يعرض 1 - 10 نتائج من 301 نتيجة بحث عن '"Locomotor sensitization"', وقت الاستعلام: 0.83s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Guegan, Thomas

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

    مرشدي الرسالة: Maldonado, Rafael, Martín Sánchez, Miquel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 616.89

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Antioxidants; Volume 12; Issue 4; Pages: 933

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    العلاقة: Health Outcomes of Antioxidants and Oxidative Stress; https://dx.doi.org/10.3390/antiox12040933Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: Wen Ting Cai, Wha Young Kim, Myung Ji Kwak, Haeun Rim, Seung Eun Lee, Lars Björn Riecken, Helen Morrison, Jeong-Hoon Kim, Kim, Jeong Hoon

    العلاقة: JOURNAL OF NEUROCHEMISTRY; J01620; OAK-2022-02313; https://ir.ymlib.yonsei.ac.kr/handle/22282913/188562Test; T202201490; JOURNAL OF NEUROCHEMISTRY, Vol.161(3) : 266-280, 2022-05

  8. 8
    دورية أكاديمية

    المصدر: Revista Colombiana de Psicología; Vol. 31 No. 1 (2022): Revista Colombiana de Psicología; 13-22 ; Revista Colombiana de Psicología; Vol. 31 Núm. 1 (2022): Revista Colombiana de Psicología; 13-22 ; Revista Colombiana de Psicología; v. 31 n. 1 (2022): Revista Colombiana de Psicología; 13-22 ; 2344-8644 ; 0121-5469

