يعرض 1 - 10 نتائج من 180 نتيجة بحث عن '"MAGNETIC-RESONANCE PERFUSION"', وقت الاستعلام: 0.77s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Folia Neuropathologica, Vol 61, Iss 4, Pp 371-378 (2023)

    وصف الملف: electronic resource

    العلاقة: https://www.termedia.pl/The-use-of-MRTest-perfusion-parameters-in-differentiation-between-glioblastoma-recurrence-and-radiation-necrosis,20,52195,1,1.html; https://doaj.org/toc/1641-4640Test; https://doaj.org/toc/1509-572XTest

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المساهمون: При поддержке гранта Президента РФ, соглашение 075-15-2020-192 от 19.03.2020.

    المصدر: Medical Visualization; Том 25, № 3 (2021); 66-72 ; Медицинская визуализация; Том 25, № 3 (2021); 66-72 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/940/672Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/940/976Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/940/977Test; Li W., Huang E., Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J. Alzheimers. Dis. 2017; 57 (1): 29–36. http://doi.org/10.3233/JAD-161250Test; Forbes J.M., Cooper M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013; 93 (1): 137–188.; Wu D., Wu C., Zhong Y. The association between paraoxonase 1 activity and the susceptibilities of diabetes mellitus, diabetic macroangiopathy and diabetic microangiopathy. J. Cell. Mol. Med. 2018; 22 (9): 4283–4291. http://doi.org/10.1111/jcmm.13711Test; Emanuel A.L., van Duinkerken E., Wattjes M.P., Klein M., Barkhof F., Snoek F.J., Diamant M., Eringa E.C., Ijzerman R.G., Serné E.H. The presence of cerebral white matter lesions and lower skin microvascular perfusion predicts lower cognitive performance in type 1 diabetes patients with retinopathy but not in healthy controls-A longitudinal study. Microcirculation. 2019; 26 (3): e12530. http://doi.org/10.1111/micc.12530Test; Page K.A., Arora J., Qiu M., Relwani R., Constable R.T., Sherwin R.S. Small decrements in systemic glucose provoke increases in hypothalamic blood flow prior to the release of counterregulatory hormones. Diabetes. 2009; 58: 448–452.; Song J., Cui S., Chen Y., Ye X., Huang X., Su H., Zhou Y., Liu X., Chen W., Shan X., Yan Z., Liu K. Disrupted Regional Cerebral Blood Flow in Children With NewlyDiagnosed Type 1 Diabetes Mellitus: An Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Study. Front. Neurol. 2020; 11: 572.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 2007; 356 (18): 1842–1852. http://doi.org/10.1056/NEJMoa066397Test. Erratum in: N. Engl. J. Med. 2009; 361 (19): 1914.; Hardigan T., Ward R., Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin. Sci. (Lond.). 2016; 130 (20): 1807–1822. http://doi.org/10.1042/CS20160397Test; Mogi M., Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ. J. 2011; 75 (5): 1042–1048. http://doi.org/10.1253/circj.cj-11-0121Test; Toth P., Tarantini S., Csiszar A., Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 2017; 312 (1): H1–H20. http://doi.org/10.1152/ajpheart.00581.2016Test; Lachin J.M., Bebu I., Bergenstal R.M., Pop-Busui R., Service F.J., Zinman B., Nathan D.M.; DCCT/EDIC Research Group. Association of Glycemic Variability in Type 1 Diabetes With Progression of Microvascular Outcomes in the Diabetes Control and Complications Trial. Diabetes Care. 2017; 40 (6): 777–783. http://doi.org/10.2337/dc16-2426Test.; Képes Z., Nagy F., Budai Á., Barna S., Esze R., Somodi S., Káplár M., Garai I., Varga J. Age, BMI and diabetes as independent predictors of brain hypoperfusion. Nucl. Med. Rev. 2021; 24 (1):11–15.; van Golen L.W., Huisman M.C., Ijzerman R.G., Hoetjes N.J., Schwarte L.A., Lammertsma A.A., Diamant M. Cerebral blood flow and glucose metabolism measured with positron emission tomography are decreased in human type 1 diabetes. Diabetes. 2013; 62 (8): 2898–2904. http://doi.org/10.2337/db12-1159Test; Bronson-Castain K.W., Bearse M.A. Jr, Neuville J., Jonasdottir S., King-Hooper B., Barez S., Schneck M.E., Adams A.J. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina. 2012; 32: 92–102.; Brands A.M., Kessels R.P., de Haan E.H., Kappelle L.J., Biessels G.J. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur. J. Pharmacol. 2004; 490:159–168.; Káplár M., Paragh G., Erdei A., Csongrádi E., Varga E., Garai I., Szabados L., Galuska L., Varga J. Changes in cerebral blood flow detected by SPECT in type 1 and type 2 diabetic patients. J. Nucl. Med. 2009; 50 (12): 1993-1998. http://doi.org/10.2967/jnumed.109.066068Test; Daulatzai M.A. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J. Neurosci. Res. 2017; 95 (4): 943–972. http://doi.org/10.1002/jnr.23777Test; Last D., Alsop D.C., Abduljalil A.M., Marquis R.P., de Bazelaire C., Hu K., Cavallerano J., Novak V. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007; 30 (5): 1193–1199. http://doi.org/10.2337/dc06-2052;SongJ-2020Test; van Elderen S.G., Brandts A., van der Grond J., Westenberg J.J., Kroft L.J., van Buchem M.A., Smit J.W., de Roos A. Cerebral perfusion and aortic stiffness are independent predictors of white matter brain atrophy in type 1 diabetic patients assessed with magnetic resonance imaging. Diabetes Care. 2011; 34 (2): 459–463. http://doi.org/10.2337/dc10-1446Test; Mangia S., Tesfaye N., De Martino F., Kumar A.F., Kollasch P., Moheet A.A., Eberly L.E., Seaquist E.R. Hypoglycemia-induced increases in thalamic cerebral blood flow are blunted in subjects with type 1 diabetes and hypoglycemia unawareness. J. Cereb. Blood. Flow. Metab. 2012; 32 (11): 2084–2090. http://doi.org/10.1038/jcbfm.2012.117Test; Gejl M., Gjedde A., Brock B., Møller A., van Duinkerken E., Haahr H.L., Hansen C.T., Chu P.L., Stender-Petersen K.L., Rungby J. Effects of hypoglycaemia on working memory and regional cerebral blood flow in type 1 diabetes: a randomised, crossover trial. Diabetologia. 2018; 61 (3): 551–561. http://doi.org/10.1007/s00125-017-4502-1Test; Toprak H., Yetis H., Alkan A., Filiz M., Kurtcan S., Aralasmak A., Aksu M.Ş., Cesur Y. Relationships of DTI findings with neurocognitive dysfunction in children with Type 1 diabetes mellitus. Br J Radiol. 2016; 89 (1059): 20150680. http://doi.org/10.1259/bjr.20150680Test; https://medvis.vidar.ru/jour/article/view/940Test

  10. 10