يعرض 1 - 10 نتائج من 537 نتيجة بحث عن '"MICHETTI, ALESSANDRO MARIA"', وقت الاستعلام: 1.18s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: Birkbeck, University of London, School of Geography, Earth and Environmental Sciences, University of Plymouth, Department of Earth Sciences, Environment and Resources (DiSTAR), University Federico II, Naples, Italy, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, Agricultural University of Athens, Greece, Università degli Studi dell’Insubria, Como, Italy, IRDR, University College London, Gower Street, WC1E 6BT, UK, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Scottish Universities Environmental Research Centre, Glasgow, G75 0QF, UK, University of Leeds, School of Earth & Environment, Leeds LS2 9JT, UK, University of Durham, UK, IGG-CNR Florence, Italy

    مصطلحات موضوعية: Active Faults, Central Apennines, Fault interaction

  3. 3
  4. 4
    دورية أكاديمية

    المساهمون: Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como (CO), Italy, Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, BRAVHO Radiocarbon Laboratory, University of Bologna, Via Selmi 2, 40126 Bologna (BO), Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    الوقت: sixth-century-CE event

    العلاقة: Natural Hazards and Earth System Sciences; /23 (2023); Bakun, W. U. and Wentworth, C. M.: Estimating earthquake loca tion and magnitude from seismic intensity data, Bull. Seismol. Soc. Am., 87, 1502–1521, 1997. Beck, C.: Late Quaternary lacustrine paleo-seismic archives in north-western Alps: Examples of earthquake-origin assessment of sedimentary disturbances, Earth-Sci. Rev., 96, 327–344, https://doi.org/10.1016/j.earscirev.2009.07.005Test, 2009. Bellwald, B., Nigg, V., Fabbri, S. C., Becker, L. W. M., Gilli, A., and Anselmetti, F. S. Holocene seismic activity in south-eastern Switzerland: Evidence from the sedimentary record of Lake Sivaplana, Sedimentology, https://doi.org/10.1111/sed.13131Test, in press, 2023. Bernoulli, D., Bertotti, G., and Zingg, A.: Northward thrusting of the Gonfolite Lombarda (“South-Alpine Molasse”) onto the Mesozoic sequence of the Lombardian Alps; implications for the deformation history of the Southern Alps, Eclog. Geolog. Helv., 82, 841–856, 1989. Blass, A., Anselmetti, F. S., Grosjean, M., and Sturm, M.: The last 1300 years of environmental history recorded in the sediments of Lake Sils (Engadine, Switzerland), Eclog. Geol. Helv., 98, 319– 332, https://doi.org/10.1007/s00015-005-1166-5Test, 2005. Borgatti, L. and Soldati, M.: Landslides as a geomorphological proxy for climate change: a record from the Dolomites (north ern Italy), Geomorphology, 120, 56–64, 2010. Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J. O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov, A. V.: Cooling and soci etal change during the Late Antique Little Ice Age from 536 to around 660 ADA.D, Nat. Geosci., 9, 231–236, 2016. Caputo, M., Keilis-Borok, V. I., Oficerova, E., Rauzman, E., Rot vain, I., and Soloviev, A.: Pattern recognition of earthquake prone areas in Italy, Phys. Earth Planet. Int., 21, 305–320, 1980. Casini, S.: Carta archeologica della Lombardia: La Provincia di Como, FC Panini Editore, ISBN 8876862110, 1994. Castellarin, A., Vai, G. B., and Cantelli, L.: The Alpine evolution of the Southern Alps around the Giudicarie faults: A Late Creta ceous to Early Eocene transfer zone, Tectonophysics, 414, 203– 223, https://doi.org/10.1016/j.tecto.2005.10.019Test, 2006. Castelletti, L. and Motella De Carlo, S.: Il fuoco e la montagna. Archeologia del Paesaggio dal Neolitico all’Età Moderna in alta Val Cavargna, Castelletti, Lanfredo, Motella De Carlo, Sila, Como, 209 pp., 2012. Cercatillo, S., Friedrich, M., Kromer, B., Palecek, D., and Talamo, ˇ S.: Exploring different methods of cellulose extraction for 14C dating, New J. Chem., 45, 8936–8941, 2021. Cisternas, A., Godefroy, P., Gvishiani, A., Gorshkov, A. I., Kos sobokov, V., Lambert, M., Ranzman, E., Sallantin, J., Soldano, H., Soloviev, A., and Weber, C.: A dual approach to recognition of earthquake-prone areas in the western Alps, Ann. Geophys., 3, 249–270, 1985. Comerci, V., Capelletti, S., Michetti, A. M., Rossi, S., Serva, L., and Vittori, E.: Land subsidence and Late Glacial environmental evolution of the Como urban area (Northern Italy), Quatern. Int., 173, 67–86, 2007. Cremaschi, M.: Manuale di geoarcheologia, Laterza, ISBN 8842060259, 2000. Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., and Allmann, B.: ECOS-09 earthquake catalogue of Switzer land release 2011 report and database, Public catalogue, 17.4.2011, Swiss Seismological Service ETH Zurich, RISK, http://ecos09.seismo.ethz.ch/index.htmlTest (last access: 30 Octo ber 2023), 2011. Fan, X., Juang, C. H., Wasowski, J., Huang, R., Xu, Q., Scaringi, G., van Westen, C. J., and Havenith, H.-B.: What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges, Eng. Geol., 241, 25–32, 2018. Fanetti, D. and Vezzoli, L.: Sediment input and evolution of lacus trine deltas: The Breggia and Greggio rivers case study (Lake Como, Italy), Quatern. Int., 173, 113–124, 2007. Fanetti, D., Anselmetti, F. S., Chapron, E., Sturm, M., and Vezzoli, L.: Megaturbidite deposits in the Holocene basin fill of Lake Como (Southern Alps, Italy), Palaeogeogr. Palaeocl., Palaeoecol., 259, 323–340, https://doi.org/10.1016/j.palaeo.2007.10.014Test, 2008. Fantoni, R., Bersezio, R., and Forcella, F.: Alpine structure and de formation chronology at the Southern Alps-Po Plain border in Lombardy, Bollettino della Società geologica italiana, 123, 463– 476, 2004. Ferrario, M. F., Brunamonte, F., Caccia, A., Livio, F., Martinelli, E., Mazzola, E., Michetti, A. M., and Terrana, S.: Buried land scapes: geoarchaeology of the roman harbor of Como (N Italy), Alp. Mediterr. Quat., 111–120, http://amq.aiqua.itTest (last access: 30 October 2023), 2015. Ferrater, M., Silva, P. G., Ortuño, M., Rodríguez-Pascua, M. Á., and Masana, E.: Archaeoseismological analysis of a Late Bronze Age site on the Alhama de Murcia fault, SE Spain, Geoarchaeology, 30, 151–164, 2015. Fritsche, S., Fäh, D., and Schwarz-Zanetti, G.: Historical inten sity VIII earthquakes along the Rhone valley (Valais, Switzer land): primary and secondary effects, Swiss J. Geosci., 105, 1– 18, https://doi.org/10.1007/s00015-012-0095-3Test, 2012. Galadini, F. and Galli, P.: Palaeoseismology related to the displaced Roman archaeological remains at Egna (Adige Valley, northern Italy), Tectonophysics, 308, 171–191, https://doi.org/10.1016/S0040-1951Test(99)00080-3, 1999. Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., and Pollefeys, M.: Real-time plane-sweeping stereo with multiple sweeping direc tions, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, 17–22 June 2007, 1–8, 2007. Gasperini, L., Marzocchi, A., Mazza, S., Miele, R., Meli, M., Najjar, H., Michetti, A. M., and Polonia, A.: Mor photectonics and late Quaternary seismic stratigraphy of Lake Garda (Northern Italy), Geomorphology, 371, 107427, https://doi.org/10.1016/j.geomorph.2020.107427Test, 2020. Giner-Robles, J. L., Rodríguez-Pascua, M. A., Pérez-López, R., Silva, P. G., Bardají, T., Grützner, C., and Reicherter, K.: Struc tural analysis of earthquake archaeological effects (EAE): Baelo Claudia examples (Cádiz, South Spain), in: 1st INQUA-IGCP International Workshop on Earthquake Archaeology and Paleo seismology, vol. 2, AEQUA – IGME, 2009. Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M.: Multi-view stereo for community photo collections, in: 2007 IEEE 11th International Conference on Computer Vision, 1–8, https://doi.org/10.1109/ICCV.2007.4408933Test, 2007. Guerrieri, L., Blumetti, A. M., Comerci, V., Manna, P. D., Michetti, A. M., Vittori, E., and Serva, L.: Surface Faulting Hazard in Italy: Towards a First Assessment Based on the ITHACA Database, in: Engineering Geology for Society and Territory – Volume 5, Springer, Cham, 1021–1025, https://doi.org/10.1007/978-3-319Test- 09048-1_195, 2015. Guidoboni, E., Comastri, A., and Phillips, B.: Catalogue of Earth quakes and Tsunamis in the Mediterranean Area from the 11th to the 15th Century, Istituto nazionale di geofisica e vulcanologia Rome, Italy, https://emidius.mi.ingv.it/ASMI/study/GUICO005Test (last access: 30 October 2023), 2005. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.: Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spread ing and subduction in the Alps, Earth-Sci. Rev., 102, 121–158, 2010. Hetényi, G., Epard, J.