يعرض 1 - 10 نتائج من 159 نتيجة بحث عن '"Madonia, Paolo"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
  2. 2
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, MIUR, Università degli Studi “Federico II” di Napoli, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia, Carmo, Mafalda, World Institute for Advanced Research and Science (WIARS), Portugal

    العلاقة: END (Education and New Developments) 2023; Chapman, J. R., & Rich, P. (2017). Identifying Motivational Styles in Educational Gamification. In Proceedings of the 50th Hawaii International Conference on System Sciences (pp. 1318-1327). http://hdl.handle.net/10125/41310Test González González, C. S., Collazos, C. A., Guerrero L. A., & Moreno, M. (2016). Game-based learning environments: designing the collaborative learning process. Acta Scientia, 18(4), 12-28. Maraffi, S., & Sacerdoti, F. M. (2018). GeoQuest Project implementation and experimentation of a computer classroom role playing game: final results. In 6th Mediterranean Interdisciplinary Forum on Social Sciences and Humanities, MIFS 2018. Maraffi, S., & Sacerdoti, F.M. (2017). “Learning on Gaming” Improves Science Learning in a STEAM Interdisciplinary Approach. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 6(3), 155-165. doi:10.17265/2162-5298/2017.03.007 Maraffi, S., Sacerdoti, F.M., & Paris, E. (2017). Learning on Gaming: A new DGBL approach to Improve Education Outcomes. US-China Education Review, 7(9), 421-432. Maraffi., S., & Sacerdoti, F.M. (2016a). GeoQuest Project. Computer class Role Playing Game as innovative teaching methodology to foster STEAM education. Journal of Environmental Science and Engineering, 5(10), 495-511. http://dx.doi.org/10.21125/iceri.2016.0039Test Maraffi, S., & Sacerdoti, F. M. (2016b). GeoQuest a Computer Classroom Role Playing Engine to Teach Earth Science in an Interdisciplinary way. In Proceedings of 9th Annual International Conference of Education, Research and Innovation (pp. 6119-6127). Mayo, M. (2009). Video games: A route to large-scale STEM education? Science, 323, 79-82. http://dx.doi.org/10.1126/science.1166900Test. Piangiamore, G. L., & Maramai, A. (2022). Gaming and Resilience: Teaching by Playing Together — Online Educational Competition at School during the Pandemic. Applied Science, 12(23). https://doi.org/10.3390/app122311931Test Piangiamore, G. L. (2019). Metodologie didattiche innovative di educazione dei rischi naturali nei progetti per le scuole del territorio spezzino. In F. De Pascale, P. Farabollini, & F. R. Lugeri (Eds), PRISMA - Economia, Società, Lavoro: Comunicare il rischio, il rischio di comunicare - IRES Marche (pp. 113-133). Franco Angeli Ed. http://hdl.handle.net/2122/13016Test p-ISSN: 2184-044X e-ISSN: 2184-1489 ISBN: 978-989-35106-3-6 © 2023 664; http://hdl.handle.net/2122/16817Test; https://end-educationconference.org/wp-content/uploads/2023/06/Education-and-New-Developments_2023_Vol_I.pdfTest

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    العلاقة: Miscellanea INGV; 75 / (2023); http://hdl.handle.net/2122/16516Test

  5. 5
