يعرض 1 - 10 نتائج من 115 نتيجة بحث عن '"Kevin Smit"', وقت الاستعلام: 1.45s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
  8. 8
    دورية أكاديمية

    المصدر: Ingeniería; Vol. 28 No. 1 (2023): January-April; e17304 ; Ingeniería; Vol. 28 Núm. 1 (2023): Enero-Abril; e17304 ; 2344-8393 ; 0121-750X

    وصف الملف: application/pdf; text/xml

    العلاقة: https://revistas.udistrital.edu.co/index.php/reving/article/view/17304/18646Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/17304/18987Test; C. Sun, C. Zhang, and S. Zhou, “Simulation of composite energy storage optimization configuration of micro-grid based on PSO”, IOP Conf. Ser. Mater. Sci. Eng., vol. 677, no. 4, 2019. https://doi.org/10.1088/1757-899X/677/4/042103Test; F. J. Gómez, L. J. Yebra, A. Giménez, and J. L. Torres-Moreno, “Modelado de baterías para aplicación en vehículos urbanos eléctricos ligeros”, Rev. Iberoam. Automática e Informática Ind., vol. 16, no. 4, pp. 459-466, 2019. https://doi.org/10.4995/riai.2019.10609Test; L. Zhang, C. Lyu, L. Wang, W. Luo, and K. Ma, “Thermal-electrochemical modeling and parameter sensitivity analysis of lithium-ion battery”, vol. 33, pp. 943-948, 2013. https://doi.org/10.3303/CET1333158Test; S. Sepasi, R. Ghorbani, and B. Y. Liaw, “A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter”, J. Power Sources, vol. 245, pp. 337-344, 2014. https://doi.org/10.1016/j.jpowsour.2013.06.108Test; D. Andre, A. Nuhic, T. Soczka-Guth, and D. U. Sauer, “Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles”, Eng. Appl. Artif. Intell., vol. 26, no. 3, pp. 951-961, 2013. https://doi.org/10.1016/j.engappai.2012.09.013Test; C. Zou, C. Manzie, and S. Anwar, “Control-oriented modeling of a lithium-ion battery for fast charging”, IFAC Proc. Vol., vol. 47, no. 3, pp. 3912-3917, 2014. https://doi.org/10.3182/20140824-6-ZA-1003.00829Test; R. Rao, S. Vrudhula, and D. N. Rakhmatov, “Battery modeling for energy-aware system design”, Computer (Long. Beach. Calif)., vol. 36, no. 12, pp. 77-87, 2003. https://doi.org/10.1109/MC.2003.1250886Test; N. Lotfi, R. G. Landers, J. Li, and J. Park, “Reduced-order electrochemical model-based SoC observer with output model uncertainty estimation”, IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1217-1230, 2017. https://doi.org/10.1109/TCST.2016.2598764Test; S. Serna-Garcés, C. Ramos-Paja, and D. Gonzalez-Montoya, “Power conversion system for hybrid battery-capacitor storage”, Ingeniría, vol. 25, no. 2, pp. 194-211, 2020. https://doi.org/10.14483/23448393.15741Test; G. Plett, Battery Management Systems, Volume I: Battery Modeling. Artech House, 2015.; S. Susanna, B. R. Dewangga, O. Wahyungoro, and A. I. Cahyadi, “Comparison of simple battery model and Thevenin battery model for SoC estimation based on OCV method”, 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 738-743, 2019. https://doi.org/10.1109/ICOIACT46704.2019.8938495Test; H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach”, Energies, vol. 4, no. 4, pp. 582-598, 2011. https://doi.org/10.3390/en4040582Test; J. E. B. Randles, “Kinetics of rapid electrode reactions. Part 2.—Rate constants and activation energies of electrode reactions”, Trans. Faraday Soc., vol. 48, pp. 828-832, 1952. https://doi.org/10.1039/TF9524800828Test; L. Zhu, Z. Sun, H. Dai, and X. Wei, “A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model”, Appl. Energy, vol. 155, pp. 91-109, 2015. https://doi.org/10.1016/j.apenergy.2015.05.103Test; C. Lin, H. Mu, R. Xiong, and W. Shen, “A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm”, Appl. Energy, vol. 166, pp. 76-83, 2016. https://doi.org/10.1016/j.apenergy.2016.01.010Test; W. Peng, Z. Yang, C. Liu, J. Xiu, and Z. Zhang, “An improved PSO algorithm for battery parameters identification optimization based on Thevenin battery model”, 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 295-298, 2018. https://doi.org/10.1109/CCIS.2018.8691341Test; S. Skoog, “Parameterization of equivalent circuit models for high power lithium-ion batteries in HEV applications”, 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), 2016. https://doi.org/10.1109/epe.2016.7695340Test; O. Theliander et al., “Battery modeling and parameter extraction for drive cycle loss evaluation of a modular battery system for vehicles based on a cascaded H-bridge multilevel inverter”, IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6968-6977, 2020. http://dx.doi.org/10.1109/TIA.2020.3026662Test; F. Quiñones, R. H. Milocco y S. G. Real, “Algoritmos de monitoreo para baterías recargables”, AJEA, no. 5, 2020. https://doi.org/10.33414/ajea.5.663.2020Test; W.-H. Cui, J.-S. Wang, and Y.-Y. Chen, “Equivalent circuit model of lead-acid battery in energy storage power station and its state-of-charge estimation based on extended kalman filtering method”, Engineering Letters, vol. 26, no. 4, pp. 504-517, 2018.; B. Çelikten, O. Eren, and Y. S. Karataş, “An execution time optimized state of charge estimation method for lithium-ion battery”, J. Energy Storage, vol. 51, 2022. https://doi.org/10.1016/j.est.2022.104307Test; X. Liu, X. Deng, Y. He, X. Zheng, and G. Zeng, “A dynamic state-of-charge estimation method for electric vehicle lithium-ion batteries”, Energies, vol. 13, no. 1, 2019. https://doi.org/10.3390/en13010121Test; W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation”, Int. J. Electr. Power Energy Syst., vol. 62, pp. 783-791, 2014. https://doi.org/10.1016/j.ijepes.2014.04.059Test; Y. He, Q. Li, X. Zheng, and X. Liu, “Equivalent hysteresis model based SoC estimation with variable parameters considering temperature”, J. Power Electron., vol. 21, no. 3, pp. 590-602, 2021. https://doi.org/10.1007/s43236-020-00213-5Test; M. Pressman, “Understanding Tesla’s lithium ion batteries”, EVannex, Tesla News, 2017. https://evannex.com/blogs/news/understanding-teslas-lithium-ion-batteriesTest; B. Bole, C. Kulkarni, and M. Daigle, “Randomized battery usage data set” NASA Ames Prognostics Data Repository, vol. 70, 2014.; J. Kennedy, and R. Eberhart, “Particle swarm optimization”, Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995. http://dx.doi.org/10.1109/ICNN.1995.488968Test; K. Veeramachaneni, T. Peram, C. Mohan, and L. A. Osadciw, “Optimization using particle swarms with near neighbor interactions”, In: E. Cantú-Paz et al., Genetic and Evolutionary Computation - GECCO, Springer, 2003. https://doi.org/10.1007/3-540-45105-6_10Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/17304Test

  9. 9
  10. 10