INDUS: Effective and Efficient Language Models for Scientific Applications

التفاصيل البيبلوغرافية
العنوان: INDUS: Effective and Efficient Language Models for Scientific Applications
المؤلفون: Bhattacharjee, Bishwaranjan, Trivedi, Aashka, Muraoka, Masayasu, Ramasubramanian, Muthukumaran, Udagawa, Takuma, Gurung, Iksha, Zhang, Rong, Dandala, Bharath, Ramachandran, Rahul, Maskey, Manil, Bugbee, Kaylin, Little, Mike, Fancher, Elizabeth, Sanders, Lauren, Costes, Sylvain, Blanco-Cuaresma, Sergi, Lockhart, Kelly, Allen, Thomas, Grezes, Felix, Ansdell, Megan, Accomazzi, Alberto, El-Kurdi, Yousef, Wertheimer, Davis, Pfitzmann, Birgit, Ramis, Cesar Berrospi, Dolfi, Michele, de Lima, Rafael Teixeira, Vagenas, Panagiotis, Mukkavilli, S. Karthik, Staar, Peter, Vahidinia, Sanaz, McGranaghan, Ryan, Mehrabian, Armin, Lee, Tsendgar
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computation and Language, Computer Science - Information Retrieval
الوصف: Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.
نوع الوثيقة: Working Paper
الوصول الحر: http://arxiv.org/abs/2405.10725Test
رقم الانضمام: edsarx.2405.10725
قاعدة البيانات: arXiv