يعرض 1 - 10 نتائج من 135 نتيجة بحث عن '"Lain C."', وقت الاستعلام: 1.35s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المؤلفون: Laín, C., Llamas, B., Pous, J., Laín, R.

    المصدر: Informes de la Construcción; Vol. 70 No. 549 (2018); e242 ; Informes de la Construcción; Vol. 70 Núm. 549 (2018); e242 ; 1988-3234 ; 0020-0883 ; 10.3989/ic.2018.v70.i549

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/5890/6946Test; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/5890/6947Test; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/5890/6948Test; Salimi, A., Rostami, J., Moormann, C., & Delisio, A. (2016). Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs. Tunnelling and Underground Space Technology, 58, 236-246. https://doi.org/10.1016/j.tust.2016.05.009Test; Ramírez Oyanguren, P., Laín Huerta, R., & Laín Huerta, C. (2001). Diversas formas de estimar la velocidad de avance de las TBM en rocas. Ingeopres, 99, 16-30.; Sanio, H.P. (1985). Prediction of the performances of disc cutters in anisotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22, 153-161. https://doi.org/10.1016/0148-9062Test(85)93229-2; Gutiérrez Manjón, J. M. (2006). «Consumo de cortadores de los túneles de Guadarrama». Túnel de Guadarrama. (p. 283-300). Madrid. Ed. Entorno Gráfico.; Lislerud, A. (1988). Hard rock tunnel boring: prognosis and costs. Tunnelling and Underground Space Technology. 3(1), 9-17. https://doi.org/10.1016/0886-7798Test(88)90029-6; Roxborough, F. F., & Phillips, H. R. (1975). Rock excavation by disc cutter. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, vol. 12, No. 12, pp. 361-366. https://doi.org/10.1016/0148-9062Test(75)90547-1; Ozdemir, L., & Wang, F. D. (1979). Mechanical tunnel boring prediction and machine design. Nasa Sti/Recon Technical Report N, 80, 16239.; Roxborough, F. F. (1985, June). Research in mechanical rock excavation: progress and prospects. In Proc., Rapid Excavation and Tunneling Conference. Society of Mining, Metallurgy, and Exploration, Inc (SME) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (Vol. 1, pp. 225-244).; Bruland, A., 1988. Hard Rock Tunnel Boring, Advance Rate and Cutter Wear, vol. 3 of this Thesis, Norwegian University of Science and Technology, Trondheim, pp. 13-32; Bieniawski, Z. T., Celada, B., & Galera, J. M. (2007). Predicting TBM Excavatability. Tunnels & Tunnelling International.; Barton, N., & Gammelsaeter, B. (2010). Predicting TBM advance using the Q-system and QTBM. Tunnelling Journal (October/November), 32-36.; Bruland, A. (2000). Hard rock tunnel boring (Doctoral dissertation, Fakultet for ingeniørvitenskap og teknologi).; Rostami, J., Ozdemir, L., & Nilson, B. (1996, May). Comparison between CSM and NTH hard rock TBM performance prediction models. Proceedings of Annual Technical Meeting of the Institute of Shaft Drilling Technology, Las Vegas (pp. 1-10).; Barton, N.R., Lien, R. and Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239. https://doi.org/10.1007/BF01239496Test; Bieniawski, Z. T. (1990). Tunnel design by rock mass classifications. Pennsylvania State Univ. University Park. Department of Mineral Engineering.; Laín Huerta, C., Ramirez Oyanguren, P., & Laín Huerta, R. (2007). Underground Works Under Special Conditions. Chapter 11. The selection of a cutter for a tunnel boring machine and the estimation of its useful life. Proceedings of the ISRM Workshop W1, Madrid, Spain, 6-7 July 2007. Taylor & Francis 2007. Pages89-96. ISBN: 978-0-415-45028-7. eBook ISBN: 978-0-415-88949-0.; Sievers, H. (1950). Die bestimmung des bohrwiderstandes von gesteinen. Glückauf, 86(7/38), 776-784.; Oggeri, C., Oreste. P. (2012) The wear of tunnel boring machine excavation tools in rock. American Journal of Applied Sciences, 9(10): 1606-1617. https://doi.org/10.3844/ajassp.2012.1606.1617Test; Dahl, F. (2003). DRI, BWI, CLI standards. NTNU, Angleggsdrift, Trondheim.; [20) - (2007). UNE-EN 12407:2007. Métodos de ensayo para piedra natural. Estudio petrográfico. AENOR.; West, G. (1981). A review of rock abrasiveness testing for tunnelling. In ISRM International Symposium. International Society for Rock Mechanics.; Comité AEN/CTN22. UNE 22950-1:1990, propiedades mecánicas de las rocas. Ensayos para la determinación de la resistencia. Parte 1: resistencia a compresión uniaxial. AENOR.; Sub-committee D18.12 (Rock Mechanics). ASTM D7012: Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International.; Ghasemi, A. (2010). Study of Cerchar abrasivity index and potential modifications for more consistent measurement of rock abrasion. (Doctoral dissertation, The Pennsylvania State University).; Walpole, R. E., Myers, R. H., & Myers, S. L. (1999). Probabilidad y estadística para ingenieros. Pearson Educación, pp. 681-682.; Dahl, F., Grøv, E., Breivik, T. (2007). Development of a new direct test method for estimating cutter life, based on the Sievers' J miniature drill test. Tunnelling and Underground Space Technology, 22: 106-116. https://doi.org/10.1016/j.tust.2006.03.001Test; Lee, S., Jeong, H.Y., Jeon, S. (2013). Assessment of TBM cutter wear using Cerchar abrasiveness test. Underground-The way to the future, pp. 1209-1216. World tunnel congress (WTC). https://doi.org/10.1201/b14769-166Test; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/5890Test