-L., Colavitti, L., Hirzel, A. H., Kiss, D., Petri, B., Scarponi, M., Schmalholz, S. M., and Subedi, S.: Spatial re lation of surface faults and crustal seismicity: a first comparison in the region of Switzerland, Acta Geod. Geophys., 53, 439–461, https://doi.org/10.1007/s40328-018-0229-9Test, 2018. ISIDe Working Group: Italian seismological instrumental and para metric database (ISIDe), https://doi.org/10.13127/ISIDETest, 2007. Jorio, S.: Le terme di Como romana: seconda metà I-fine III se colo dC; testi dei pannelli didattici, Edizioni Et, Milano, ISBN 9788886752541, 2011. Knapp, S., Gilli, A., Anselmetti, F. S., Krautblatter, M., and Hajdas, I.: Multistage rock-slope failures revealed in lake sediments in a seismically active Alpine region (Lake Oeschinen, Switzerland), J. Geophys. Res.-Earth, 123, 658–677, 2018. Kremer, K., Wirth, S. B., Reusch, A., Fäh, D., Bellwald, B., Anselmetti, F. S., Girardclos, S., and Strasser, M.: Lake sediment based paleoseismology: Limitations and perspec tives from the Swiss Alps, Quaternary Sci. Rev., 168, 1–18, https://doi.org/10.1016/j.quascirev.2017.04.026Test, 2017. Kremer, K., Gassner-Stamm, G., Grolimund, R., Wirth, S. B., Strasser, M., and Fäh, D.: A database of potential paleo seismic evidence in Switzerland, J. Seismol., 24, 247–262, https://doi.org/10.1007/s10950-020-09908-5Test, 2020. Lauterbach, S., Chapron, E., Brauer, A., Hüls, M., Gilli, A., Arnaud, F., Piccin, A., Nomade, J., Desmet, M., von Grafenstein, U., and DecLakes participants: A sedimentary record of Holocene sur face runoff events and earthquake activity from Lake Iseo (South ern Alps, Italy), Holocene, 22, 749–760, 2012. Livio, F., Berlusconi, A., Chunga, K., Michetti, A. M., and Sileo, G.: New stratigraphic and structural evidence for Late Pleis tocene surface faulting along the Monte Olimpino Backthrust (Lombardia, N Italy), Rend. Online Soc. Geol. It., 14, 17–25, https://doi.org/10.3301/ROL.2011.03Test, 2011. Luraschi, G.: Storia di Como antica: saggi di archeologia, diritto e storia, New Press, ISBN 9788895383835, 1997. Martinelli, E., Michetti, A. M., Colombaroli, D., Mazzola, E., Motella De Carlo, S., Livio, F., Gilli, A., Ferrario, M. F., Höbig, N., Brunamonte, F., Castelletti, L., and Tinner, W.: Climatic and anthropogenic forcing of prehistorical vegeta tion succession and fire dynamics in the Lago di Como area (N-Italy, Insubria), Quaternary Sci. Rev., 161, 45–67, https://doi.org/10.1016/j.quascirev.2017.01.023Test, 2017. Martinelli, E., Michetti, A. M., Castelletti, L., Colombaroli, D., Ferrario, M. F., Livio, F. A., Motella De Carlo, S., and Tin ner, W.: Il paesaggio preromano proto-urbano nei dintorni di Como: contesto ambientale e trasformazioni antropiche, Scenari di ricostruzione delle interazioni uomo-ambiente in Lombardia (N-Italia) dal Paleolitico medio all’età del Ferro, Firenze, 9–36, https://doi.org/10.1016/j.quascirev.2017.01.023Test, 2022. Michetti, A., Giardina, F., Livio, F., Mueller, K., Serva, L., Sileo, G., Vittori, E., Devoti, R., Riguzzi, F., and Carcano, C.: Active compressional tectonics, Quaternary capable faults, and the seis mic landscape of the Po Plain (N Italy), Ann. Geophys., 55, 969–1001, https://doi.org/10.4401/ag-5462Test, 2012. Michetti, A. M., Livio, F. A., Pasquarè, F., Aligi, Vezzoli, L., Bini, A., Bernoulli, D., and Sciunnach, D.: Carta Geologica d’Italia, Foglio 075, Como, https://www.isprambiente.gov.it/Media/cargTest/ 75_COMO/Foglio.html (last access: 30 October 2023), 2014. Monecke, K., Anselmetti, F. S., Becker, A., Schnellmann, M., Sturm, M., and Giardini, D.: Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene pa leoseismic record for Central Switzerland, Eclog. Geolog. Helv., 99, 343–362, 2006. Nappo, N., Ferrario, M. F., Livio, F., and Michetti, A. M.: Regres sion analysis of subsidence in the Como Basin (Northern Italy): new insights on natural and anthropic drivers from InSAR data, Remote Sens., 12, 2931, https://doi.org/10.3390/rs12182931Test, 2020. Nappo, N., Peduto, D., Polcari, M., Livio, F., Ferrario, M. F., Comerci, V., Stramondo, S., and Michetti, A. M.: Subsidence in Como historic centre (northern Italy): As sessment of building vulnerability combining hydrogeolog ical and stratigraphic features, Cosmo-SkyMed InSAR and damage data, Int. J. Disast. Risk Reduct., 56, 102115, https://doi.org/10.1016/j.ijdrr.2021.102115Test, 2021. Nigg, V., Wohlwend, S., Hilbe, M., Bellwald, B., Fabbri, S. C., de Souza, G. F., Donau F., Grischott, R., Strasser, M., and Ansel metti, F. S.: A tsunamigenic delta collapse and its associated tsunami deposits in and around Lake Sils, Switzerland, Nat. Haz ards, 107, 1069–1103, 2021. Oswald, P., Strasser, M., Hammerl, C., and Moernaut, J.: Seismic control of large prehistoric rockslides in the Eastern Alps, Nat. Commun., 12, 1059, https://doi.org/10.1038/s41467-021-21327Test- 9, 2021. Owen, G. and Moretti, M.: Identifying triggers for liquefaction induced soft-sediment deformation in sands, Sediment. Geol., 235, 141–147, 2011. Ramsey, C. B.: Bayesian analysis of radiocarbon dates, Radiocar bon, 51, 337–360, 2009. Rapuc, W., Arnaud, F., Sabatier, P., Anselmetti, F. S., Piccin, A., Peruzza, L., Bastien, A., Augustin, L., Régnier, E., Gail lardet, J., and Von Grafenstein, U.: Instant sedimentation in a deep Alpine lake (Iseo, Italy) controlled by climate, hu man and geodynamic forcing, Sedimentology, 69, 1816–1840, https://doi.org/10.1111/sed.12972Test, 2022. Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Black well, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere RADiocarbon Age Calibration Curve (0–55 cal kBP), Radiocar bon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41Test, 2020. Rodríguez-Pascua, M. A., Pérez-López, R., Giner-Robles, J. L., Silva, P. G., Garduño-Monroy, V. H., and Reicherter, K.: A com prehensive classification of Earthquake Archaeological Effects (EAE) in archaeoseismology: Application to ancient remains of Roman and Mesoamerican cultures, Quatern. Int., 242, 20–30, 2011. Rotondi, R. and Garavaglia, E.: Statistical analysis of the complete ness of a seismic catalogue, Nat. Hazards, 25, 245–258, 2002. Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: Catalogo Parametrico dei Terremoti Italiani, versione CPTI15, release 1.5, 33, INGV, https://doi.org/10.6092/INGV.IT-CPTI15Test, 2016. Scaramuzzo, E., Livio, F. A., Granado, P., Di Capua, A., and Bitonte, R.: Anatomy and kinematic evolution of an ancient pas sive margin involved into an orogenic wedge (Western Southern Alps, Varese area, Italy and Switzerland), Swiss J. Geosci., 115, 4, https://doi.org/10.1186/s00015-021-00404-7Test, 2022. Schmid, S. M. and Kissling, E.: The arc of the western Alps in the light of geophysical data on deep crustal structure, Tectonics, 19, 62–85, https://doi.org/10.1029/1999TC900057Test, 2000. Sileo, G., Giardina, F., Livio, F., Michetti, A. M., Mueller, K., and Vittori, E.: Remarks on the Quaternary tectonics of the Insub ria Region (Lombardia, NW Italy, and Ticino, SE Switzerland), Bollettino-Societa Geologica Italiana, 126, 411–425, 2007. Strasser, M., Anselmetti, F. S., Fäh, D., Giardini, D., and Schnell mann, M.: Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes, Geology, 34, 1005–1008, https://doi.org/10.1130/G22784A.1Test, 2006. Strasser, M., Monecke, K., Schnellmann, M., and Anselmetti, F. S.: Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its im plication for Alpine deformation, Sedimentology, 60, 319–341, https://doi.org/10.1111/sed.12003Test, 2013. Stucchi, M., Albini, P., Mirto, M., and Rebez, A.: Assessing the completeness of Italian historical earthquake data, Ann. Geo phys., 47, 659–673, https://doi.org/10.4401/ag-3330Test, 2004. Tang, C., van Asch, T. W., Chang, M., Chen, G. Q., Zhao, X. H., and Huang, X. C.: Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms, Geomorphology, 139, 559–576, 2012. Tibaldi, A. and Pasquarè, F. A.: Quaternary deformations along the ‘Engadine–Gruf tectonic system’, Swiss–Italian Alps, J. Quater nary Sci., 23, 475–487, 2008. Trauth, M. H., Bookhagen, B., Marwan, N., and Strecker, M. R.: Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes, Palaeogeogr. Palaeocl. Palaeoecol., 194, 109–121, https://doi.org/10.1016/S0031Test- 0182(03)00273-6, 2003. Uboldi, M.: Carta archeologica della Lombardia, Como, La città murata e la convalle, Franco Cosimo Panini, Modena, ISBN 9788876862328, 1993. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications, Geomor phology, 179, 300–314, 2012. Wirth, S. B.: The Holocene flood history of the central Alps re constructed from lacustrine sediments: frequency, intensity and controlling climate factors, PhD Thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-a-009775044Test, 2013. Zanchetta, S., Malusà, M. G., and Zanchi, A. M.: Prec ollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps), Lithosphere, 7, 662–681, https://doi.org/10.1130/L466.1Test, 2015.; http://hdl.handle.net/2122/17199Test

