يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"Liu, Phillip C. C."', وقت الاستعلام: 1.01s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    Patent
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Liu, Xiao‐dong; Liu, Phillip C. C.; Santoro, Nicholas; Thiele, Dennis J. (1997). "Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF." The EMBO Journal 16(21): 6466-6477.; https://hdl.handle.net/2027.42/102120Test; 9351828; The EMBO Journal; Shi Y, Kroeger PE and Morimotor RI ( 1995 ) The carboxyl‐terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol, 15, 4309 – 4318.; Schmitt AP and McEntee K ( 1996 ) Msn2p, a zinc finger DNA‐binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 93, 5777 – 5782.; Schuetz TJ, Gallo GJ, Sheldon L, Tempst P and Kingston RE ( 1991 ) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA, 88, 6911 – 6915.; Sikorski RS and Hieter P ( 1989 ) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19 – 27.; Silar P, Butler G and Thiele DJ ( 1991 ) Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol Cell Biol, 11, 1232 – 1238.; Sistonen L, Sarge KD, Phillips B, Abravaya K and Morimoto RI ( 1992 ) Activation of heat shock factor 2 during hemin‐induced differentiation of human erythroleukemia cells. Mol Cell Biol, 12, 4104 – 4111.; Sorger PK ( 1990 ) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell, 62, 793 – 805.; Sorger PK and Nelson HCM ( 1989 ) Trimerization of a yeast transcriptional activator via a coiled‐coil motif. Cell, 59, 807 – 813.; Sorger PK and Pelham HRB ( 1988 ) Yeast heat shock factor is an essential DNA‐binding protein that exhibits temperature‐dependent phosphorylation. Cell, 54, 855 – 864.; Tamai KT, Liu X, Silar P, Sosinowski T and Thiele DJ ( 1994 ) Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol, 14, 8155 – 8165.; Theodorakis NG, Zand DJ, Kotzbauer PT, Williams GT and Morimoto RI ( 1989 ) Hemin‐induced transcriptional activation of the HSP70 gene during erythroid maturation in K562 cells is due to a heat shock factor‐ mediated stress response. Mol Cell Biol, 9, 3166 – 3173.; Treuter E, Nover L, Ohme K and Scharf KD ( 1993 ) Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet, 240, 113 – 125.; Voellmy R ( 1994 ) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukary Gene Exp, 4, 357 – 401.; Voellmy R ( 1996 ) Sensing stress and responding to stress. In Feige,U., Morimoto,R.I., Yahara,I. and Polla,B.S. (eds), Stress‐inducible Cellular Responses. Birkhauser Verlag, Boston, MA, pp. 121 – 137.; Vuister GW, Kim SJ, Orosz A, Marquardt J, Wu C and Bax A ( 1994 ) Solution structure of the DNA‐binding domain of Drosophila heat shock transcription factor. Nat Struct Biol, 1, 605 – 614.; Wiederrecht G, Seto D and Parker CS ( 1988 ) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell, 54, 841 – 853.; Wisniewski J, Orosz A, Allada R and Wu C ( 1996 ) The C‐terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Nucleic Acids Res, 24, 367 – 374.; Wu C ( 1995 ) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol, 11, 441 – 469.; Xiao H, Perisic O and Lis JT ( 1991 ) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell, 64, 585 – 593.; Zuo J, Baler R, Dahl G and Voellmy R ( 1994 ) Activation of the DNA‐binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple‐stranded coiled‐coil structure. Mol Cell Biol, 14, 7557 – 7568.; Zuo J, Rungger D and Voellmy R ( 1995 ) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol, 15, 4319 – 4330.; Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (eds) ( 1987 ) Current Protocols in Molecular Biology. John Wiley & Sons, New York.; Boeke JD, Trueheart J, Natsoulis G and Fink G R ( 1987 ) 5‐Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol, 154, 164 – 175.; Bonner JJ, Ballou C and Fackenthal DL ( 1994 ) Interactions between DNA‐bound trimers of the yeast heat shock factor. Mol Cell Biol, 14, 501 – 508.; Boorstein WR and Craig EA ( 1990 ) Transcriptional rgulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol, 10, 3262 – 3267.; Clos J, Westwood JT, Becker PB, Wilson S, Lambert K and Wu C ( 1990 ) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell, 63, 1085 – 1097.; Clos J, Rabindran S, Wisniewski J and Wu C ( 1993 ) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature, 364, 252 – 255.; Cotto JJ, Kline M and Morimoto RI ( 1996 ) Activation of heat shock factor 1 DNA binding precedes stress‐induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem, 271, 3355 – 3358.; Feige U, Morimoto RI, Yahara I and Polla BS (eds) ( 1996 ) Stress‐inducible cellular responses. Experientia Supplementum, Birkhauser Verlag, Boston, MA.; Fernandes M, Xiao H and Lis JT ( 1994 ) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor–heat shock element interactions. Nucleic Acids Res, 22, 167 – 173.; Fiorenza MT, Farkas T, Dissing M, Kolding D and Zimarino V ( 1995 ) Complex expression of murine heat shock transcription factors. Nucleic Acids Res, 23, 467 – 474.; Flick KE, Gonzalez L, Jr, Harrison CJ and Nelson HC ( 1994 ) Yeast heat shock transcription factor contains a flexible linker between the DNA‐binding and trimerization domains. Implications for DNA binding by trimeric proteins. J Biol Chem, 269, 12475 – 12481.; Gallo GJ, Prentice H and