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: Atmosphere; /14 (2023); http://hdl.handle.net/2122/15855Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المساهمون: Consejo Nacional de Ciencia y Tecnología (CONACYT)-Instituto Politécnico Nacional, ESIA, UZ, Miguel Bernard, S/N, Edificio de Posgrado, Mexico City 07738, Mexico, PLINIVS-LUPT Study Centre, University of Naples Federico II, Via Toledo 402, 80134 Napoli, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Via Edoardo Orabona, 4, 70125 Bari, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    العلاقة: Sustainability; /14 (2022); Pierson, T.C.; Scott, K.M. Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water Resour. Res. 1985, 21, 1511–1524. [Google Scholar] [CrossRef] Bisson, M.; Pareschi, M.T.; Zanchetta, G.; Sulpizio, R.; Santacroce, R. Volcaniclastic debris-flow occurrences in the Campania region (Southern Italy) and their relation to Holocene–Late Pleistocene pyroclastic fall deposits: Implications for large-scale hazard mapping. Bull. Volcanol. 2007, 70, 157–167. [Google Scholar] [CrossRef] Pierson, T.C.; Major, J.J. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Ann. Rev. Earth Planet Sci. 2014, 42, 469–507. [Google Scholar] [CrossRef] Lavigne, F.; Thouret, J.-C. Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 2003, 49, 45–69. [Google Scholar] [CrossRef] Gran, K.B.; Montgomery, D.R. Spatial and temporal patterns in fluvial recovery following volcanic eruptions: Channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. Geol. Soc. Am. Bull. 2005, 117, 195–211. [Google Scholar] [CrossRef] Major, J.J.; Mark, L.E. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington. Geol. Soc. Am. Bull. 2006, 118, 938–958. [Google Scholar] [CrossRef] Kassouk, Z.; Thouret, J.-C.; Gupta, A.; Solikhin, A.; Liew, S.C. Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology 2014, 221, 18–33. [Google Scholar] [CrossRef] Thouret, J.-C.; Antoine, S.; Magill, C.; Ollier, C. Lahars and debris flows: Characteristics and impacts. Earth-Sci. Rev. 2020, 201, 103003. [Google Scholar] [CrossRef] White, J.D.L.; Houghton, B.F.; Hodgson, K.A.; Wilson, C.J.N. Delayed sedimentary response to the AD 1886 eruption of Tarawera, New Zealand. Geology 1997, 25, 459–462. [Google Scholar] [CrossRef] Jones, R.; Thomas, R.E.; Peakall, J.; Manville, V. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall. Geomorphology 2017, 282, 39–51. [Google Scholar] [CrossRef] Di Traglia, F. Hydrogeomorphic and sedimentary response to the Late Pleistocene violent Strombolian eruption of the Croscat volcano (Garrotxa Volcanic Field, Spain). Med. Geosci. Rev. 2020, 2, 217–231. [Google Scholar] [CrossRef] Major, J.J. Subaerial volcaniclastic deposits-influences of initiation mechanisms and transport behavior on characteristics and distributions. Geol. Soc. Lond. Sp. Pub. 2022, 520, 142. [Google Scholar] Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, J.; Dolz, J.; Coll, A. IBER: Herramienta de simulación numérica de flujo en ríos. Rev. Int. Métodos Numéricos Cálculo Disen. Ing. 2014, 30, 1–10. [Google Scholar] Ferrucci, M.; Pertusati, S.; Sulpizio, R.; Zanchetta, G.; Pareschi, M.; Santacroce, R. Volcaniclastic debris flows at La Fossa Volcano (Vulcano Island, southern Italy): Insights for erosion behaviour of loose pyroclastic material on steep slopes. J. Volcanol. Geotherm. Res. 2005, 145, 173–191. [Google Scholar] [CrossRef] Di Trapani, F.P.; Di Maggio, C.; Madonia, P. The role of volcanic and anthropogenic activities in controlling the erosional processes at Vulcano Island (Italy). Geogr. Fis. Din. Quat. 2011, 34, 89–94. [Google Scholar] Madonia, P.; Cangemi, M.; Olivares, L.; Oliveri, Y.; Speziale, S.; Tommasi, P. Shallow landslide generation at La Fossa cone, Vulcano island (Italy): A multidisciplinary perspective. Landslides 2019, 16, 921–935. [Google Scholar] [CrossRef] Di Traglia, F.; Pistolesi, M.; Rosi, M.; Bonadonna, C.; Fusillo, R.; Roverato, M. Growth and erosion: The volcanic geology and morphological evolution of La Fossa (Island of Vulcano, Southern Italy) in the last 1000 years. Geomorphology 2013, 194, 94–107. [Google Scholar] [CrossRef] Keller, J. The Island of Vulcano. Rend. Soc. Ital. Mineral. Petrol. 