  5. 5
    دورية أكاديمية

    المساهمون: Universita ` degli Studi dell’Insubria, Dipartimento di Scienza ed Alta Tecnologia, Via Valleggio 11, 22100 Como (CO), Italy, Studio di Geologia Domenico Bella, Via N. Martoglio 13, 95024 Acireale (CT), Italy, CNR – Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e Geoingegneria, Milano (MI), Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    العلاقة: Tectonophysics; /856(2023); Acocella, V., Behncke, B., Neri, M., D’Amico, S., 2003. Link between major flank slip and 2002–2003 eruption at Mt. Etna (Italy). Geophys. Res. Lett. 30, 2286. https://doiTest. org/10.1029/2003GL018642, 24. Alparone, S.C., Maiolino, V., Mostaccio, A., Scaltrito, A., Ursino, A., Barberi, G., et al., 2015. Mt. Etna Seismic Catalog 2000–2010 [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Osservatorio Etneo. https://doi.org/10.13127/etnascTest/ 2000_2010. Alparone, S., Barberi, G., Giampiccolo, E., et al., 2020. Seismological constraints on the 2018 Mt. Etna (Italy) flank eruption and implications for the flank dynamics of the volcano. Terra Nova 32, 334–344. https://doi.org/10.1111/ter.12463Test, 2020. Apuani, T., Corazzato, C., Merri, A., Tibaldi, A., 2013. Understanding Etna flank instability through numerical models. J. Volcanol. Geotherm. Res. 251, 112–126. Azzaro, R., 1999. Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 28, 193–213. Azzaro, R., Branca, S., Gwinner, K., Coltelli, M., 2012. The volcano-tectonic map of Etna volcano, 1:100.000 scale: an integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data. Ital. J. Geosci. 131 (1), 153–170. https://doi.org/10.3301Test/ IJG.2011.29, 2012. Azzaro, R., Bonforte, A., Branca, S., Guglielmino, F., 2013. Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). J. Volcanol. Geotherm. Res. 251, 5–15. Azzaro, R., Bonforte, S., D’Amico, Guglielmino, F., Scarfì, L., 2020. Stick-slip vs. stable sliding fault behaviour: a case-study using a multidisciplinary approach in the volcanic region of Mt. Etna (Italy). Tectonophysics 790, 228554. https://doi.orgTest/ 10.1016/j.tecto.2020.228554.554. Bagnardi, M., Hooper, A., 2018. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem. Geophys. Geosyst. 19, 2194–2211. Barberi, G., Cocina, O., Maiolino, V., Musumeci, C., Privitera, E., 2004. Insight into Mt. Etna (Italy) kinematics during the 2002–2003 eruption as inferred from seismic stress and strain tensors. Geophys. Res. Lett. 31, L21614 https://doi.org/10.1029Test/ 2004GL020918. Blumetti, A.M., Di Manna, P., Ferreli, L., Fiorenza, D., Vittori, E., 2007. Reduction of environmental risk from capable faults: the case of the Eastern Etna region (eastern Sicily, Italy). Quat. Int. 173, 45–56. Bonaccorso, A., Bonforte, A., Guglielmino, F., Palano, M., Puglisi, G., 2006. Composite ground deformation pattern forerunning the 2004–2005 Mount Etna eruption. J. Geophys. Res. 111, B12207. https://doi.org/10.1029/2005JB004206Test. Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., Puglisi, G., 2011. Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geochem. Geophys. Geosyst. 12. Bonforte, A., Guglielmino, F., Puglisi, G., 2019. Large dyke intrusion and small eruption: the December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data. Terra Nova 31, 405–412. Borgia, A., Ferrari, L., Pasquar`e, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231–235. Branca, S., Ferrara, V., 2013. The morphostructural setting of Mount Etna sedimentary basement (Italy): Implications for the geometry and volume of the volcano and its flank instability. Tectonophysics 586, 46–64. Branca, S., Coltelli, M., Groppelli, G., Lentini, F., 2011. Geological map of Etna volcano, 1: 50,000 scale. Ital. J. Geosci. 130, 265–291. Carveni, P., Bella, D., 1994. Aspetti geomorfologici legati ad attivita ` sismica su vulcani attivi: il basso versante orientale dell’Etna come modello di studio. Boll. Acc. Gioenia Sc. Nat. 27, 253–285. Carveni, P., Filetti, G., Bella, D., 1997. Aspetti geomorfologici e sismologici connessia a fenomeni di tettonica gravitativa nel basso versante orientale dell’Etna. Geogr. Fis. Din. Quat. 20, 43–49. Chiocci, F.L., Coltelli, M., Bosman, A., Cavallaro, D., 2011. Continental margin large scale instability controlling the flank sliding of Etna volcano. Earth Planet. Sci. Lett. 305, 57–64 (2011). De Guidi, G., Scudero, S., Gresta, S., 2012. New insights into the local crust structure of Mt. Etna volcano from seismological and morphotectonic data. J. of Volcanol. and Geotherm. Res. 223-224, 83–92. https://doi.org/10.1016/j.jvolgeores.2012.02.001Test. Doglioni, C., Innocenti, F., Mariotti, G., 2001. Why Mt Etna? Terra Nova 13, 25–31 (2001). Gresta, S., Bella, D., Musumeci, C., Carveni, P., 1997. Some efforts on active faulting processes (earthquakes and aseismic creep) acting on the eastern flank of Mt. Etna (Sicily). Acta Vulcanol. 9 (1/2), 101–108. Groppelli, G., Norini, G., 2011. Geology and tectonics of the southwestern boundary of the unstable sector of Mt. Etna (Italy). J. Volcanol. Geotherm. Res. 208, 66–75. Groppelli, G., Tibaldi, A., 1999. Control of rock rheology on deformation style and sliprate along the active Pernicana Fault, Mt. Etna, Italy. Tectonophysics 305, 521–537. https://doi.org/10.1016/S0040-1951Test(99)00035-9. Gross, F., et al., 2016. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data. Tectonophysics 667, 63–76. Grünthal, G., 1998. European Macroseismic Scale 1998 (EMS-98). European Seismological Commission, sub commission on Engineering Seismology, Working Group Macroseismic Scales. Conseil de l’Europe, Cahiers du Centre Europ´een de G´eodynamique et de S´eismologie, vol. 15. Luxembourg. ITHACA Working Group, 2019. ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019; ISPRA Geological Survey of Italy. Web Portal. http://sgi2.isprambiente.it/ithacaTest web/Mappatura.aspx. Lo Giudice, E., Ras` a, R., 1992. Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example. Tectonophys 202, 257–268. Mancini, F., Grassi, F., Cenni, N., 2021. A workflow based on SNAP–StaMPS open-source tools and GNSS data for PSI-based ground deformation using dual-orbit Sentinel-1 data: accuracy assessment with error propagation analysis. Remote Sens. 13, 753. https://doi.org/10.3390/rs13040753Test. Mattia, M., et al., 2015. A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank. Geochem. Geophys. Geosyst. 16, 635–658. Mattia, M., Bruno, V., Montgomery-Brown, E., Patan`e, D., Barberi, G., Coltelli, M., 2020. Combined seismic and geodetic analysis before, during and after the 2018 Mount Etna eruption. Geochem. Geophys. Geosyst. 21 https://doi.org/10.1029Test/ 2020GC009218 e2020GC009218. Monaco, C., et al., 2005. Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the 2001 and 2002–2003 eruptions. J. Volcanol. Geotherm. Res. 144, 211–233. G. Tringali et al. Tectonophysics 856 (2023) 229829 16 Neri, M., Acocella, V., Behncke, B., 2004. The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption. Bull. Volcanol. 66, 417–430. https://doi.org/10.1007/s00445Test- 003-0322-x. Neri, M., Guglielmino, F., Rust, D., 2007. Flank instability on Mount Etna: radon, radar interferometry, and geodetic data from the southwestern boundary of the unstable sector. J. Geophys. Res. Solid Earth 112. Neri, M., Casu, F., Acocella, V., Solaro, G., Pepe, S., Berardino, P., Sansosti, E., Caltabiano, T., Lundgren, P., Lanari, R., 2009. Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys. Res. Lett. 36, L02309 https://doi.org/10.1029/2008GL036151Test. Norini, G., Acocella, V., 2011. Analogue modeling of flank instability at Mount Etna: understanding the driving factors. J. Geophys. Res. Solid Earth 116. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154. Palano, M., Sparacino, F., Gambino, P., D’Agostino, N., Calcaterra, S., 2022. Slow slip events and flank instability at Mt. Etna volcano (Italy). Tectonophysics 836. https:// doi.org/10.1016/j.tecto.2022.229414, 2022, 229414, ISSN 0040-1951. Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L., Gasperini, L., Govers, R., Klaeschen, D., Monaco, C., Neri, G., Nijholt, N., Orecchio, B., Wortel, R. M., 2016. The Ionian and Alfeo-Etna fault zones: new segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675, 69–90. https://doiTest. org/10.1016/j.tecto.2016.03.016. Puglisi, G., Bonforte, A., Ferretti, A., Guglielmino, F., Palano, M., Prati, C., 2008. Dynamics of Mount Etna before, during, and after the July–August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data. J. Geophys. Res. Solid Earth 113, B06405. https://doi.org/10.1029/2006jb004811Test. Rasa, ` R., Azzaro, R., Leonardi, O., 1996. Aseismic creep on faults and flank instability at Mount Etna volcano, Sicily. Geol. Soc. Lond., Spec. Publ. 110, 179–192. Ricco, ` A., 1909. Il terremoto di San Giovanni Bosco. Boll. Acc. Gioenia, fasc 10 dicembre 1909. Ruch, J., et al., 2012. How do volcanic rift zones relate to flank instability? Evidence from collapsing rifts at Etna. Geophys. Res. Lett. 39. Rust, D., Behncke, B., Neri, M., Ciocanel, A., 2005. Nested zones of instability in the Mount Etna volcanic edifice, Sicily. J. Volcanol. Geothermal Res., Special Issue on the Tectonics and Physics of Volcanoes 144, 137–153. https://doi.org/10.1016/jTest. jvolgeores.2004.11.021. Scarfì, L., Messina, A., Cassisi, C., 2013. Sicily and southern Calabria focal mechanism database: a valuable tool for local and regional stress-field determination. Ann. Geophys. https://doi.org/10.4401/ag-6109Test. Silvestri, O., 1879. Fenomeni dell’Etna successivi all’ultima eruzione. Bullettino del Vulcanismo Italiano, anno VI, (8-11, agosto-novembre), pp. 119–124. Silvestri, O., 1879a. La doppia eruzione e i terremoti dell’Etna nel 1879. Boll. R. Com. Geol. It. 11-12 novembre-dicembre, 590-604. Siniscalchi, A.S., Tripaldi, M., Neri, Balasco, M., Romano, G., Ruch, J., Schiavone, D., 2012. Flank instability structure of Mt. Etna inferred by a magnetotelluric survey. J. Geophys. Res. 117, B03216. https://doi.org/10.1029/2011JB008657Test. Solaro, G., et al., 2010. Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008. J. Geophys. Res. Solid Earth 115. Tibaldi, A., Groppelli, G., 2002. Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin. J. Volcanol. Geotherm. Res. 115, 277–302. Tringali, G., Bella, D., 2022. 2002 and 2022 fault ruptures along the Timpe faults system (Mt. Etna) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7263297Test. Tringali, G., Bella, D., Livio, F.A., Ferrario, M.F., Groppelli, G., Blumetti, A.M., Di Manna, P., Vittori, E., Guerrieri, L., Porfido, S., Boso, D., Pettinato, R., Paradiso, G., Michetti, A.M., 2023. Fault rupture and aseismic creep accompanying the December 26, 2018, Mw 4.9 Fleri earthquake (Mt. Etna, Italy): Factors affecting the surface faulting in a volcano-tectonic environment. Quat. Int. 651, 25–41. https://doi.orgTest/ 10.1016/j.quaint.2021.12.019. Urlaub, M., et al., 2018. Gravitational collapse of Mount Etna’s southeastern flank. Sci. Adv. 4, eaat9700. Urlaub, M., Geersen, J., Petersen, F., Gross, F., Bonforte, A., Krastel, S., Kopp, H., 2022. The submarine boundaries of Mount Etna’s unstable southeastern flank. Front. Earth Sci. 10, 810790 https://doi.org/10.3389/feart.2022.810790Test. Walter, T.R., Acocella, V., Neri, M., Amelung, F., 2005. Feedback processes between magmatic events and flank movement at Mount Etna (Italy) during the 2002–2003 eruption. J. Geophys. Res. Solid Earth 110.; http://hdl.handle.net/2122/17200Test