  3. 3
    دورية أكاديمية

    المصدر: Estudios Geológicos; Vol. 74 No. 1 (2018); e078 ; Estudios Geológicos; Vol. 74 Núm. 1 (2018); e078 ; 1988-3250 ; 0367-0449 ; 10.3989/egeol.16725

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/972/1169Test; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/972/1170Test; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/972/1171Test; Bozzolani, E. (2010). Techno-economic analysis of compressed air energy storage systems. Crandfield University, 203 pp. URI: http://dspace.lib.cranfield.ac.uk/handle/1826/6786Test; Carracedo-Sanchez, M.; Sarrionandia, F. & Juteau, T. (2012). El Vulcanismo Submarino de Edad Cretácica de la Cuenca Vasco-Cantábrica. Revista de la Sociedad Espa-ola de Mineralogía, 16: 260–267.; Chen, H.; Cong, Y.; Yang, W.; Tan, C.; Li, Y. & Ding, Y. (2009) Progress in electrical energy storage: a critical review. Progress in Natural Science, 19(3): 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014Test; EUROSTAT. http://ec.europa.eu/eurostat/statistics-explained/index.phpTest. Acceso el 27 de junio de 2016.; Fertig, E. & Apt, J. (2011) Economics of compressed air energy storage to integrate wind power: a case study in ERCOT. Energy Policy, 39(5): 2330–2342. https://doi.org/10.1016/j.enpol.2011.01.049Test; U.T.E. Tecnología de la Naturaleza SL & Grama Estudio de Arquitectura y Medioambiente SL (2012). Síntesis Geológica de la Comunidad Autónoma del País Vasco. Departamento de Medioambiente y Política Territorial, Gobierno Vasco, 17 pp.; I.P.C.C. (2014). Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1435 pp.; Kim, H.M.; Rutqvist, J.; Ryu, D.W.; Choi, B.H.; Sunwoo, C. & Song, W.K. (2012). Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modelling study of air tightness and energy balance. Applied Energy, 92: 653–667. https://doi.org/10.1016/j.apenergy.2011.07.013Test; Kyriakopoulos, G.L. & Arabatzis, G. (2016) Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews. 56: 1044–1067. https://doi.org/10.1016/j.rser.2015.12.046Test; Heijdra, J.J. & Prij, J. (1992). Convergence measurements in a 300 m deep borehole in rock salt. Netherlands Energy Research Foundation ECN, 24 pp.; Hoek, E. & Brown, E.T. (1980). Underground excavations in rock. The Institution of Mining and Metallurgy, London, 527 pp.; Hoek, E. (1990). Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(3): 227–229. https://doi.org/10.1016/0148-9062Test(90)94333-O; Ibrahim, H.; Ilinca, A. & Perron, J. (2008) Energy Storage Systems – characteristics and comparisons. Renewable and sustainable energy reviews. 12: 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023Test; King, M.S. (1983). Static and dynamic elastic properties of rocks from the Canadian Shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(5): 237–241. https://doi.org/10.1016/0148-9062Test(83)90004-9; Lanaja J.M. & Navarro, A. (1987) Contribución de la exploración petrolífera al conocimiento de la geología de Espa-a. IGME, 465 pp.; Liang, G.C.; Huang, X.; Peng X.Y.; Tian, Y. & Yu, Y.H. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering. 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018Test; Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017a). Multi-criteria algorithm-based methodology used to select suitable domes for compressed air Energy storage. International Journal of Energy Research. 41 (14): 2108–2120. https://doi.org/10.1002/er.3771Test; Llamas, B.; Casta-eda, M.C.; Laín, C. & Pous, J. (2017b). Study of the Basque-Cantabrian basin as a suitable region for the implementation of an energy storage system based on compressed air underground storage (CAES). Environmental Earth Sciences. 76: 204. https://doi.org/10.1007/s12665-017-6515-yTest; Llamas, B.; Laín, C.; Casta-eda, M.C. & Pous, J. (2018). Mini-CAES as a reliable and novel approach to store renewable energy in salt domes. Energy, 144(1): 482–489. https://doi.org/10.1016/j.energy.2017.12.050Test; Liang G-c, Huang X, Peng X-y, Tian Y, Yu Y-h. (2016) Investigation on the cavity evolution of underground salt cavern gas storage. Journal of Natural Gas Science and Engineering, 33: 118–134. https://doi.org/10.1016/j.jngse.2016.05.018Test; Lund, H. & Salgi, G. (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management. 50: 1172–1179. https://doi.org/10.1016/j.enconman.2009.01.032Test; Luo, X.I.N.G. & Wang, J. (2013). Overview of current development on compressed air energy storage. EERA Technical Report, School of Engineering, University of Warwick, Coventry, 38 pp.; Luo, X.; Wang, J.; Dooner, M. & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137: 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081Test; Madlener, R. & Latz, J. (2013). Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Applied Energy. 101: 299–309. https://doi.org/10.1016/j.apenergy.2011.09.033Test; McCartney, J.S.; Sanchez, M. & Tomac, I. (2016). Energy geotechnics: advances in subsurface energy recovery, storage, exchange, and waste management. Computers and Geotechnics, 75: 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002Test; Vera, J.A. (2010) Geología de Espa-a. Instituto Geológico y Minero de España, Madrid, 884 pp.; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/972Test

  4. 4
    دورية أكاديمية
  5. 5
  6. 6
    دورية أكاديمية

    المساهمون: Schallig, Henk D. F. H., Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR), Conselho Nacional de Desenvolvimento Científico e Tecnológico

    المصدر: PLOS ONE ; volume 12, issue 9, page e0184867 ; ISSN 1932-6203

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية