يعرض 1 - 10 نتائج من 400 نتيجة بحث عن '"Kazymov, A"', وقت الاستعلام: 1.71s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية

    المساهمون: Исследование выполнено при поддержке Российского научного фонда (номер проекта: 23-29-10182) и Правительства Новосибирской области (номер проекта: 0000005406995998235120812 / № р-58).

    المصدر: Alternative Energy and Ecology (ISJAEE); № 3 (2024); 71-80 ; Альтернативная энергетика и экология (ISJAEE); № 3 (2024); 71-80 ; 1608-8298

    وصف الملف: application/pdf

    العلاقة: https://www.isjaee.com/jour/article/view/2393/1940Test; Shaikh F. K., Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 55. – P. 1041-1054.; Lundblad T., Taljegard M., Johnsson F. Centralized and decentralized electrolysis-based hydrogen supply systems for road transportation – A modeling study of current and future costs // International Journal of Hydrogen Energy. – 2023. – Vol. 48, № 12. – P. 4830-4844.; Linares J. I., Herranz L. E., Moratilla B. Y. Maximum efficiency of direct energy conversion systems. Application to fuel cells // International Journal of Hydrogen Energy. – 2011. – Vol. 36, № 16. – P. 10027-10032.; Jia Y., Xue A., Zhou Z., Wu Z., Chen J., Ma K., et al. Magnetostrictive/piezoelectric drum magnetoelectric transducer for H2 detection // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 14915-14919.; Huang X., Zhong T. Hydrokinetic energy harvesting from flow-induced vibration of a hollow cylinder attached with a bi-stable energy harvester // Energy Conversion and Management. – 2023. – Vol. 278, Art. – No. 116718.; Hu T., Wang H., Harmon W., Bamgboje D., Wang Z. -L. Current Progress on Power Management Systems for Triboelectric Nanogenerators // IEEE Trans Power Electron. – 2022. – Vol. 37. – P. 9850-9864.; Li Z., Yan Z., Luo J., Yang Z. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration // Energy Conversion and Management. – 2019. – Vol. 179. – P. 132-140.; Zhou S., Cao J., Inman D. J., Lin J., Liu S., Wang Z. Broadband tristable energy harvester: Modeling and experiment verification // Applied Energy. – 2014. – Vol. 133. – P. 33-39.; Wang J., Zhou S., Zhang Z., Yurchenko D. High-performance piezoelectric wind energy harvester with Y-shaped attachments // Energy Conversion and Management. – 2019. – Vol. 181. – P. 645-652.; Jeong S. Y., Jung H. J., Jabbar H., Hong S. K., Ahn J. H., Sung T. H. Design of a multi-array piezoelectric energy harvester for a wireless switch // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12696-12703.; Song Y., Yang C. H., Hong S. K., Hwang S. J., Kim J. H., Choi J. Y. et al. Road energy harvester designed as a macro-power source using the piezoelectric effect // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12563-12568.; Kurt E., Cottone F., Uzun Y., Orfei F., Mattarelli M., Özhan D. Design and implementation of a new contactless triple piezoelectrics wind energy harvester // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – P. 17813-17822.; Shevtsov S., Chang S. -H. Modeling of vibration energy harvesting system with power PZT stack loaded on Li-Ion battery // International Journal of Hydrogen Energy. – 2016. – Vol. 41. – P. 12618-12625.; Scamman D., Newborough M., Bustamante H. Hybrid hydrogen-battery systems for renewable offgrid telecom power // International Journal of Hydrogen Energy. – 2015. – Vol. 40. – P. 13876-13887.; Tao K., Lye S. W., Miao J., Hu X. Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates // Microelectronic Engineering. – 2015. – Vol. 135. – P. 32-37.; Khan F. U., Qadir M. U. State-of-the-art in vibration-based electrostatic energy harvesting // J Micromech Microeng. – 2016. – Vol. 26. – P. 103001.; Zhao C., Yang Y., Upadrashta D., Zhao L. Design, modeling and experimental validation of a lowfrequency cantilever triboelectric energy harvester // Energy. – 2021. – Vol. 214, Art. – No. 118885.; Pace G., Serri M., Castillo A. E. D. R., Ansaldo A., Lauciello S., Prato M. et al. Nitrogen-doped graphene based triboelectric nanogenerators // Nano Energy. – 2021. – Vol. 87, Art. – No. 106173.; Toyabur Rahman M., Sohel Rana S., Salauddin Md., Maharjan P., Bhatta T., Kim H. et al. A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting // Applied Energy. – 2020. – Vol. 279, Art. – No. 115799.; Lo Monaco M., Russo C., Somà A. Numerical and experimental performance study of two-degrees-offreedom electromagnetic energy harvesters // Energy Conversion and Management: X. – 2023. – Vol. 18, Art. – No. 100348.; Lagomarsini C., Jean-Mistral