  6. 6
    دورية أكاديمية

    المساهمون: Dipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italia, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100, Como, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    العلاقة: Quaternary Research; 113(2023); Bigi, G., Cosentino, D., Parotto, M., Sartori, R., Scandone, P., 1990. Structural Model of Italy. Firenze, Società Elaborazioni Cartografi che (S. EL.CA.), Consiglio Nazionale della Ricerche Progetto Finalizzato Geodinamica, scale 1:500,000, 9 sheets. Channell, J.E.T., Singer, B.S., Jicha, B.R., 2020. Timing of Quaternary geo magnetic reversals and excursions in volcanic and sedimentary archives. Quaternary Science Reviews 228, 106114. https://doi.org/10.1016/j.quasTest cirev.2019.106114. Delpiano, D., Peresani, M., Bertola, S., Cremaschi, M., Zerboni, A., 2019. Lashed by the wind: short-term Middle Palaeolithic occupations within the loess-palaeosoil sequence at Monte Netto (Northern Italy). Quaternary International 502, 137–147. Desio, A., 1965. I rilievi isolati della Pianura Lombarda ed i movimenti tetto nici del Quaternario. Rendiconti dell’Istituto Lombardo Accademia di Scienze e Lettere 99, 881–894. 204 S. Perini et al. https://doi.org/10.1017/qua.2022.67Test Published online by Cambridge University Press Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, B3, EPM 4-1–EPM 4-22. https://doiTest. org/10.1029/2001JB000486. Faccioli, E., 2013. Recent evolution and challenges in the seismic hazard anal ysis of the Po Plain region, Northern Italy. Bulletin of Earthquake Engineering 11, 5–33. Guidoboni, E., Comastri, A., 2005. Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th Century. Istituto Nazionale di Geofisica e Vulcanologia—Storia Geofisica Ambiente, Roma-Bologna, 1037 p. Gunderson, K.L., Pazzaglia, F.J., Picotti, V., Anastasio, D.A., Kodama, K.P., Rittenour, T., Frankel, K.F., et al., 2014. Unraveling tectonic and climatic controls on synorogenic growth strata (Northern Apennines, Italy). Geological Society of America Bulletin 126, 532–552. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htmTest. Harrison, R.J., Feinberg, J.M., 2008. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems 9, Q05016. https://doi.org/10.1029/2008GC001987Test. ISIDe Working Group, 2007. Italian Seismological Instrumental and Parametric Data-Base (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.13127/ISIDETest. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International 62, 699–718. Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters 189, 269–276. Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., et al., 2021. Loess landscapes of Europe—mapping, geomorphology and zonal differentiation. Earth-Science Reviews 215, 103496. https://doi.org/10Test. 1016/j.earscirev.2020.103496. Liu, J., Nowaczyk, N. R., Panovska, S., Korte, M., Arz, H. W., 2020. The Norwegian-Greenland Sea, the Laschamps, and the Mono Lake excursions recorded in a Black Sea sedimentary sequence spanning from 68.9 to 14.5 ka. Journal of Geophysical Research: Solid Earth 125, e2019JB019225. https://doi.org/10.1029/2019JB019225Test. Liu, P., Hirt, A.M., Schüler, D., Uebe, R., Zhu, P., Liu, T., Zhang, H., 2019. Numerical unmixing of weakly and strongly magnetic minerals: examples with synthetic mixtures of magnetite and hematite. Geophysical Journal International 217, 280–287. Livio, F.A., Berlusconi, A., Michetti, A.M., Sileo, G., Zerboni, A., Trombino, L., Cremaschi, M., et al., 2009. Active fault-related folding in the epicentral area of the December 25, 1222 (Io = IX MCS) Brescia earthquake (Northern Italy): seismotectonic implications. Tectonophysics 476, 320–335. Livio, F.A., Berlusconi, A., Zerboni, A., Trombino, L., Sileo, G., Michetti, A.M., Rodnight, H., Spötl, C., 2014. Progressive offset and surface deforma tion along a seismogenic blind thrust in the Po Plain foredeep (Southern Alps, Northern Italy). Journal of Geophysical Research Solid Earth 119, 7701–7721. Livio, F.A., Ferrario, M. F., Frigerio, C., Zerboni, A., Michetti, A. M., 2020. Variable fault tip propagation rates affected by near-surface lithology and implications for fault displacement hazard assessment. Journal of Structural Geology 130, 103914. https://doi.org/10.1016/j.jsg.2019.103914Test. Livio, F.A., Kettermann, M., Reicherter, K., Urai, J. L., 2019. Growth of bending-moment faults due to progressive folding: insights from sandbox models and paleoseismological implications. Geomorphology 326, 152–166. Lougheed, B.C., Obrochta, S. P., 2019. A rapid, deterministic age-depth mod eling routine for geological sequences with inherent depth uncertainty. Paleoceanography and Paleoclimatology 34, 122–133. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coer civity and unblocking temperature properties. Geophysical Research Letters 17, 159–162. Maesano, F.E., D’Ambrogi, C., Burrato, P., Toscani, G., 2015. Slip-rates of blind thrusts in slow deforming areas: examples from the Po Plain (Italy). Tectonophysics 643, 8–25. McElhinny, M.W., McFadden, P.L., 1997. Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophysical Journal International 131, 240–252. Michetti A.M., Giardina F., Livio F., Mueller K., Serva L., Sileo G., Vittori E., et al., 2012. Active compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (N Italy). Annals of Geophysics 55, 969–1001. Monesi, E., Muttoni, G., Scardia, G., Felletti, F., Bona, F., Sala, B., Tremolada, F., Francou, C., Raineri, G., 2016. Insights on the opening of the Galerian mammal migration pathway from magnetostratigraphy of the Pleistocene marine-continental transition in the Arda River section (northern Italy). Quaternary Research 86, 220–231. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations in the Alps. Geology 31,1): 989–992. Panovska, S., Korte, M., Liu, J., Nowaczyk, N., 2021. Global evolution and dynamics of the geomagnetic field in the 15–70 kyr period based on selected paleomagnetic sediment records. Journal of Geophysical Research: Solid Earth 126, e2021JB022681. https://doi.org/10.1029/2021JB022681Test. Roberts, A.P., Heslop, D., Zhao, X., Pike, C.R., 2014. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Reviews of Geophysics 52, 557–602. Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. First-order reversal curve dia grams: a new tool for characterizing the magnetic properties of natural sam ples. Journal of Geophysical Research 105, 28,461–28,475. Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., Sciunnach, D., Piccin, A., 2012. Stratigraphic evidence of a Middle Pleistocene climate-driven flexural uplift in the Alps. Tectonics 31, TC6004. https://doi.org/10.1029/2012TC003108Test. Scardia, G., Muttoni, G., Sciunnach, D., 2006. Subsurface magnetostratigra phy of Pleistocene sediments from the Po Plain (Italy): constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin 118, 1299–1312. Tauxe, L., Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? In: Channell, J., Kent, D., Lowrie, W., Meert, J. (Eds.), Timescales of The Paleomagnetic Field. Geophysical Monograph Series 145. https://doi.org/10.7916/D81N89JTTest. Vanini, M., Corigliano, M., Faccioli, E., Figini, R., Luzi, L., Pacor, F., Paolucci, R., 2018. Improving seismic hazard approaches for critical infra structures: a pilot study in the Po Plain. Bulletin of Earthquake Engineering 16, 2529–2564. Vigliotti, L., 2006. Secular variation record of the Earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve. Geophysical Journal International 165, 414–429. Zerboni, A., Trombino, L., Frigerio, C., Livio, F., Berlusconi, A., Michetti, A. M., Rodnight, H., Spötl, C., 2015. The loess-paleosol sequence at Monte Netto: a record of climate change in the Upper Pleistocene of the central Po Plain, northern Italy. Journal of Soils and Sediments 15, 1329–1350. Pleistocene uplift and deformation, Po Plain, Italy 205; http://hdl.handle.net/2122/17198Test

  7. 7
    دورية أكاديمية

    المساهمون: Universita ` degli Studi dell’Insubria, Dipartimento di Scienza ed Alta Tecnologia, Via Valleggio 11, 22100, Como, CO, Italy, Studio di Geologia Domenico Bella, Via N. Martoglio 13, 95024, Acireale, CT, Italy, CNR - Istituto di Geologia Ambientale e Geoingegneria, sezione di Milano, Milano, MI, Italy, ISPRA - Geological Survey of Italy, Via Brancati 48, 00144, Roma, Ital, ISPRA - Geological Survey of Italy, Via Brancati 48, 00144, Roma, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Geoexpert di Maria Rita Arcidiacono, Via M. Panebianco 10, 95024, Acireale, CT, Italy

