J. Ahmad, R. Wahab, O.H. Abd-Elkader, J. Musarrat, H. Alkhathlan, A. Al‑Kedhairy, Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans, AMB Express., 7(1), 1-11 (2017).; H.N.H. Veras, F.F.G. Rodrigues, M.A. Botelho, I.R.A. Menezes, H.D.M. Coutinho, J.G.M. da Costa, Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol, Arab. J. Chem., 10, S2790- S2795 (2017).; H.N.H. Veras, F.F.G. Rodrigues, M.A. Botelho, I.R.A. Menezes, H.D.M. Coutinho, J.G.M. da Costa, Antimicrobial effect of Lippia sidoides and thymol on Enterococcus faecalis biofilm of the bacterium isolated from root canals, Sci. World J., 2014, 1-5 (2014).; C. Pina-Vaz, A. Gonçalves Rodrigues, E. Pinto, S. Costa-de-Oliveira, C. Tavares, L. Salgueiro, C. Cavaleiro, M.C. Gonçalves, J. Martinez-de-Oliveira, Antifungal activity of Thymus oils and their major compounds, J. Eur. Acad. Dermatology Venereol., 18(1), 73-78 (2004).; E. Pinto, C. Pina-Vaz, L. Salgueiro, M.J. Gonçalves, S. Costa-De-Oliveira, C. Cavaleiro, A. Palmeira, A. Rodrigues, J. Martinez-de-Oliveira, Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species, J. Med. Microbiol., 55(10), 1367-1373 (2006).; J.R. de Oliveira, L.W. Figueira, F.L. Sper, V.M. Meccatti, S.E.A. Camargo, L.D. de Oliveira, Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, Immunol. Res., 65(4), 932-943 (2017).; R.D. de Castro, T.M.P.A. de Souza, L.M.D. Bezerra, G.L.S. Ferreira, E.M.M. Costa, A.L Cavalcanti, Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study, BMC Complement. Altern. Med., 15(417), 1-7 (2015).; A. Giweli, A. Džamić, M. Soković, M. Ristić, P. Marin, Chemical composition, antioxidant and antimicrobial activities of essential oil of Thymus algeriensis wild-growing in Libya, Cent. Eur. J. Biol., 8(5), 504-511 (2013).; S. Fahimirad, H. Abtahi, S.H. Razavi, H. Alizadeh, M. Ghorbanpour, Production of recombinant antimicrobial polymeric protein beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol, Molecules, 22(6), 1-15 (2017).; S. Fahimirad, H. Abtahi, S.H. Razavi, H. Alizadeh, M. Ghorbanpour, Recombinant production and antimicrobial assessment of beta casein- IbAMP4 as a novel antimicrobial polymeric protein and its synergistic effects with thymol, Int. J. Pept. Res. Ther., 24(1), 213-222 (2017).; A. Ahmad, A. Khan, N. Manzoor, Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole, Eur J Pharm Sci., 48, 80-86 (2013).; M.N. Ngo Mback, H. Agnaniet, F. Nguimatsia, P.M. Jazet Dongmo, J.B. Hzounda Fokou, I. Bakarnga-Via, F. Fekam Boyom, C. Menut, Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay, J. Mycol. Med., 26(3), 233-243 (2016).; S. Cosentino, C.I.G. Tuberoso, B. Pisano, M. Satta, V. Mascia, E. Arzedi, F. Palmas, In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils, Lett. Appl. Microbiol., 29(2), 130-135 (1999).; M. Kosar, B. Demirci, F. Demirci, K.H.C. Başer, Effect of maturation on the composition and biological activity of the essential oil of a commercially important Satureja species from Turkey: Satureja cuneifolia Ten. (Lamiaceae), J. Agric. Food Chem., 56(6), 2260-2265 (2008).; P.C. Braga, M. Alfieri, M. Culici, M. Dal Sasso, Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae, Mycoses, 50(6), 502-506 (2007).; P.C. Braga, M.D. Dal Sasso, M. Culici, M. Alfieri, Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans, Fitoterapia, 78(6), 396-400 (2007).; P.C. Braga, M. Culici, M. Alfieri, M. Dal Sasso, Thymol inhibits Candida albicans biofilm formation and mature biofilm, Int. J. Antimicrob. Agents, 31(5), 472-477 (2008).; M.N. Gallucci, M.E. Carezzano, M.M. Oliva, M.S. Demo, R.P. Pizzolitto, M.P. Zunino, J.A. Zygadlo, J.S. Dambolena, In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: A quantitative structure-activity relationship analysis, J. Appl. Microbiol., 116, 795-804 (2014).; L.C. de Vasconcelos, F.C. Sampaio, J. Albuquerque Ade, L.C. Vasconcelos, Cell viability of Candida albicans against the antifungal activity of thymol, Braz. Dent. J., 25(4), 277-281 (2014).; M.R. Moein, K. Zomorodian, K. Pakshir, F. Yavari, M. Motamedi, M.M. Zarshenas, Trachyspermum ammi (L.) Sprague, J. Evidence-Based Complement. Altern. Med., 20(1), 50-56 (2015).; H. Miladi, T. Zmantar, Y. Chaabouni, K. Fedhila, A. Bakhrouf, K. Mahdouani, K. Chaieb, Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens, Microb. Pathog., 99, 95-100 (2016).; J. Mazurova, R. Kukla, M. Rozkot, A. Lustykova, E. Slehova, R. Sleha, J. Lipensky, L. Opletal, Use of natural substances for boar semen decontamination, Vet. Med., 60(5), 235-247 (2015).; J. Gutiérrez-Fernández, M.R. García-Armesto, R. Álvarez-Alonso, P. del Valle, D. de Arriaga, J. Rúa, Antimicrobial activity of binary combinations of natural and synthetic phenolic antioxidants against Enterococcus faecalis, J. Dairy Sci., 96(8), 4912-4920 (2013).; H. Cetin-Karaca, M.C. Newman, Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli, Food Biosci., 11, 8-15 (2015).; M.J. Mohammed, F.A. Al-Bayati, Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds, Phytomedicine, 16(6-7), 632-637 (2009).; Q. Ma, P.M. Davidson, Q. Zhong, Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk, Int. J. Food Microbiol., 166(1), 77-84 (2013).; Y. Sultanbawa, A. Cusack, M. Currie, C. Davis, An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts, J. Rapid Methods Autom. Microbiol., 17(4), 519-534 (2009).; M.F. Lemos, M.F. Lemos, H.P. Pacheco, A.C. Guimarães, F M. ronza, D.C. Endringer, R. Scherer, Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris, Ind. Crops Prod., 95, 543-548 (2017).; R. Hamoud, S. Zimmermann, J. Reichling, M. Wink, Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli, Phytomedicine, 21(4), 443-447 (2014).; J. Ivanovic, D. Misic, I. Zizovic, M. Ristic, In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates, Food Control, 25(1), 110-116 (2012).; N.A. Olasupo, D.J. Fitzgerald, M.J. Gasson, A. Narbad, Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium, Lett. Appl. Microbiol., 37(6), 448-451 (2003).; E. Du, L. Gan, Z. Li, W. Wang, D. Liu, Y. Guo, In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens, J. Anim. Sci. Biotechnol., 6(58), 1-12 (2015).; A. Ait-Ouazzou, L. Cherrat, L. Espina, S. Lorán, C. Rota, R. Pagán, The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation, Innov. Food Sci. Emerg. Technol., 12(3), 320-329 (2011).; N. Gavaric, S.S. Mozina, N. Kladar, B. Bozin, Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism, J. Essent. Oil-Bearing Plants, 18(4), 1013-1021 (2015).; A. Guarda, J.F. Rubilar, J. Miltz, M.J. Galotto, The antimicrobial activity of microencapsulated thymol and carvacrol, Int. J. Food Microbiol., 146(2), 144-150 (2011).; A. Campion, R. Morrissey, D. Field, P.D. Cotter, C. Hill, R.P. Ross, Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7, Food Microbiol., 65, 254-263 (2017).; B. Shah, P.M. Davidson, Q. Zhong, Antimicrobial activity of nanodispersed thymol in tryptic soy broth, J. Food Prot., 76(3), 440-447 (2013).; R.S. Pei, F. Zhou, B.P. Ji, J. Xu, Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method, J. Food Sci., 74(7), M379-M383 (2009).; I.M. Helander, H-L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E.J. Smid L.G. Gorris, A. Wright, Characterization of the action of selected essential oil components on Gram-Negative bacteria, J. Agric. Food Chem., 46(9), 3590-3595 (1998).; S.E. Walsh, J.Y. Maillard, A.D. Russell, C.E. Catrenich, D.L. Charbonneau, R.G. Bartolo, Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria, J. Appl. Microbiol., 94(2), 240-247 (2003).; J.H. Lee, Y.G. Kim, J. Lee, Carvacrol‐rich oregano oil and thymol‐rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli, J. Appl. Microbiol., 123(6), 1420-1428 (2017).; F. Tao, L.E. Hill, Y. Peng, C.L. Gomes, Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications, LWT - Food Sci. Technol., 59(1), 247-255 (2014).; S. Gutierrez, A. Moran, H. Martinez-Blanco, M.A. Ferrero, L.B. Rodriguez-Aparicio, The usefulness of non-toxic plant metabolites in the control of bacterial proliferation, Probiotics & Antimicro. Prot., 9(3), 323-333 (2017).; M. Cristani, M. D’Arrigo, G. Mandalari, F. Castelli, M.G. Sarpietro, D. Micieli, D. Venuti, G. Bisignano, A. Saija, D. Trombetta, Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity, J Agric Food Chem., 55(15), 6300-6308 (2007).; S. Ananda-Baskaran, G.W. Kazmer, L. Hinckley, S.M. Andrew, K. Venkitanarayanan, Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro, J. Dairy Sci., 92(4), 1423-1429 (2009).; M. Gutiérrez-Larraínzar, J. Rúa, I. Caro, C. de Castro, D. de Arriaga, M.R. García-Armesto, P. del Valle, Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria, Food Control, 26(2), 555-563 (2012).; Z. Schelz, J. Molnar, J. Hohmann, Antimicrobial and antiplasmid activities of essential oils, Fitoterapia, 77(4), 279-285 (2006).; A.P. Tofiño-Rivera, M. Ortega-Cuadros, A. Melo-Ríos, H.J. Mier-Giraldo, Vigilancia tecnológica de plantas aromáticas: de la investigación a la consolidación de la agrocadena colombiana, Corpoica Cienc Tecnol Agropec., 18(2), 353-377 (2017).; https://revistas.unal.edu.co/index.php/rccquifa/article/view/87006Test

  9. 9
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Rev Fac Odontol Univ Antioq; Hernández-Viana S, Silva-Gómez N, Galvis-Pareja DA, Martínez-Pabón MC. The use of analgesics and anti-inflammatories in an oral surgery service in Medellín, Colombia, 2013-2015. Rev Fac Odontol Univ Antioq. 2019; 30(2): 154-168. DOI: http://dx.doi.org/10.17533Test/ udea.rfo.v30n2a3; http://hdl.handle.net/10495/12923Test

  10. 10
    دورية أكاديمية