C., Monfray S., Sylvestre A. Optimization of an electret-based soft hybrid generator for human body applications // Smart Mater Struct. – 2019. – Vol. 28, Art. – No. 104003.; Dragunov V. P., Ostertak D. I. Microelectromechanical converters // Russian Microelectronics. – 2012. – Vol. 41. – P. 107-121.; Torres E. O., Rincon-Mora G. A. A 0,7-µm BiCMOS Electrostatic Energy-Harvesting System IC // IEEE J Solid-State Circuits. – 2010. – Vol. 45. – P. 483-496.; Truong B. D., Le C. P., Halvorsen E., Roundy S. Power-electronic-interface topology for MEMS energy harvesting with multiple transducers // J. Phys: Conf Ser. – 2018. – Vol. 1052, Art. – No. 012074.; Phan T. N., Azadmehr M., Le C. P., Halvorsen E. Low power electronic interface for electrostatic energy harvesters // J. Phys: Conf Ser. – 2015. – Vol. 660, Art. – No. 012087.; Dragunov V. P., Ostertak D. .I, Pelmenev K. G., Sinitskiy R. E., Dragunova E. V. Electrostatic vibrational energy converter with two variable capacitors // Sensors and Actuators A: Physical. – 2021. –Vol. 318, P. 112501.; Asanuma H., Oguchi H., Hara M., Yoshida R., Kuwano H. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters // Applied Physics Letters. – 2013. – Vol. 103, Art. – No. 162901.; Jie Wei, Risquez S., Mathias H., Lefeuvre E., Costa F. Simple and efficient interface circuit for vibration electrostatic energy harvesters // 2015 IEEE SENSORS, Busan: – IEEE; 2015, p. 1-4.; Nintanavongsa P., Muncuk U., Lewis D. R., Chowdhury K. R. Design Optimization and Implementation for RF Energy Harvesting Circuits // IEEE J Emerg Sel Topics Circuits Syst. – 2012. – Vol. 2. – P. 24-33.; Ayudhya R. S. N. A switched-capacitor Dickson charge pumps for high-voltage high power applications // 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan: IEEE; 2014. – P. 1147-1150.; de Queiroz A. C. M., Macedo de Oliveira Filho L. C. Unipolar symmetrical variable-capacitance generators for energy harvesting // 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA: IEEE, 2017, рp. 221-224.; Truong B. D., Le C. P., Halvorsen E. Comparative performance of voltage multipliers for MEMS vibration-based energy harvesters // J Phys: Conf Ser 2018. – Vol. 1052, Art. – No. 012118.; de Queiroz A. C. M. Analysis of the operation of a regenerative electrostatic energy harvester // 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal: IEEE, 2015, p. 1074-1077.; Jayaweera H. M. P. C., Muhtaroğlu A. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications // J Phys: Conf Ser. – 2016. – Vol. 773, Art. – No. 012085.; Bedier M., Basset P., Galayko D. A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester // J Phys: Conf Ser 2016. – Vol. 773, Art. – No. 012105.; Dragunov V., Dorzhiev V. Electrostatic vibration energy harvester with increased charging current // J Phys: Conf Ser. – 2013. – Vol. 476, Art. – No. 012115.; de Queiroz A. C. M. Biased capacitive divider electrostatic generators for energy harvesting // 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina: IEEE, 2017, p. 1-4.; de Queiroz A. C. M., De Menezes N. A. T. Energy harvesting with pairs of variable capacitors without control circuits // Analog Integr Circ Sig Process. – 2018. – Vol. 97. – P. 533-544.; de Queiroz A. C. M. Steady-State Analysis of Electronic Electrostatic Generators // 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence: IEEE, 2018, p. 1-5.; Mahboubi F. E., Bafleur M., Boitier V., Alvarez A., Colomer J., Miribel P. et al. Self-Powered Adaptive Switched Architecture Storage // J Phys: Conf Ser. – 2016. – Vol. 773, Art. – No. 012103.; Karami A., Galayko D., Basset P. Series-Parallel Charge Pump Conditioning Circuits for Electrostatic Kinetic Energy Harvesting // IEEE Trans Circuits Syst I. – 2017. – Vol. 64. – P. 227-240. https://doi.org/10.1109/TCSI.2016.2603064Test.; De Michele G. Protected transformerless AC to DC power converter. Patent US 6061259 A. 2000.; Neil J., Francis J. Systems and Methods for Providing a Transformerless Power Supply. Patent US 20160233761 A1. 2016.; https://www.isjaee.com/jour/article/view/2393Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: Barberis, D., Alexandrov, I., Alexandrov, E., Baranowski, Z., Canali, L., Cherepanova, E., Dimitrov, G., Favareto, A., Fernandez Casani, A., Gallas, E. J., Montoro, C. G., Gonzalez de la Hoz, S., Hrivnac, J., Iakovlev, A., Kazymov, A., Mineev, M., Prokoshin, F., Rybkin, G., Salt, J., Sanchez, J., Sorokoletov, R., Tobbicke, R., Vasileva, P., Villaplana Perez, M., Yuan, R.