    العلاقة: Quaternary International; /651(2023); Alparone, S.C., Barberi, G., Di Grazia, G., Ferrari, F., Giampiccolo, E., Maiolino, V., Mostaccio, A., Musumeci, C., Scaltrito, A., Scarfì, L., Sciotto, M., Tusa, G., Tuv`e, T., Ursino, A., 2020. Mt. Etna Revised and Concise Seismic Catalog from 1999 (EtnaRCSC) [Data Set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ETNASC/ETNARCSCTest. Alparone, S., Barberi, G., Giampiccolo, E., et al., 2020. Seismological constraints on the 2018 Mt. Etna (Italy) flank eruption and implications for the flank dynamics of the volcano. Terra. Nova 32, 334–344. https://doi.org/10.1111/ter.12463Test. Apuani, T., Corazzato, C., Merri, A., Tibaldi, A., 2013. Understanding Etna flank instability through numerical models. J. Volcanol. Geoth. Res. 251, 112–126. Argnani, A., Mazzarini, F., Bonazzi, C., Bisson, M., Isola, I., 2013. The deformation offshore of Mount Etna as imaged by multichannel seismic reflection profiles. J. Volcanol. Geoth. Res. 251, 50–64. Azzaro, R., Barbano, M.S., 2000. Analysis of the seismicity of Southeastern Sicily: a proposed tectonic interpretation. Ann. Geofisc. 43 (1), 171–188. https://doi.orgTest/ 10.4401/ag-3628. Azzaro, R., 1999. Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 28, 193–213. Azzaro, R., Ferreli, L., Michetti, A.M., Serva, L., Vittori, E., 1998. Environmental hazard of capable faults: the case of the Pernicana Fault (Mt. Etna, Sicily. Nat. Hazards 17, 147–162. Azzaro, R., et al., 2000. First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: understanding Holocene surface faulting along the Moscarello fault. J. Geodyn. 29, 187–210. Azzaro, R., Mattia, M., Puglisi, G., 2001. Fault creep and kinematics of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic observations and their tectonic significance. Tectonophysics 333, 401–415. Azzaro, R., D’Amico, S., Mostaccio, A., Scarfì, L., Tuv`e, T., 2006. Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2002 - dicembre 2005. Quaderni di geofisica n 41, 41–42. Azzaro, R., Bonforte, A., Branca, S., Guglielmino, F., 2013. Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). J. Volcanol. Geoth. Res. 251, 5–15. Azzaro, R., et al., 2017. When Probabilistic Seismic Hazard Climbs Volcanoes: The Mt. Etna Case, Italy – Part 1: Model Components for Sources Parameterization, 2017. https://doi:10.5194/nhess-17-1981-2017Test. Azzaro, R., et al., 2020. Terremoti con effetti macrosismici in Sicilia nel periodo gennaio 2014 dicembre 2018. Quaderni Geofisc. 160, 1–62. https://doi.org/10.13127/qdgTest/ 160. Barreca, G., Branca, S., Corsaro, R.A., Scarfì, L., Cannavo, ` F., Aloisi, M., Monaco, C., Faccenna, C., 2020. Slab detachment, mantle flow, and crustal collision in eastern Sicily (southern Italy): implications on mount Etna volcanism. Tectonics 39. Barreca, G., Scarfì, L., Gross, F., Monaco, C., De Guidi, G., 2019. Fault pattern and seismotectonic potential at the south-western edge of the Ionian Subduction system (southern Italy): new field and geophysical constraints. Tectonophysics 761, 31–45. Benina, A., Imposa, S., Gresta, S., Patan`e, G., 1984. Studio macrosismico e strumentale di due terremoti tettonici avvenuti sul versante meridionale dell’Etna. In: Proc. 3th Conv. GNGTS, CNR, Rome (1984), 3, pp. 934–940. Blumetti, A.M., Di Manna, P., Ferreli, L., Fiorenza, D., Vittori, E., 2007. Reduction of environmental risk from capable faults: the case of the Eastern Etna region (eastern Sicily, Italy). Quat. Int. 173, 45–56. Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., 2004. Mt. Etna: Volcano Laboratory. Washington DC American Geophysical Union Geophysical. Monograph Series 143. Bonforte, A., Guglielmino, F., Puglisi, G., 2019. Large dyke intrusion and small eruption: the December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data. Terra. Nova 31, 405–412. Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., Puglisi, G., 2011. Structural assessment of mount Etna volcano from permanent scatterers analysis. G-cubed 12. Borgia, A., Ferrari, L., Pasquar`e, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231–235. Branca, S., Ferrara, V., 2013. The morphostructural setting of Mount Etna sedimentary basement (Italy): implications for the geometry and volume of the volcano and its flank instability. Tectonophysics 586, 46–64. Branca, S., Calvari, S., Coltelli, M., Garduno, ˜ V.H., Groppelli, G., Lodato, L., Neri, M., Pasquar`e, G., 2009a. Foglio 625 - Acireale, Carta Geologica d’Italia Scala 1:50.000. ISPRA, Servizio Geologico d’Italia. Branca, S., Coltelli, M., Groppelli, G., Pasquar`e, G. (Eds.), 2009b. Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000. , Foglio n. 625 -– Acireale, volume di accompagnamento della Carta Geologica. ISPRA, Servizio Geologico d’Italia, p. 236. Branca, S., Coltelli, M., Groppelli, G., Lentini, F., 2011. Geological map of Etna volcano, 1: 50,000 scale. Ital. J. Geosci. 130, 265–291. Carveni, P., Bella, D., 1994. Aspetti geomorfologici legati ad attivita ` sismica su vulcani attivi: il basso versante orientale dell’Etna come modello di studio. Boll. Acc. Gioenia Sc. Nat 27, 253–285. Carveni, P., Filetti, G., Bella, D., 1997. Aspetti geomorfologici e sismologici connessia a fenomeni di tettonica gravitativa nel basso versante orientale dell’Etna. Geogr. Fis. Din. Quaternaria 20, 43–49. Cavasino, A., 1935. I terremoti d’Italia nel trentacinquennio 1899-1933. Mem. R, Uff. C. Meteor. E Geof. 6 (III), 266. Chiocci, F.L., Coltelli, M., Bosman, A., Cavallaro, D., 2011. Continental margin large scale instability controlling the flank sliding of Etna volcano. Earth Planet Sci. Lett. 305 (2011), 57–64. Civico, R., et al., 2019. Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy). J. Maps 15 (2), 831–837. Coltelli, M., Del Carlo, P., Vezzoli, L., 1998. Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26 (12), 1095–1098. De Beni, E., Branca, S., Coltelli, M., Groppelli, G., Wijbrans, J.R., 2011. 40Ar/39Ar isotopic dating of Etna volcanic succession. Ital. J. Geosci. 130, 292–305. https:// doi.org/10.3301/IJG.2011.14. De Fiore, O., 1908-11. Il periodo di riposo dell’Etna: 1893-1907. Rendiconti e Memorie della Regia Accademia di Scienze, Lettere e Arti degli Zelanti di Acireale, Memorie della Classe di Scienze, serie 3◦. VI, pp. 57–128. De Guidi, G., Imposa, S., Scudero, S., Palano, M., 2014. New evidence for Late Quaternary deformation of the substratum of Mt. Etna volcano (Sicily, Italy): clues indicate active crustal doming. Bull. Volcanol. 76 (5), 1–13. De Guidi, G., Barberi, G., Barreca, G., Bruno, V., Cultrera, F., Grassi, S., Imposa, S., Mattia, M., Monaco, C., Scarfì, L., Scudero, S., 2015. Geological, seismological and geodetic evidence of active thrusting and folding south of Mt. Etna (eastern Sicily): revaluation of “seismic efficiency” of the Sicilian Basal Thrust. J. Geodyn. 90 (2015), 32–41. De Novellis, V., et al., 2019. DInSAR analysis and analytical modelling of Mt. Etna displacements: the December 2018 volcano-tectonic crisis. Geophys. Res. Lett. 46 (2019), 5817–5827. De Rossi, M.S., 1875. Terremoti presso l’Etna e conati eruttivi del medesimo vulcano, dal 7 al 20 Gennaio. Bull. Vulc. It., pp. 19–21 Doglioni, C., Innocenti, F., Mariotti, G., 2001. Why Mt Etna? Terra. Nova 13 (2001), 25–31. Faulkner, D.R., Mitchell, T.M., Healy, D., Heap, M.J., 2006. Slip on’weak’faults by the rotation of regional stress in the fracture damage zone. Nature 444, 922–925. Ferreli, L., Michetti, A.M., Serva, L., Vittori, E., 2002. Stratigraphic evidence of coseismic faulting and aseismic fault creep from exploratory trenches at Mt. Etna volcano (Sicily, Italy). Ancient Seismites 359 (2002), 49. Firetto Carlino, M., et al., 2019. Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics. Sci. Rep. 9, 1–15. G. Tringali et al. Quaternary International 651 (2023) 25–41 41 Groppelli, G., Norini, G., 2011. Geology and tectonics of the southwestern boundary of the unstable sector of Mt. Etna (Italy). J. Volcanol. Geoth. Res. 208, 66–75. Groppelli, G., Tibaldi, A., 1999. Control of rock rheology on deformation style and slip rate along the active Pernicana Fault, Mt. Etna, Italy. Tectonophysics 305, 521–537. Gross, F., et al., 2016. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data. Tectonophysics 667, 63–76. Gutscher, M., Dominguez, S., Mercier de Lepinay, B., Pinheiro, L., Gallais, F., Babonneau, N., Cattaneo, A., Le Faou, Y., Barreca, G., Micallef, A., Rovere, M., 2016. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics 34. https://doi.orgTest/ 10.1002/2015TC003898. Imbo, ` G., 1935. I Terremoti Etnei. Pubblicazione Della Commissione Italiana Per Lo Studio Delle Grandi Calamita, ` vol. 5. Regia Accademia Nazionale dei Lincei, Roma parte 1. ITHACA Working Group, 2019. ITHACA (Italy HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019; ISPRA Geological Survey of Italy. Web Portal. http://sgi2.isprambiente.it/ithacaTest web/Mappatura.aspx. Laiolo, M., et al., 2019. Space-and ground-based geophysical data tracking of magma migration in shallow feeding system of mount Etna volcano. Rem. Sens. 11, 1182. Lanzafame, G., Bousquet, J.C., 1997. The Maltese escarpment and its extension from Mt. Etna to Aeolian Islands (Sicily): importance and evolution of a lithosphere discontinuity. Acta Vulcanol. 9, 113–120. Lo Giudice, E., 1984. Relazione preliminare sui terremoti etnei dell’ottobre 1984. CNR IIV Open File Report 3 (84), 3. Mattia, M., et al., 2015. A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank. G-cubed 16, 635–658. Mattia, M., Bruno, V., Montgomery-Brown, E., Patan`e, D., Barberi, G., Coltelli, M., 2020. Combined seismic and geodetic analysis before, during and after the 2018 Mount Etna eruption. G-cubed 21, e2020GC009218. https://doi.org/10.1029Test/ 2020GC009218. Mohammadioun, B., Serva, L., 2001. Stress drop, slip type, earthquake magnitude, and seismic hazard. Bull. Seismol. Soc. Am. 91, 694–707. Monaco, C., Barreca, G., Bella, D., Brighenti, F., Bruno, V., Carnemolla, F., De Guidi, G., Mattia, M., Menichetti, M., Roccheggiani, M., Scarfì, L., 2021. The seismogenic source of the 2018 December 26th earthquake (Mt. Etna, Italy): a shear zone in the unstable eastern flank of the volcano. J. Geodyn. 143. Monaco, C., et al., 2005. Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the 2001 and 2002–2003 eruptions. J. Volcanol. Geoth. Res. 144, 211–233. Nappi, R., et al., 2018. The 21 August 2017 Md 4.0 Casamicciola earthquake: first evidence of coseismic normal surface faulting at the Ischia volcanic Island. Seismol Res. Lett. 89, 1323–1334. Neri, M., Guglielmino, F., Rust, D., 2007. Flank instability on Mount Etna: radon, radar interferometry, and geodetic data from the southwestern boundary of the unstable sector. J. Geophys. Res. Solid Earth 112. Nicolich, R., Laigle, M., Hirn, A., Cernobori, L., Gallart, J., 2000. Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution. Tectonophysics 329, 121–139. Norini, G., Acocella, V., 2011. Analogue modeling of flank instability at Mount Etna: understanding the driving factors. J. Geophys. Res. Solid Earth 116. Palano, M., Gresta, S., Puglisi, G., 2009. Time-dependent deformation of the eastern flank of Mt. Etna: afterslip or viscoelastic relaxation? Tectonophysics 473, 300–311. Patan`e, G., Imposa, S., 1995. Atlante delle isosiste dei terremoti etnei dal 1971 al 1991. CNR-GNGTS, Ist, vol. 81. Geologia e Geofisica Universit` a di Catania. Platania, G., Platania, G., 1894. Note su i terremoti etnei dell’agosto 1894. Estr.da i Rendiconti dell’Accademia di Scienze, Lettere e Arti Zelanti di Acireale. nuova serie. VI 1894. Platania, G., 1908. Il terremoto del 7 dicembre 1907. Mem. Cl. Sci. R. Acc. Zelanti, s. III V, 13–20, 1905–1906. Platania, G., 1915. Sul periodo sismico del Maggio 1914 nella regione orientale dell’Etna. Mem. Cl. Sci. R.Acc. Zelanti 7 (III), 48. Platania, G., 1920. Sul periodo sismico del novembre 1919 presso Acireale. Bollettino del R. Osservatorio Geodinamico di Catania. Nuova serie, N. 3–4, 8. Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L., Gasperini, L., Govers, R., Klaeschen, D., Monaco, C., Neri, G., Nijholt, N., Orecchio, B., Wortel, R. M., 2016. The Ionian and Alfeo-Etna fault zones: new segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675, 69–90. https://doiTest. org/10.1016/j.tecto.2016.03.016. Rasa, ` R., Azzaro, R., Leonardi, O., 1996. Aseismic creep on faults and flank instability at Mount Etna volcano, Sicily. Geol. Soc. Lond. Spec. Publ. 110, 179–192. Ricco, ` A., 1894. Breve relazione sui terremoti del 7 ed 8 agosto 1894 avvenuti nelle contrade etnee. Boll. Mens. Oss. Centr. Moncalieri 14 (2/10), 145–148. Romagnoli, G., Pavano, F., Tortorici, G., Catalano, S., 2021. The 2018 mount Etna earthquake (Mw 4.9): depicting a natural model of a composite fault system from coseismic surface breaks. Tectonics 40, e2020TC006286. https://doi.org/10.1029Test/ 2020TC006286. Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., Antonucci, A., 2021. Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 3.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.3Test. Ruch, J., et al., 2012. How do volcanic rift zones relate to flank instability? Evidence from collapsing rifts at Etna. Geophys. Res. Lett. 39. Silvestri, A., 1893. L’eruzione dell’Etna del 1886. Atti dell’Acc. Gioenia di Sc. Nat. in Catania serie IV◦ 6 (memoria 11). Silvestri, O., 1879. Fenomeni Dell’Etna Successivi All’ultima Eruzione, pp. 119–124. Bullettino del Vulcanismo Italiano, anno VI, (8-11, agosto-novembre). Solaro, G., et al., 2010. Anatomy of an unstable volcano from InSAR: multiple processes affecting flank instability at Mt. Etna, 1994–2008. J. Geophys. Res. Solid Earth 115. Tarquini, S., et al., 2012. Release of a 10-m-resolution DEM for the Italian territory: comparison with global coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 38, 168–170. Tibaldi, A., Groppelli, G., 2002. Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin. J. Volcanol. Geoth. Res. 115, 277–302. Tortorici, G., Pavano, F., Romagnoli, G., Catalano, S., 2021. The effect of recent resurfacing in volcanic areas on the distribution of co-seismic ground deformation due to strike-slip earthquakes: new insights from the 12/26/2018 seismic event at Mt. Etna. J. Struct. Geol. 145 (20) https://doi.org/10.1016/j.jsg.2021.104308Test. Urlaub, M., et al., 2018. Gravitational collapse of Mount Etna’s southeastern flank. Sci. Adv. 4, eaat9700. Villani, F., Pucci, S., Azzaro, R., et al., 2020. Surface ruptures database related to the 26 December 2018, MW 4.9 Mt. Etna earthquake, southern Italy. Sci. Data 7, 42. https://doi.org/10.1038/s41597-020-0383-0Test. Walter, T.R., Acocella, V., Neri, M., Amelung, F., 2005. Feedback processes between magmatic events and flank movement at Mount Etna (Italy) during the 2002–2003 eruption. J. Geophys. Res. Solid Earth 110. Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84, 974–1002.; http://hdl.handle.net/2122/17211Test