1980, 36, 369–414. [Google Scholar] Frazzetta, G.; Gillot, P.Y.; La Volpe, L.; Sheridan, M.F. Volcanic hazards at Fossa of Vulcano: Data from the last 6000 years. Bull. Volcanol. 1984, 47, 105–124. [Google Scholar] [CrossRef] Mercalli, G.; Silvestri, O. Le eruzioni dell’Isola di Vulcano incominciate il 3 agosto 1888 e terminate il 22 marzo 1890, relazione scientifica. Ann. Uff. Cent. Metereol. Geodin. Ital. 1891, 10, 1–213. (In Italian) [Google Scholar] Clarke, A.B.; Esposti Ongaro, T.; Belousov, A. Vulcanian eruptions. In The Encyclopedia of Volcanoes, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 505–518. [Google Scholar] Tommasi, P.; Graziani, A.; Rotonda, T.; Bevivino, C. Preliminary analysis of instability phenomena at Vulcano Island, Italy. In Volcanic Rocks; Malheiro, A.M., Nunes, J.C., Eds.; Taylor & Francis Group: London, UK, 2019. [Google Scholar] Bonaccorso, A.; Bonforte, A.; Gambino, S. Thermal expansion-contraction and slope instability of a fumarole field inferred from geodetic measurements at Vulcano. Bull. Volcanol. 2010, 72, 791–801. [Google Scholar] [CrossRef] Revil, A.; Johnson, T.C.; Finizola, A. Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy. Geophys. Res. Lett. 2010, 37, 43983. [Google Scholar] [CrossRef] Malaguti, A.B.; Rosi, M.; Pistolesi, M.; Speranza, F.; Menzies, M. The contribution of palaeomagnetism, tephrochronology and radiocarbon dating to refine the last 1100 years of eruptive activity at Vulcano (Italy). Bull. Volcanol. 2022, 84, 12. [Google Scholar] [CrossRef] Dellino, P.; De Astis, G.; La Volpe, L.; Mele, D.; Sulpizio, R. Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling. J. Volcanol. Geotherm. Res. 2011, 201, 364–384. [Google Scholar] [CrossRef] De Fiore, O. Vulcano (Isole Eolie); Supplemento III alla Rivista Vulcanologica di Immanuel Friedlaender; Cozzolin: Napoli, Italy, 1922. (In Italian) [Google Scholar] Arrighi, S.; Tanguy, J.C.; Rosi, M. Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by high-accuracy archeomagnetism. Phys. Earth Planet Inter. 2006, 159, 225–233. [Google Scholar] [CrossRef] Fusillo, R.; Di Traglia, F.; Gioncada, A.; Pistolesi, M.; Wallace, P.J.; Rosi, M. Deciphering post-caldera volcanism: Insight into the Vulcanello (Island of Vulcano, Southern Italy) eruptive activity based on geological and petrological constraints. Bull. Volcanol. 2015, 77, 76. [Google Scholar] [CrossRef] Manni, M.; Rosi, M. Origins of Vulcanello based on the re-examination of historical sources (Vulcano, Aeolian Islands). Ann. Geophys. 2021, 64, VO548. [Google Scholar] De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). Geol. Soc. London Mem. 2013, 37, 281–349. [Google Scholar] [CrossRef] Rosi, M.; Di Traglia, F.; Pistolesi, M.; Esposti Ongaro, T.; Bonadonna, C. Dynamics of shallow hydrothermal eruptions: New insights from Vulcano’s Breccia di Commenda eruption. Bull. Volcanol. 2018, 80, 83. [Google Scholar] [CrossRef] Pistolesi, M.; Rosi, M.; Malaguti, A.B.; Lucchi, F.; Tranne, C.A.; Speranza, F.; Albert, P.G.; Smith, V.C.; Di Roberto, A.; Billotta, E. Chrono-stratigraphy of the youngest (last 1500 years) rhyolitic eruptions of Lipari (Aeolian Islands, Southern Italy) and implications for distal tephra correlations. J. Volcanol. Geotherm. Res. 2021, 420, 107397. [Google Scholar] [CrossRef] Capaccioni, B.; Coniglio, S. Varicolored and vesiculated tuffs from La Fossa volcano, Vulcano Island (Aeolian Archipelago, Italy): Evidence of syndepositional alteration processes. Bull. Volcanol. 