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/psicologia/article/view/89822/82849Test; Abreu-Villaça, Y., Seidler, F. J., Tate, C. A., & Slotkin, T. A. (2003). Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. Brain Research, 979, 114–128. https://doi.org/10.1016/S0006-8993Test(03)02885-3; Adermark, L., Morud, J., Lotfi, A., Jonsson, S., Söderpalm, B., & Ericson, M. (2015). Age-contingent influence over accumbal neurotransmission and the locomotor stimulatory response to acute and repeated administration of nicotine in Wistar rats. Neuropharmacology, 97, 104–112. https://doi.org/10.1016/j.neuropharm.2015.06.001Test; Benwell, M. E. M., Balfour, D. J. K., & Birrell, C. E. (1995). Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. British Journal of Pharmacology, 114, 454–460. https://doi.org/10.1111/j.1476-5381.1995.tb13248.xTest; Bernardi, R. E., & Spanagel, R. (2014). Basal activity level in mice predicts the initial and sensitized locomotor response to nicotine only in high responders. Behavioural Brain Research, 264, 143–150. https://doi.org/10.1016/j.bbr.2014.01.046Test; Bishnoi, I. R., Ossenkopp, K., & Kavaliers, M. (2020). Sex and age differences in locomotor and anxiety‐like behaviors in rats: From adolescence to adulthood. Developmental Psychobiology, 56, dev.22037. https://doi.org/10.1002/dev.22037Test; Cadoni, C., & Di Chiara, G. (2000). Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. European Journal of Pharmacology, 387, R23–R25. https://doi.org/10.1016/S0014-2999Test(99)00843-2; Camarini, R., & Pautassi, R. M. (2016). Behavioral sensitization to ethanol: Neural basis and factors that influence its acquisition and expression. Brain Research Bulletin, 125, 53–78. https://doi.org/10.1016/j.brainresbull.2016.04.006Test; Cao, J., Belluzzi, J. D., Loughlin, S. E., Dao, J. M., Chen, Y., & Leslie, F. M. (2010). Locomotor and stress responses to nicotine differ in adolescent and adult rats. Pharmacology Biochemistry and Behavior, 96, 82–90. https://doi.org/10.1016/j.pbb.2010.04.010Test; Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plusmaze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134, 49–57. https://doi.org/10.1016/S0166-4328Test(01)00452-1; Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 1189–1201. https://doi.org/10.1016/j.jaac.2010.08.017Test; Counotte, D. S., Goriounova, N. A., Li, K. W., Loos, M., van der Schors, R. C., Schetters, D., Schoffelmeer, A. N. M., Smit, A. B., Mansvelder, H. D., Pattij, T., & Spijker, S. (2011). Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nature Neuroscience, 14, 417–419. https://doi.org/10.1038/nn.2770Test; Counotte, D. S., Spijker, S., Van de Burgwal, L. H., Hogenboom, F., Schoffelmeer, A. N. M., De Vries, T. J., Smit, A. B., & Pattij, T. (2009). Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology, 34, 299–306. https://doi.org/10.1038/npp.2008.96Test; Craig, E. L., Zhao, B., Cui, J. Z., Novalen, M., Miksys, S., & Tyndale, R. F. (2014). Nicotine pharmacokinetics in rats is altered as a function of age, impacting the interpretation of animal model data. Drug Metabolism and Disposition, 42, 1447–1455. https://doi.org/10.1124/dmd.114.058719Test; DiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9, 9–20. https://doi.org/10.1080/14622200601078277Test; Doremus-Fitzwater, T. L., Varlinskaya, E. I., & Spear, L. P. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72, 114–123. https://doi.org/10.1016/j.bandc.2009.08.008Test; Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162–171. https://doi.org/10.1016/j.neuroscience.2012.10.048Test; Elliott, B. M., Faraday, M. M., Phillips, J. M., & Grunberg, N. E. (2004). Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacology Biochemistry and Behavior, 77, 21–28. https://doi.org/10.1016/j.pbb.2003.09.016Test; Falco, A. M., & Bevins, R. A. (2015). Individual differences in the behavioral effects of nicotine: A review of the preclinical animal literature. Pharmacology Biochemistry and Behavior, 138, 80–90. https://doi.org/10.1016/j.pbb.2015.09.017Test; Faraday, M. M., Elliott, B. M., & Grunberg, N. E. (2001). Adult vs. adolescent rats differ in biobehavioral responses to chronic nicotine administration. Pharmacology Biochemistry and Behavior, 70, 475–489. https://doi.org/10.1016/S0091-3057Test(01)00642-6; Fredrickson, P., Boules, M., Yerbury, S., & Richelson, E. (2003). Blockade of nicotine-induced locomotor sensitization by a novel neurotensin analog in rats. European Journal of Pharmacology, 458, 111–118. https://doi.org/10.1016/S0014-2999Test(02)02689-4; Gabriel, D. B. K., Freels, T. G., Setlow, B., & Simon, N. W. (2019). Risky decision-making is associated with impulsive action and sensitivity to first-time nicotine exposure. Behavioural Brain Research, 359, 579–588. https://doi.org/10.1016/j.bbr.2018.10.008Test; Goriounova, N. A., & Mansvelder, H. D. (2012). Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood. Frontiers in Synaptic Neuroscience, 4, 1–9. https://doi.org/10.3389/fnsyn.2012.00003Test; Goutier, W., O’Connor, J. J., Lowry, J. P., & McCreary, A. C. (2015). The effect of nicotine induced behavioral sensitization on dopamine d1 receptor pharmacology: An in vivo and ex vivo study in the rat. European Neuropsychopharmacology, 25, 933–943. https://doi.org/10.1016/j.euroneuro.2015.02.008Test; Kalivas, P. W. (1995). Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug and Alcohol Dependence, 37, 95–100. https://doi.org/10.1016/0376-8716Test(94)01063-Q; Kolokotroni, K. Z., Rodgers, R. J., & Harrison, A. A. (2011). Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology, 217, 455–473. https://doi.org/10.1007/s00213-011-2296-2Test; Lamprea, M. R., Cardenas, F. P., Setem, J., & Morato, S. (2008). Thigmotactic responses in an openfield. Brazilian Journal of Medical and Biological Research, 41, 135–140. https://doi.org/10.1590/S0100-879X2008000200010Test; Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178, 481–492. https://doi.org/10.1007/s00213-004-2021-5Test; Levine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine. Science Translational Medicine, 3, 107ra109-107ra109. https://doi.org/10.1126/scitranslmed.3003062Test; Li, Z., DiFranza, J. R., Wellman, R. J., Kulkarni, P., & King, J. A. (2008). Imaging brain activation in nicotinesensitized rats. Brain Research, 1199, 91–99. https://doi.org/10.1016/j.brainres.2008.01.016Test; Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S., Levin, E. D., Lukas, R. J., Markou, A., Marks, M. J., McCallum, S. E., … Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190, 269–319. https://doi.org/10.1007/s00213-006-0441-0Test; McCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.xTest; Meert, T. F. (1986). A comparative study of the effects of ritanserin (R 55 667) and chlordiazepoxide on rat open field behavior. Drug Development Research, 8, 197–204. https://doi.org/10.1002/ddr.430080123Test; Morud, J., Strandberg, J., Andrén, A., Ericson, M., Söderpalm, B., & Adermark, L. (2018). Progressive modulation of accumbal neurotransmission and anxiety-like behavior following protracted nicotine withdrawal. Neuropharmacology, 128, 86–95. https://doi.org/10.1016/j.neuropharm.2017.10.002Test; Nisell, M., Nomikos, G. G., Hertel, P., Panagis, G., & Svensson, T. H. (1996). Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse, 22, 369–381. https://doi.org/10.1002Test/(SICI)1098-2396(199604)22:4 369::AID-SYN8 3.0.CO;2-9; Ohmura, Y., Tsutsui-Kimura, I., & Yoshioka, M. (2012). Impulsive behavior and nicotinic acetylcholine receptors. Journal of Pharmacological Sciences, 118, 413–422. https://doi.org/10.1254/jphs.11R06CRTest; Olausson, P., Ericson, M., Löf, E., Engel, J. A., & Söderpalm, B. (2001). Nicotine-induced behavioral disinhibition and ethanol preference correlate after repeated nicotine treatment. European Journal of Pharmacology, 417, 117–123. https://doi.org/10.1016/S0014-2999Test(01)00903-7; Picciotto, M. R., & Kenny, P. J. (2020). Mechanisms of nicotine addiction. Cold Spring Harbor Perspectives in Medicine, 3, a039610. https://doi.org/10.1101/cshperspect.a039610Test; Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463, 3–33. https://doi.org/10.1016/S0014-2999Test(03)01272-X; Schochet, T. L., Kelley, A. E., & Landry, C. F. (2004). Differential behavioral effects of nicotine exposure in adolescent and adult rats. Psychopharmacology, 175, 265–273. https://doi.org/10.1007/s00213-004-1831-9Test; Sharma, S., Arain, Mathur, Rais, Nel, Sandhu, Haque, & Johal. (2013). Maturation of the adolescent brain. Neuropsychiatric Disease and Treatment, 9, 449. https://doi.org/10.2147/NDT.S39776Test; Stansfield, K. H., & Kirstein, C. L. (2006). Effects of novelty on behavior in the adolescent and adult rat. Developmental Psychobiology, 48, 273–273. https://doi.org/10.1002/dev.20143Test; Thorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. https://doi.org/10.1016/j.pharmthera.2019.107431Test; Van Gaalen, M. M., Brueggeman, R. J., Bronius, P. F. C., Schoffelmeer, A. N. M., & Vanderschuren, L. J. M. J. (2006). Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology, 187, 73–85. https://doi.org/10.1007/s00213-006-0396-1Test; Volkow, N. D. (2011). Epigenetics of Nicotine: Another nail in the coughing. Science Translational Medicine, 3, 107ps43-107ps43. https://doi.org/10.1126/scitranslmed.3003278Test; Yuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. The Journal of Physiology, 593, 3397–3412. https://doi.org/10.1113/JP270492Test; Zago, A., Leão, R. M., Carneiro-de-Oliveira, P. E., Marin, M. T., Cruz, F. C., & Planeta, C. S. (2012). Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats. Brazilian Journal of Medical and Biological Research, 45, 33–37. https://doi.org/10.1590/S0100-879X2011007500153Test; https://revistas.unal.edu.co/index.php/psicologia/article/view/89822Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المساهمون: Lee Kong Chian School of Medicine (LKCMedicine), National Neuroscience Institute

    مصطلحات موضوعية: Science::Medicine, Locomotor Sensitization, Methamphetamine

    وصف الملف: application/pdf

    العلاقة: MOE2017-T3-1-002; Frontiers in Pharmacology; Liu, D., Liang, M., Zhu, L., Zhou, T., Wang, Y., Wang, R., Wu, F., Goh, E. L. K. & Chen, T. (2021). Potential ago2/miR-3068-5p cascades in the nucleus accumbens contribute to methamphetamine-induced locomotor sensitization of mice. Frontiers in Pharmacology, 12, 708034-. https://dx.doi.org/10.3389/fphar.2021.708034Test; https://hdl.handle.net/10356/154078Test; 2-s2.0-85114301652; 12; 708034