  8. 8
    دورية أكاديمية

    المساهمون: Active Fault and Earthquake Research Institute, Pukyong National University, Busan 48513, South Korea, National Institute of Advanced Studies, Indian Institute of Sciences (IISC) Bengaluru, Karnataka 560012, India, Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece, Department of Civil Engineering, National Center for Seismology, Ministry of Earth Sciences, Govt. of India, New Delhi 110003, India, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio, 11, 22100 Como, Italy, Department of Earth and Environmental Sciences, Pukyong National University, Busan 48513, South Korea, Department of Geological Engineering, Hasanuddin University, Jl. Poros Malino KM.6 Bontomarannu, Gowa, South Sulawesi 92171, Indonesia, National Institute of Water and Atmospheric Research (NIWA) Wellington, New Zealand, State key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China, Department of Urban and Civil Engineering, Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan

    مصطلحات موضوعية: Sulawesi Earthquake, Indonesia, EEEs, ESI-07, ShakeMap, Seismic Hazard

    العلاقة: Engineering Geology; /317(2023); Arias, A. 1970. A measure of earthquake intensity. In: Hansen RJ (ed) Seismic design for nuclear power plants. MIT Press, Cambridge MA, 438–483. Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K.A. and Imamura, F. 2018. Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake. J. Dis.r Res. 13, p.sc 20181201. Bacqueset, G., de Michele, M., Foumelis, M., Raucoules, D., Lemoine, A. and Briole, P. 2020. Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5). Sci. Rep. 10(1), 1-11. Baker, J., Bradley, B., & Stafford, P. (2021). Seismic Risk. In Seismic Hazard and Risk Analysis. Cambridge: Cambridge University Press, pp. 369-403. Bellier, O., Sébrier, M., Beaudouin, T., Villeneuve, M., Braucher, R., Bourles, D., Siame, L., Putranto, E. and Pratomo, I. 2001. High slip rate for a low seismicity along the Palu‐Koro active fault in central Sulawesi (Indonesia). Ter. No. 13(6), 463-470. Journal Pre-proof Journal Pre-proof Bradley, K., Mallick, R., Andikagumi, H., Hubbard, J., Meilianda, E., Switzer, A., Du, N., Brocard, G., Alfian, D., Benazir, B. and Feng, G., 2019. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosc. 12(11), 935-939. Cilia, M.G., Mooney, W.D. and Nugroho, C., 2021. Field insights and analysis of the 2018 Mw 7.5 Palu, Indonesia earthquake, tsunami and landslides. P. App. Geophy. 178(12), 4891-4920. Cipta, A., Omang, A., Supartoyo, Minarno, P. A., Solilkhin, A., Falah, F. N., and Efendi, R., 2018. Anomali perilaku gelombang tsunami, in Di balik pesona Palu, ISBN: 978‐602‐9105‐76‐6, Badan Geologi, Kementerian Energi dan Sumber Daya Mineral, 133‐141. Del Gaudio, V. and Wasowski, J. 2011. Advances and problems in understanding the seismic response of potentially unstable slopes. Eng. Geol. 122(1-2), 73-83. Efim, P. 1997. The January 1, 1996 Sulawesi Island Tsunami. Science of Tsunami Hazards, Int. J. Tsu. Soc. 15(2), 107-123. Fan, X., Scaringi, G., Korup, O., West, A.J., van Westen, C.J., Tanyas, H., Hovius, N., Hales, T.C., Jibson, R.W., Allstadt, K.E. and Zhang, L. 2019. Earthquake‐induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophy. 57(2), 421-503. Faris, F., Fathani, T.F. and Wang, F. 2019. Report on the UNESCO Chair workshop on geoenvironmental disaster reduction 28th April-1st may, 2019, Palu-Jakarta, Indonesia. Geoenv. Dis. 6(1), 1-6. Fielding, E.J., Talebian, M., Rosen, P.A., Nazari, H., Jackson, J.A., Ghorashi, M. and Walker, R. 2005. Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. J. Geophy. Res. 110(B3). Grünthal, G., Musson, R.M.W., Schwarz, J., Stucchi, M. 1998. European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15, Centre Européen de Géodynamique et de Séismologie, Luxembourg, pp 99. https://doi.org/10.2312/EMS-98Test. http://www.gfz-potsdam.de/EMS98Test. Hall, R. and Wilson, M.E.J. 2000. Neogene sutures in eastern Indonesia. J. Asi. Ear. Sci. 18(6), 781-808. Hamzah, L., Puspito, N.T. and Imamura, F., 2000. Tsunami catalog and zones in Indonesia. J. Nat.Dis. Sc. 22(1), 25-43. Huayong, N., Hua, G., Yanchao, G., Blumetti, A.M., Comerci, V., Di Manna, P., Guerrieri, L. and Vittori, E. 2019. Comparison of Earthquake Environmental Effects and ESI intensities for recent seismic events in different tectonic settings: Sichuan (SW China) and Central Apennines (Italy). Eng. Geol. 258, 105149 ISPRA-INQUATERPRO. EEE Catalogue. INQUA TERPRO Project #0811, ISPRA – Geological Survey of Italy Working Group., http://www.eeecatalog.sinanet.apat.it/terremoti/index.phpTest. Jaya, A., Nishikawa, O. and Hayasaka, Y. 2017. LA-ICP-MS zircon U–Pb and muscovite K–Ar ages of basement rocks from the south arm of Sulawesi, Indonesia. Lith. 292, 96-110. Jaya, A., Nishikawa, O. and Jumadil, S. 2019. Distribution and morphology of the surface ruptures of the 2018 Donggala–Palu earthquake, Central Sulawesi, Indonesia. Eart. Plan. Sp. 71(1), 1-13. Jena, R., Pradhan, B., Beydoun, G., Sofyan, H. and Affan, M. 2020. Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh province, Indonesia. Geosc. Front. 11(2), 613-634. Keefer, D.K. 1984. Landslides caused by earthquakes. Geol. Soc. Am. Bul. 95(4), 406-421. Lario, J., Bardají, T., Silva, P.G., Zazo, C. and Goy, J.L., 2016. Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale). Geol. Act. 14(2), 179-193. Larsen, I.J., Montgomery, D.R. and Korup, O. 2010. Landslide erosion controlled by hillslope material. Nat. Geosc. 3(4), 247-251. Legendre, C. P., Tseng, T. L., Mittal, H., Hsu, C. H., Karakhanyan, A., and Huang, B. S., 2017. Complex wave propagation revealed by peak ground velocity maps in the Caucasus Area. Seis. Res.Let. 88(3), 812-821. Lekkas, E.L. and Mavroulis, S.D. 2015. Earthquake environmental effects and ESI 2007 seismic intensities of the early 2014 Cephalonia (Ionian Sea, western Greece) earthquakes (January 26 and February 3, Mw 6.0). Nat. Haz. 78(3), 1517-1544. Li, C., Liu, J., Ma, J., Su, G., Lan, J., Li, X., Ren, Z. and Ran, H. 2022. Field observations of surface ruptures accompanying a tsunami and Supershear earthquake along a plate boundary strike-slip fault. Geol. Mag. 1-11. Mason, H.B., Gallant, A.P., Hutabarat, D., Montgomery, J., Reed, A.N., Wartman, J., Irsyam, M., Prakoso, W., Djarwadi, D., Harnanto, D. and Alatas, I. 2021a. Geotechnical Reconnaissance: The 28 September 2018 M7. 5 Palu-Donggala, Indonesia Earthquake. Mason, H.B., Montgomery, J., Gallant, A.P., Hutabarat, D., Reed, A.N., Wartman, J., Irsyam, M., Simatupang, P.T., Alatas, I.M., Prakoso, W.A. and Djarwadi, D. 2021b. East Palu Valleyflowslides induced by the 2018 MW 7.5 Palu-Donggala earthquake. Geomor. 373, p.107482 Mavroulis, S., Triantafyllou, I., Karavias, A., Gogou, M., Katsetsiadou, K.N., Lekkas, E., Papadopoulos, G.A. and Parcharidis, I. 2021. Primary and secondary environmental effects triggered by the 30 October 2020, Mw= 7.0, Samos (Eastern Aegean Sea, Greece) earthquake based on post-event field surveys and InSAR analysis. App. Sci. 11(7), p.3281. Michetti, A.M., Esposito, E., Gürpinar, A., Mohammadioun, B., Porfido, S., Rogozhin, E., Serva, L., Tatevossian, R., Vittori, E., Audemard, F. and Comerci, V. 2004. The INQUA scale. An innovative approach for assessing earthquake intensities based on seismically induced ground effects in natural environment. Special paper of The Italian Environment Protection and Technical Services Agency (APAT), Italy, Mem. Descr. Carta geol. d’Italia, LXVII. Michetti, A.M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J. and Comerci, V. 2007. Intensity scale ESI 2007, Mem. Descrittive della Carta Geologica d’Italia, Rm, 74, 53. Mikami, T., Shibayama, T., Esteban, M., Takabatake, T., Nakamura, R., Nishida, Y., Achiari, H., Marzuki, A.G., Marzuki, M.F.H., Stolle, J. and Krautwald, C. 2019. Field survey of the 2018 Sulawesi tsunami: Inundation and run-up heights and damage to coastal communities. P. Appl.Geophy. 176(8), 3291-3304. Mittal, H.; Wu, Y.M.; Lin, T.L.; Legendre, C.P.; Gupta, S.; Yang, B.M. 2019. Time-dependent ShakeMaps map for Uttarakhand Himalayas, India, using recorded earthquakes. Act. Geophy. 67, 753–763, doi:10.1007/s11600-019-00281-7. Mittal, H., Wu, Y.M., Sharma, M.L., Lin, T.L. and Yang, B.M., 2018. Shake maps generation for Delhi region using two different algorithms. Proceedings of the 16th Symposium on Earthquake Engineering, Department of Earthquake Engineering, Indian Institute of Technology, Roorkee, India, 20-22. Miyajima, M., Setiawan, H., Yoshida, M., Ono, Y., Kosa, K. and Oktaviana, I.S. 2019. Geotechnical damage in the 2018 Sulawesi earthquake, Indonesia. Geoenv. Dis. 6(1), 1-8. Medvedev, S., Sponheuer, W., Karník, V. and Jena, V. 1964. Neue seismische Skala Intensity scale of earthquakes, 7. Tagung der Europäischen Seismologischen Kommission vom 24.9. bis 30.9. 1962. Jena, Veröff. Institut für Bodendynamik und Erdbebenforschung in Jena, 77, 69-76. Montgomery, J., Wartman, J., Reed, A.N., Gallant, A.P., Hutabarat, D. and Mason, H.B. 2021. Field reconnaissance data from GEER investigation of the 2018 MW 7.5 Palu-Donggala earthquake. Data in Bri. 34, 106742. Muhari, A., Imamura, F., Arikawa, T., Hakim, A.R. and Afriyanto, B. 2018. Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data. J. Disa. Res. 13, p.sc20181108. Journal Pre-proof Journal Pre-proof Naik, S.P., Mohanty, A., Porfido, S., Tuttle, M., Gwon, O. and Kim, Y.S. 2020. Intensity estimation for the 2001 Bhuj earthquake, India on ESI-07 scale and comparison with historical 16th June 1819 Allah Bund earthquake: A test of ESI-07 application for intraplate earthquakes. Quat. Int. 536, 127-143. Nappi, R., Porfido, S., Paganini, E., Vezzoli, L., Ferrario, M.F., Gaudiosi, G., Alessio, G. and Michetti, A.M. 2021. The 2017, MD= 4.0, Casamicciola earthquake: ESI-07 scale evaluation and implications for the source model. Geosc. 11(2), 44. Natawidjaja, D.H., Daryono, M.R., Prasetya, G., Liu, P.L., Hananto, N.D., Kongko, W., Triyoso, W., Puji, A.R., Meilano, I., Gunawan, E. and Supendi, P. 2021. The 2018 M w7. 5 Palu ‘supershear’earthquake ruptures geological fault's multisegment separated by large bends: results from integrating field measurements, LiDAR, swath bathymetry and seismic-reflection data. Geophy.J.Int. 224(2), 985-1002. Omira, R., Dogan, G.G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Proietti, C., Probst, P., Paparo, M.A., Wronna, M. and Zaytsev, A. 2019. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. P. Appl. Geophy. 