Kingston RE ( 1993 ) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol, 13, 749 – 761.; Giardina C and Lis JT ( 1995 ) Dynamic protein–DNA architecture of a yeast heat shock promoter. Mol Cell Biol, 15, 2737 – 2744.; Goodson ML, Park‐Sarge OK and Sarge KD ( 1995 ) Tissue‐dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol, 15, 5288 – 5293.; Green M, Schuetz TJ, Sullivan EK and Kingston RE ( 1995 ) A heat shock‐responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol, 15, 3354 – 3362.; Gross CA, Straus DB, Erickson JW and Yura T ( 1990 ) The function and regulation of heat shock proteins in Escherichia coli. In Morimoto,R.I., Tissieres,A. and Georgopoulos,C. (eds), Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 167 – 189.; Gross DS, Adams CC, Lee S and Stentz B ( 1993 ) A critical role for heat shock transcription factor in establishing a nucleosome‐free region over the TATA‐initiation site of the yeast HSP82 heat shock gene. EMBO J, 12, 3931 – 3945.; Harrison CJ, Bohm AA and Nelson HC ( 1994 ) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science, 263, 224 – 227.; Heim R and Tsien RY ( 1996 ) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol, 6, 178 – 182.; Hubel A, Lee JH, Wu C and Schoffl F ( 1995 ) Arabidopsis heat shock factor is constitutively active in Drosophila and human cells. Mol Gen Genet, 248, 136 – 141.; Jakobsen BK and Pelham HR ( 1988 ) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol, 8, 5040 – 5042.; Jakobsen BK and Pelham HRB ( 1991 ) A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J, 10, 369 – 375.; Jedlicka P, Mortin MA and Wu C ( 1997 ) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J, 16, 2452 – 2462.; Koch KA and Thiele DJ ( 1996 ) Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions. Mol Cell Biol, 16, 724 – 734.; Kroeger PE, Sarge KD and Morimoto RI ( 1993 ) Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol, 13, 3370 – 3383.; Kroeger PE and Morimoto RI ( 1994 ) Selection of new HSF1 and HSF2 DNA‐binding sites reveals difference in trimer cooperativity. Mol Cell Biol, 14, 7592 – 7603.; Lindquist S and Kim G ( 1996 ) Heat‐shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA, 93, 5301 – 5306.; Liu X‐D and Thiele DJ ( 1996 ) Oxidative stress induces heat shock factor phosphorylation and HSF‐dependent activation of yeast metallothionein gene transcription. Genes Dev, 10, 592 – 603.; Martinez‐Pastor MT, Marchler G, Schuller C, Marchler‐Bauer A, Ruis H and Estruch F ( 1996 ) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J, 15, 2227 – 2235.; Morimoto RI, Tissieres A and Georgopoulos C (eds) ( 1994 ) The Biology of Heat Shock Proteins and Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.; Morimoto RI, Kroeger PE and Cotto JJ ( 1996 ) The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. In Feige,U., Morimoto,R.I., Yahara,I. and Polla,B.S. (eds), Stress‐inducible Cellular Responses. Birkhauser Verlag, Boston, MA, pp. 139 – 163.; Mumberg D, Müller R and Funk M ( 1995 ) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 156, 119 – 122.; Nakai A and Morimoto RI ( 1993 ) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol, 13, 1983 – 1997.; Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI and Nagata K ( 1997 ) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol, 17, 469 – 4681.; Nieto‐Sotelo J, Wiederrecht G, Okuda A and Parker CS ( 1990 ) The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell, 62, 807 – 817.; Orosz A, Wisniewski J and Wu C ( 1996 ) Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Mol Cell Biol, 16, 7018 – 7030.; Perisic O, Xiao H and Lis JT ( 1989 ) Stable binding of Drosophila heat shock factor to head‐to‐head and tail‐to‐tail repeats of a conserved 5 bp recognition unit. Cell, 59, 797 – 806.; Peteranderl R and Nelson HC ( 1992 ) Trimerization of the heat shock transcription factor by a triple‐stranded alpha‐helical coiled‐coil. Biochemistry, 31, 12272 – 12276.; Rabindran SK, Giorgi G, Clos J and Wu C ( 1991 ) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA, 88, 6906 – 6910.; Rabindran SK, Haroun RI, Clos J, Wisniewski J and Wu C ( 1993 ) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science, 259, 230 – 234.; Sanchez Y and Lindquist SL ( 1990 ) HSP104 required for induced thermotolerance. Science, 248, 1112 – 1115.; Sanchez Y, Parsell DA, Taulien J, Vogel JL, Craig EA and Lindquist S ( 1993 ) Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol, 175, 6484 – 6491.; Sarge KD, Zimarino V, Holm K, Wu C and Morimoto RI ( 1991 ) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA‐binding ability. Genes Dev, 5, 1902 – 1911.; Sarge KD, Murphy SP and Morimoto RI ( 1993 ) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA‐binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol, 13, 1392 – 1407.; Sarge KD, Park‐Sarge OK, Kirby JD, Mayo KE and Morimoto RI ( 1994 ) Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat‐shock protein gene expression during spermatogenesis. Biol Reprod, 50, 1334 – 1343.; Scharf KD, Rose S, Zott W, Schoffl F, Nover L and Schoff F ( 1990 ) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA‐binding domain of the yeast HSF. EMBO J, 9, 4495 – 4501.

  9. 9
    دورية أكاديمية
  10. 10
    دورية