    مصطلحات موضوعية: ATLAS experiment, Event catalogue, BigData catalogue, Hadoop, HBase

    وصف الملف: ELETTRONICO

    العلاقة: volume:7; firstpage:2; lastpage:22; numberofpages:21; journal:COMPUTING AND SOFTWARE FOR BIG SCIENCE; https://hdl.handle.net/11567/1160480Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85150220029

  8. 8
    مؤتمر
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 3 (2023); 334-340 ; Трансплантология; Том 15, № 3 (2023); 334-340 ; 2542-0909 ; 2074-0506

    وصف الملف: application/pdf

    العلاقة: https://www.jtransplantologiya.ru/jour/article/view/793/799Test; Badawy A, Kaido T, Uemoto S. Current status of liver transplantation using marginal grafts. J Invest Surg. 2020;33(6):553–564. PMID: 30457408 https://doi.org/10.1080/08941939.2018.1517197Test; Lozanovski VJ, Khajeh E, Fonouni H, Pfeiffenberger J, von Haken R, Brenner T, et al. Correction to: the impact of major extended donor criteria on graft failure and patient mortality after liver transplantation. Langenbecks Arch Surg. 2018;403(6):719–731. PMID: 30112639 https://doi.org/10.1007/s00423-018-1704-zTest; Muhammad H, Zaffar D, Tehreem A, Ting PS, Simsek C, Turan I, et al. An update on usage of high-risk donors in liver transplantation. J Clin Med. 2021;11(1):215. PMID: 35011956 https:// doi.org/10.3390/jcm11010215; Kwong AJ, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, et al. OPTN/SRTR 2019 annual data report: liver. Am J Transplant. 2021;21(Suppl 2):208–315. PMID: 33595192 https://doi.org/10.1111/ajt.16494Test; Kim JM, Kim DG, Kim J, Lee K, Lee KW, Ryu JH, et al. Outcomes after liver transplantation in Korea: incidence and risk factors from Korean transplantation registry. Clin Mol Hepatol. 2021;27(3):451–462. PMID: 33525077 https://doi.org/10.3350/cmh.2020.0292Test; Виноградов В.Л., Хубутия М.Ш., Губарев К.К., Дулуб В.Г., Захлевный А.И., Светлакова Д.С. и др. Характеристика посмертных органных доноров в НИИ СП им. Н.В. Склифосовского и донорских стационарах ФМБА России (2008–2017 гг.). Трансплантология. 2018;10(3):185–196.; Lozanovski VJ, Kerr LTB, Khajeh E, Ghamarnejad O, Pfeiffenberger J, Hoffmann K, et al. Liver grafts with major extended donor criteria may expand the organ pool for patients with hepatocellular carcinoma. J Clin Med. 2019;15;8(10):1692. PMID: 31618968 https://doi.org/10.3390/jcm8101692Test; Yanaga K, Stieber A, Koneru B, Mieles LA, Tzakis AG, Starzl TE. Portal vein thromboembolism of liver allografts from splenectomized donors. Transplantation. 1989;47(2):399–400. PMID: 2645726 https://doi.org/10.1097/00007890-198902000-00046Test; Adair A, Brooke-Smith ME, Akyol M, Powell JJ. Maximizing use of marginal liver grafts for transplantation: a case report of absent donor extrahepatic portal vein. Transplantation. 2011;91(6):e42–43. PMID: 21383602 https://doi.org/10.1097/TP.0b013e3182090f8cTest; Dondossola D, Lonati C, Kersik A, Zanella A, Gatti S, Rossi G. Graft portal vein thrombosis before liver transplant. Transplantation. 2020;104(1):e44–e45. PMID: 31449186 https://doi.org/10.1097/TP.0000000000002919Test; Kheyrandish S, Rastgar A, Arab-Zozani M, Sarab GA. Portal vein thrombosis might develop by COVID-19 infection or vaccination: a systematic review of case-report studies. Front Med (Lausanne). 2021;8:794599. PMID: 34970570 https://doi.org/10.3389/fmed.2021.794599Test; Bogovic N, Doenecke A, Hart C, Lürken L, Heimerl S, Eissnert C, et al. Covid19 vaccination-associated portal vein thrombosis – an interdisciplinary clinical challenge. Clin Res Hepatol Gastroenterol. 2022;46(8):101932. PMID: 35504460 https://doi.org/10.1016/j.clinre.2022.101932Test; https://www.jtransplantologiya.ru/jour/article/view/793Test