176(4), 1379-1395. Papanikolaou, I. and Melaki, M. 2017. The Environmental Seismic Intensity Scale (ESI 2007) in Greece, addition of new events and its relationship with magnitude in Greece and the Mediterranean; preliminary attenuation relationships. Quat. Int. 451, 37-55. Papadopoulos, G. and Imamura, F. 2001. A proposal for a new tsunami intensity scale, ITS 2001. Proceedings, Session, 5, 5-1. Papathanassiou, G., Valkaniotis, S., Ganas, A., Grendas, N. and Kollia, E. 2017. The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07. Eng. Geol. 220, 13-30. Patria, A. and Putra, P.S. 2020. Development of the Palu–Koro Fault in NW Palu Valley, Indonesia. Geosc. Lett. 7(1), 1-11. Paulik, R., Gusman, A., Williams, J.H., Pratama, G.M., Lin, S.L., Prawirabhakti, A., Sulendra, K., Zachari, M.Y., Fortuna, Z.E.D., Layuk, N.B.P. and Suwarni, N.W.I. 2019. Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. P. Appl. Geophy. 176(8), 3305-3321. Pelinovsky, E. 1996, January. Tsunami of 1 January 1996 in Indonesia. In Conference on Natural Disaster Reduction, pp 307-3. Pelinovsky, E., Yuliadi, D., Prasetya, G. and Hidayat, R. 1997. The 1996 Sulawesi tsunami. Nat. Haz. 16(1), 29-38. Journal Pre-proof Journal Pre-proof Prasetya, G.S., De Lange, W.P. and Healy, T.R., 2001. The Makassar strait tsunamigenic region, Indonesia. Nat. Haz. 24(3), 295-307. Pribadi, S., Gunawan, I., Nugraha, J., Haryono, T., Erwana, Basri, C.A., Romadon, I., Mustarang,\ A., Heriyanto, Yatimantoro, T. 2018. Tsuanmi Survey on Palu Bay, 2018, Indonesia Geophysics, Climate and Meteorological Agency (BMKG). Porfido, S., Esposito, E., Vittori, E., Tranfaglia, G., Michetti, A.M., Blumetti, M., Ferreli, L., Guerrieri, L. and Serva, L., 2002. Areal distribution of ground effects induced by strong earthquakes in the Southern Apennines (Italy). Surv. Geophy. 23(6), 529-562. Porfido, S., Esposito, E., Vittori, E., Tranfaglia, G., Guarrieri, L. and Pece, R. 2007. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines Ital. J. Geosci. Porfido, S., Alessio, G., Gaudiosi, G. and Nappi, R. 2020. New perspectives in the definition/evaluation of seismic hazard through analysis of the environmental effects induced by earthquakes. Geosc. 10(2), 58. PuSGeN, 2018. Post-event Studies of The 28 September 2018 Earthquake in Palu, Central Sulawesi (Kajian Gempa Palu Provinsi Sulawesi Tengah, 28 September 2018 (M7.4)), Pusat Perumahan dan Pemukiman, Balitbang PU. PuSGeN, 2019. Progress Report of Post-2018 earthquake Studies forf Mapping The Palukoro Fault Hazard Zone (Laporan Pemetaan Zona Rawan Bencana Sesar Palukoro Pasca Gempa P28 Septemberr 28 2018), Center For Research And Development For Housing, Agency for Research and Development, Ministry of Public Works and Housing. Putra, P.S., Aswan, A., Maryunani, K.A., Yulianto, E. and Kongko, W. 2019. Field survey of the 2018 Sulawesi tsunami deposits. P. Appl. Geophy. 176(6), 2203-2213. Qi, T., Meng, X., Qing, F., Zhao, Y., Shi, W., Chen, G., Zhang, Y., Li, Y., Yue, D., Su, X. and Guo, F. 2021. Distribution and characteristics of large landslides in a fault zone: A case study of the NE Qinghai-Tibet Plateau. Geomor. 379, p.107592. Rangin, C., Le Pichon, X., Mazzotti, S., Pubellier, M., Chamot-Rooke, N., Aurelio, M., Walpersdorf, A. and Quebral, R. 1999. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia. Geophy. J. Int. 139(2), 296-316. Rasanen, R.A., Marafi, N.A. and Maurer, B.W. 2021. Compilation and forecasting of paleoliquefaction evidence for the strength of ground motions in the US Pacific Northwest. Eng. Geol. 292, 106253. Journal Pre-proof Journal Pre-proof Rodríguez-Pascua, M.A., Pérez-López, R., Giner-Robles, J.L., Silva, P.G., Garduño-Monroy, V.H. and Reicherter, K. 2011a. A comprehensive classification of Earthquake Archaeological Effects (EAE) in archaeoseismology: Application to ancient remains of Roman and Mesoamerican cultures. Quat. Int. 242(1), 20-30. Rodríguez-Peces, M.J., García-Mayordomo, J., Azañón, J.M., Arévalo, J.M.I. and Pintor, J.J., 2011b. Constraining pre-instrumental earthquake parameters from slope stability back-analysis: Palaeoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Quat. Int., 242(1), 76-89. Sanchez, J.J. and Maldonado, R.F., 2016. Application of the ESI 2007 scale to two large earthquakes: South Island, New Zealand (2010 M w 7.1), and Tohoku, Japan (2011 M w 9.0). Bul. Seism. Soc. Am. 106 (3), 1151-1161. Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L., Michetti, A.M., Mohammadioun, B., Mohammadioun, G.C., Porfido, S. and Tatevossian, R.E. 2016. Earthquake hazard and the Environmental Seismic Intensity (ESI) scale. P. Appl. Geophy. 173(5), 1479-1515. Silva, P.G., Pérez-López, R., Rodríguez-Pascua, M.A., Giner, J.L., Huerta, P., Bardají, T. and Martín-González, F. 2013. Earthquake environmental effects (EEEs) triggered by the 2011 Lorca earthquake (Mw 5.2, Betic Cordillera, SE Spain): Application of the ESI-07 macroseismic scale. Seismic Hazard, Critical Facilities and Slow Active Faults, 237-240. Silva, P.G., Elez, J., Giner-Robles, J.L., Rodríguez-Pascua, M.A., Pérez-López, R., Roquero, E., Bardají, T. and Martínez-Graña, A. 2017. ESI-07 ShakeMaps for instrumental and historical events in the Betic Cordillera (SE Spain): An approach based on geological data and applied to seismic hazard. Quat. Int. 451, 185-208. Silva, P.G., Rodríguez-Pascua, M.A., Giner Robles, J.L., Élez, J, Pérez-López, R., Davila, M.B.B. 2019. Catalogue of the Geological Effects of Earthquakes in Spain Based on the ESI-07 Macroseismic Scale: A New Database for Seismic Hazard Analysis. Geosc. 9, 334. Silva, P.G., Elez, J., Pérez-López, R., Giner-Robles, J.L., Gómez-Diego, P.V., Roquero, E., Rodríguez-Pascua, M.Á. and Bardají, T., 2021. The AD 1755 Lisbon Earthquake-Tsunami: Seismic source modelling from the analysis of ESI-07 environmental data. Qut. Int. Socquet, A., Hollingsworth, J., Pathier, E. and Bouchon, M. 2019. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geo. 12(3), 192-199. Tunas, I.G., Tanga, A. and Oktavia, S.R. 2020. Impact of landslides induced by the 2018 Palu Earthquake on flash flood in Bangga River Basin, Sulawesi, Indonesia. J. Ecol. Eng. 21(2). Journal Pre-proof Journal Pre-proof Umar, M., Margaglio, G. and Fitrayansyah, A. 2019. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: Impacts and challenges to coastal communities. Int. J. Disa. Risk Red. 38, p.101229. Valkaniotis, S., Ganas,A., Barberopoulou A. 2018. A preliminary report on the M7.5 Palu earthquake co-seismic ruptures and landslides using image correlation techniques on optical satellite data, 19th October 2018. van Leeuwen, T.M. 2005. Stratigraphy and tectonic setting of the Cretaceous and Paleogene volcanic-sedimentary successions in northwest Sulawesi, Indonesia: implications for the Cenozoic evolution of Western and Northern Sulawesi. J. Asia. Ear. Sci. 25(3), 481-511. Velázquez-Bucio, M.M., Ferrario, M.F., Muccignato, E., Porfido, S., Sridharan, A., Chunga, K., Livio, F., Gopalan, S. and Michetti, A.M., 2021. Environmental effects caused by the Mw 8.2, September 8, 2017, and Mw 7.4, June 23, 2020, Chiapas-Oaxaca (Mexico) subduction events: Comparison of large intraslab and interface earthquakes. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.028Test. Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A.B., Hube, M.A., Gustavo, C.D. and María, H.S. 2017. Development of a fragility model for the residential building stock in South America. Earthq. Spe. 33(2), 581-604. Wald, D.J., Quitoriano, V., Heaton, T.H., Kanamori, H., Scrivner, C.W., and Worden, C.B. 1999. TriNet “ShakeMaps”: Rapid Generation of Peak Ground-motion and Intensity Maps for Earthquakes in Southern California, Earthq. Spe. 15(3), 537-556. Wang, L., Gao, H., Feng, G. and Xu, W. 2018. Source parameters and triggering links of the earthquake sequence in central Italy from 2009 to 2016 analyzed with GPS and InSAR data. Tectonophy. 744, 285-295. Wardani, S.P.R. and Muntohar, A.S. 2013. Lessons Learned from the Recent Natural Disasters in Indonesia. In Geotechnical Predictions and Practice in Dealing with Geohazards, Springer, Dordrecht, pp 47-59. Wasowski, J., Keefer, D.K. and Lee, C.T. 2011. Toward the next generation of research on earthquake-induced landslides: current issues and future challenges. Eng. Geol. 122(1-2), 1-8. Watkinson, I.M. and Hall, R. 2017. Fault systems of the eastern Indonesian triple junction: evaluation of Quaternary activity and implications for seismic hazards. Geo. Soc. Lon. 441(1), 71-120. Widiyanto, W., Santoso, P.B., Hsiao, S.C. and Imananta, R.T. 2019. Post-event field survey of 28 September 2018 Sulawesi earthquake and tsunami. Nat.Haz. Ear.Sys.Sci. 19(12), 2781-2794. Journal Pre-proof Journal Pre-proof Williams, J.H., Paulik, R., Wilson, T.M., Wotherspoon, L., Rusdin, A. and Pratama, G.M. 2020. Tsunami fragility functions for road and utility pole assets using field survey and remotely sensed data from the 2018 Sulawesi tsunami, Palu, Indonesia. Pure and App. Geoph. 177(8), 3545-3562. Wood, H.O. and Neumann, F. 1931. Modified Mercalli intensity scale of 1931. Bul. Seis. Soc. Ame. 21(4), 277-283. Wu, Y.M., Mittal, H., Huang, T.C., Yang, B.M., Jan, J.C. and Chen, S.K. 2019. Performance of a low‐cost earthquake early warning system (P‐Alert) and shake map production during the 2018 M w 6.4 Hualien, Taiwan, earthquake. Seis. Res. Let. 90(1), 19-29. Wu, D., Ren, Z., Liu, J., Chen, J., Guo, P., Yin, G., Ran, H., Li, C. and Yang, X. 2021. Coseismic surface rupture during the 2018 Mw 7.5 Palu earthquake, Sulawesi Island, Indonesia. Geol. Soc. Ame. Bul. 133(5-6), 1157-1166. Yang, B.M., Huang, T.C. and Wu, Y.M., 2018. ShakingAlarm: A nontraditional regional earthquake early warning system based on time‐dependent anisotropic peak ground‐motion attenuation relationships. Bul. Seis. Soc. Am. 108(3A), 1219-1230. Yang, B.M., Mittal, H. and Wu, Y.M., 2021. Real-time production of PGA, PGV, Intensity, and Sa ShakeMaps using dense MEMS-based sensors in Taiwan. Sens. 21(3), 943. Zhao, B. 2021. Landslides triggered by the 2018 Mw 7.5 Palu Supershear earthquake in Indonesia. Eng. Geol. 294, 106406.; http://hdl.handle.net/2122/17184Test

  9. 9
    دورية أكاديمية

    المساهمون: Porfido, Sabina, Alessio, Giuliana, Gaudiosi, Germana, Nappi, Rosa, Michetti, Alessandro Maria

    وصف الملف: ELETTRONICO

    العلاقة: info:eu-repo/semantics/altIdentifier/wos/WOS:000786294100001; volume:12; issue:4; firstpage:1; lastpage:11; numberofpages:11; journal:GEOSCIENCES; http://hdl.handle.net/11383/2132904Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85129460443; https://www.mdpi.com/2076-3263/12/4/173Test

  10. 10
    مؤتمر

    وصف الملف: text

    العلاقة: https://oceanrep.geomar.de/id/eprint/57308/1/Poster_PATA_2022_Tringali.pdfTest; Trigali, G., Victor, P., Azzaro, R., Bella, D., Bonforte, A., Crosetto, S., Croppelli, G., Michetti, A. M., Pettinato, R., Urlaub, M. and Ziegenhagen, T. (2022) Site selection for creepmeter fault monitoring in a complex volcano- tectonic framework: the Mt. Etna eastern flank as an example. Open Access [Poster] In: PATA Days 2022. , 26.-30.09.2022, Aix-en-Provence, France .