1995, 57, 61–70. [Google Scholar] [CrossRef] Baumann, V.; Bonadonna, C.; Cuomo, S.; Moscariello, M.; Biass, S.; Pistolesi, M.; Gattuso, A. Mapping the susceptibility of rain-triggered lahars at Vulcano island (Italy) combining field characterization, geotechnical analysis, and numerical modelling. Nat. Hazards Earth Syst. Sci. 2019, 19, 2421–2449. [Google Scholar] [CrossRef] Gattuso, A.; Bonadonna, C.; Frischknecht, C.; Cuomo, S.; Baumann, V.; Pistolesi, M.; Biass, S.; Arrowsmith, J.R.; Moscariello, M.; Rosi, M. Lahar risk assessment from source identification to potential impact analysis: The case of Vulcano Island, Italy. J. App. Volcanol. 2021, 10, 9. [Google Scholar] [CrossRef] Biass, S.; Bonadonna, C.; Di Traglia, F.; Pistolesi, M.; Rosi, M.; Lestuzzi, P. Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy. Bull. Volcanol. 2016, 78, 37. [Google Scholar] [CrossRef] Madonia, P.; Liotta, M. Chemical composition of precipitation at Mt. Vesuvius and Vulcano Island, Italy: Volcanological and environmental implications. Environ. Earth Sci. 2010, 61, 159–171. [Google Scholar] [CrossRef] Arnone, E.; Pumo, D.; Viola, F.; Noto, I.V.; La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 2013, 17, 2449–2458. [Google Scholar] [CrossRef] Agrometeorological Information Service of Sicily (SIAS). Available online: http://www.sias.regione.sicilia.itTest (accessed on 13 October 2022). Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef] SCS. Section 4: Hydrology. In National Engineering Handbook; Soil Conservation Service, USDA: Washington, DC, USA, 1956. [Google Scholar] Soulis, K.X. Soil Conservation Service Curve Number (SCS-CN) Method: Current Applications, Remaining Challenges, and Future Perspectives. Water 2021, 13, 192. [Google Scholar] [CrossRef] Cunha, Z.A.D.; Beskow, S.; Moura, M.M.D.; Beskow, T.L.C.; Mello, C.R.D. Adequacy of methodologies for determining SCS/CN in a watershed with characteristics of the Pampa biome. Rev. Ambiente Água 2021, 16, e2715. [Google Scholar] [CrossRef] Romero, P.; Castro, G.; Gòmez, J.A.; Fereres, E. Curve number values for olive orchards under different soil management. Soil Sci. Soc. Am. J. 2007, 71, 1758–1769. [Google Scholar] [CrossRef] Lewis, M.J.; Singer, M.J.; Tate, K.W. Applicability of SCS curve number method for a California Oak Woodlands Watershed. J. Soil Water Conserv. 2000, 55, 226–230. [Google Scholar] Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—The two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef] Hoesein, A.A.; Pilgrim, D.H.; Titmarsh, G.W.; Cordery, I. Assessment of the US Conservation Service method for estimating design floods. In New Directions for Surface Water Modeling; IAHS International Commission on Surface Water: Bochum, Germany, 1989. [Google Scholar] Pilgrim, D.H.; Cordery, I. Flood runoff. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar] USDA-SCS. National Engineering Handbook, Section 4: Hydrology; Soil Conservation Service, Department of Agriculture: Washington, DC, USA, 1972; p. 762. Bladé, E.; Cea, L.; Corestein, G. Modelización numérica de inundaciones fluviales. Ing. Agua 2014, 18, 68. [Google Scholar] Fraga, I.; Cea, L.; Puertas, J. Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrol. Process. 2018, 33, 160–173. [Google Scholar] [CrossRef] Cea, L.; French, J.R. Bathymetric error estimation for calibration and validation of estuarine hydrodynamic models. Estuar. Coast Shelf Sci. 2012, 100, 3317–3339. [Google Scholar] [CrossRef] Cea, L.; Bladé, E.; Coristein, G.; Fraga, I.; Espinal, M.; Puertas, J. Comparative analysis of several sediment transport formulations applied to dam-break flows over erodible beds. In Proceedings of the EGU General Assembly 2014, Vienna, Austria, 27 April–2 May 2014. [Google Scholar] Areu-Rangel, O.S.; Bonasia, R.; Di Traglia, F.; Del Soldato, M.; Casagli, N. Flood Susceptibility and Sediment Transport Analysis of Stromboli Island after the 3 July 2019 Paroxysmal Explosion. Sustainability 2020, 12, 3268. [Google Scholar] [CrossRef] Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental aftermath of the 2019 Stromboli eruption. Remote Sens. 2020, 12, 994. [Google Scholar] [CrossRef] Inguaggiato, S.; Vita, F.; Diliberto, I.S.; Mazot, A.; Calderone, L.; Mastrolia, A.; Corrao, M. The extensive parameters as a tool to monitoring the volcanic activity: The case study of Vulcano Island (Italy). Remote Sens. 2022, 14, 1283. [Google Scholar] [CrossRef] Meyer-Peter, E.; Müller, R. Formulas for bedload transport. In Proceedings of the 2nd Congress IAHR, Stockholm, Sweden, 7–9 June 1948; pp. 39–64. [Google Scholar] Wong, M. Does the Bedload Equation of Meyer-Peter and Müller Fit Its Own Data; International Association of Hydraulic Research: Thessaloniki, Greece, 2003; pp. 73–80. [Google Scholar] Wong, M.; Parker, G. Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database. J. Hydraul. Eng. 2006, 132, 1159–1168. [Google Scholar] [CrossRef] Bonasia, R.; Areu-Rangel, O.S.; Tolentino, D.; Mendoza-Sanchez, I.; González-Cao, J.; Klapp, J. Flooding hazard assessment at Tulancingo (Hidalgo, Mexico). J. Flood Risk Manag. 2018, 11, S1116–S1124. [Google Scholar] [CrossRef] Ministry of Environment and Protection of Land and Sea (MATTM). Available online: http://www.pcn.minambiente.it/mattm/progetto-pst-dati-lidarTest/ (accessed on 13 October 2022). Mukundan, R.; Radcliffe, D.E.; Ritchie, J.C.; Risse, L.M.; McKinley, R.A. Sediment fingerprinting to determine the source of suspended sediment in a southern piedmont stream. J. Environ. Qual. 2010, 39, 1328. [Google Scholar] [CrossRef] [PubMed] Mukundan, R.B.; Radcliffe, D.; Risse, L. Spatial resolution of soil data and channel erosion effects on swat model predictions of flow and sediment. J. Soil Water Conserv. 2010, 65, 92–104. [Google Scholar] [CrossRef] Wainwright, J.; Parsons, A.J.; Müller, E.N.; Brazier, R.E.; Powell, D.M.; Fenti, B. A transport-distance approach to scaling erosion rates: 1. Background and model development. Earth Surf. Process. Landforms 2008, 33, 813–826. [Google Scholar] [CrossRef] Merritt, W.; Letcher, R.; Jakeman, A. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef] Cea, L.; Legout, C.; Grangeon, T.; Nord, G. Impact of model simplifications on soil erosion predictions: Application of the GLUE methodology to a distributed event-based model at the hillslope scale. Hydrol. Process 2016, 30, 1096–1113. [Google Scholar] [CrossRef] Fraga, I.; Cea, L.; Puertas, J. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient used in distributed urban drainage models. J. Hydrol. 2013, 505, 266–275. [Google Scholar] [CrossRef]; http://hdl.handle.net/2122/16089Test; https://www.mdpi.com/2071-1050/14/24/16549Test

  10. 10
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia

    العلاقة: Acta Herpetologica; 1/17 (2022); http://hdl.handle.net/2122/16087Test; file:///C:/Users/Ferrara/Desktop/Scaricati/10188-Article%20Text-41341-1-10-20220629.pdf