يعرض 1 - 10 نتائج من 37 نتيجة بحث عن '"K A Samochernykh"', وقت الاستعلام: 1.67s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية

    المساهمون: The work was carried out within the framework of the State Task: Development of a new technology for the treatment of patients with secondary brain tumors and recurrent meningiomas. No. EGISU 123021000128-4, Работа выполнена в рамках Госзадания: Разработка новой технологии лечения больных вторичными новообразованиями головного мозга и рецидивирующими менингиомами. № ЕГИСУ 123021000128-4

    المصدر: Translational Medicine; Том 11, № 1 (2024); 65-76 ; Трансляционная медицина; Том 11, № 1 (2024); 65-76 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/832/558Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/832/1904Test; Ostrom QT, Cioffi G, Waite K, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro-Oncology. 2021; 23: 101–105. DOI:10.1093/neuonc/noz150.; Alleman K, Knecht E, Huang J, et al. Multimodal Deep Learning-Based Prognostication in Glioma Patients : A Systematic Review. Cancers (Basel). 2023; 15 (2): 545. DOI:10.3390/cancers15020545.; Grigore FN, Yang SJ, Chen CC, Koga T. Pioneering models of pediatric brain tumors. Neoplasia. 2023; 36: 100859. DOI:10.1016/j.neo.2022.100859.; Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021; 23:1231–1251. DOI:10.1093/neuonc/noab106.; Johnson KJ, Bauchet L, Francis SS, et al. Pediatric brain tumors: Origins, epidemiology, and classification — The 2022 Brain Tumor Epidemiology Consortium meeting report. Clin Neuropathol. 2023; Jan 12. DOI:10.5414/NP301520.; Ehret F, Kaul D, Clusmann H, et al. Machine learning-based radiomics in neuro-oncology. Acta Neurochir Suppl. 2022; 134:139–151. DOI:10.1007/978-3-030-85292-4_18.; Dastmalchi F, Deleyrolle LP, Karachi A, et al. Metabolomics Monitoring of Treatment Response to Brain Tumor Immunotherapy. Front Oncol. 2021; Jun 3;11:691246. DOI:10.3389/fonc.2021.691246.; Jaju A, Yeom KW, Ryan ME. MR imaging of pediatric brain tumors. Diagnostics. 2022; 12: 961. DOI:10.3390/diagnostics12040961.; Lotan E, Jain R, Razavian N, et al. State of the Art: Machine learning applications in glioma imaging. AJR Am. J. Roentgenol. 2019; 212: 26–37. DOI:10.2214/AJR.18.20218.; Bi J, Chowdhry S, Wu S, et al. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer. 2020; 20(1): 57–70. DOI:10.1038/s41568-019-0226-5.; Wagner MW, Hainc N, Khalvati F, et al. Radiomics of pediatric low-grade gliomas: Toward a pretherapeutic differentiation of BRAFmutated and BRAF-fused tumors. AJNR Am J Neuroradiol. 2021; 42: 759–765. DOI:10.3174/ajnr.A6998.; Cacciotti C, Fleming A, Ramaswamy V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol. 2020; 251(3): 249–261. DOI:10.1002/path.5457.; Zhang J, Wu G, Miller CP, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet.2013; 45:602. DOI:10.1038/ng.2611.; Bowles EJ, Miglioretti DL, Kwan ML, et al. Long-term medical imaging use in children with central nervous system tumors. PLoS One. 2021; 16(4):e0248643. URL: https://www.researchgate.net/publication/351042528_Long-term_medical_imaging_use_in_children_with_central_nervous_system_tumorsTest.; Jones DTW, Gronych J, Lichter P, et al. MAPK pathway activation in pilocytic astrocytoma. Cell Mole Life Sci. 2012; 69: 1799–1811. DOI:10.1007/s00018-011-0898-9.; Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun. 2020; 8 (1): 30. DOI:10.1186/s40478-020-00902-z.; Alrayahi J, Zapotocky M, Ramaswamy V, et al. Pediatric brain tumor genetics: What radiologists need to know. Radiographic. 2018; 38: 2102–2122. DOI:10.1148/rg.2018180109.; Ryall S, Zapotocky M, Fukuoka K, et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell.2020; 37: 569–583. DOI:10.1016/j.ccell.2020.03.011.; Lin A, Rodriguez FJ, Karajannis MA, et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549: BRAF fusion variants. J Neuropathol Exp Neurol. 2012; 71: 66–72. DOI:10.1097/NEN.0b013e31823f2cb0.; Bag AK, Chiang J, Patay Z. Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology. 2021; 63(8):1185–1213. DOI:10.1007/s00234-021-02691-1.; Kumar V, Abbas AK, Fausto N, et al. Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-Book. Philadelphia, PA: Elsevier Health Sciences, 2014.; de Blank PMK, Fisher MJ, Liu GT, et al. Optic pathway gliomas in neurofibromatosis Type 1: An update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017; 37 (Suppl.1): 23–32. URL: https://journals.lww.com/jneuro-ophthalmology/abstract/2017/09001/optic_pathway_gliomas_in_neurofibromatosis_type_1_.4.aspxTest.; Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: A study of 1,010 diffuse gliomas. Acta Neuropathol. 2009; 118: 469–474. DOI:10.1007/s00401-009-0561-9.; Leu S, von Felten S, Frank S, et al. IDH mutation is associated with higher risk of malignant transformation in low-grade glioma. J Neurooncol. 2016; 127: 363–372. DOI:10.1007/s11060-015-2048-y.; Ryall S, Krishnatry R, Arnoldo A, et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun. 2016; 4: 93. DOI:10.1186/s40478-016-0353-0.; Mistry M, Zhukova N, Merico D, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol. 2015; 33(9):1015–1022. DOI:10.1200/JCO.2014.58.3922.; Mackay A, Burford A, Carvalho D, et al. Integrated molecular metaanalysis of 1,000 pediatric high-grade and diffuse intrinsic Pontine Glioma. Cancer Cell. 2017; 32: 520–537. DOI:10.1016/j.ccell.2017.08.017.; Chiang J, Harreld JH, Tinkle CL, et al. A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathol. 2019; 138: 1091–1092. DOI:10.1007/s00401-019-02081-1.; Collins VP, Jones DTW, Giannini C. Pilocytic astrocytoma: Pathology, molecular mechanisms and markers. Acta Neuropathol. 2015; 129: 775–788. DOI:10.1007/s00401-015-1410-7.; Raybaud C, Ramaswamy V, Taylor MD, et al. Posterior fossa tumors in children: Developmental anatomy and diagnostic imaging. Child’s Nervous System. 2015; 31: 1661–1676. DOI:10.1007/s00381-015-2834-z.; Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: Two challenges for the pediatric oncologist. Oncologist. 2004; 9:197–206. DOI:10.1634/theoncologist.9-2-197.; Perkins SM, Rubin JB, Leonard JR, et al. Glioblastoma in children: A single-institution experience. Int J Radiat Oncol Biol Phys. 2011; 80: 1117–1121. DOI:10.1016/j.ijrobp.2010.03.013.; Kline C, Felton E, Allen IE, et al. Survival outcomes in pediatric recurrent high-grade glioma: Results of a 20-year systematic review and meta-analysis. J Neurooncol. 2018; 137:103–110. DOI:10.1007/s11060-017-2701-8.; Chatwin HV, Cruz J, Green AL. Pediatric high-grade glioma: Moving toward subtype-specific multimodal therapy. FEBS J. 2021; 288: 6127–6141. DOI:10.1111/febs.15739.; Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012; 482: 226–231. DOI:10.1038/nature10833.; Sun Y, Bailey CP, Sadighi Z, et al. Pediatric high-grade glioma: Aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol. 2020; 150: 17–26. DOI:10.1007/s11060-020-03546-0.; Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014; 14: 651–661. DOI:10.1038/nrc3811.; Clarke M, Mackay A, Ismer B, et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discovery. 2020; 10: 942–963. DOI:10.1158/2159-8290.CD-19-1030.; Guerreiro Stucklin AS, Ryall S, Fukuoka K, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun. 2019; 10: 1–13. DOI:10.1038/s41467-019-12187-5.; Goncalves FG, Viaene AN, Vossough A. Advanced magnetic resonance imaging in pediatric glioblastomas. Front Neurol. 2012; 12. DOI:10.3389/fneur.2021.733323.; Panigrahy A, Bleuml S. Neuroimaging of pediatric brain tumors: From basic to advanced magnetic resonance imaging (MRI). J Child Neurol. 2009; 24: 1343–1365. 38. DOI:10.1177/0883073809342129.; Aboian MS, Solomon DA, Felton E, et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR. 2017; 38:795. DOI:10.3174/ajnr.A5076.; Hales PW, d’Arco F, Cooper J, et al. Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. NeuroImage Clin. 2019; 22: 101696. DOI:10.1016/j.nicl.2019.101696.; Yamasaki F, Kurisu K, Kajiwara Y, et al. Magnetic resonance spectroscopic detection of lactate is predictive of a poor prognosis in patients with diffuse intrinsic pontine glioma. Neuro-Oncology. 2011; 13: 791. DOI:10.1093/neuonc/nor038.; Simon M, Hosen I, Gousias K, et al. TERT promoter mutations: A novel independent prognostic factor in primary glioblastomas. NeuroOncol. 2015; 17: 45–52.43. DOI:10.1093/neuonc/nou158.; https://transmed.almazovcentre.ru/jour/article/view/832Test

  3. 3
    دورية أكاديمية

    المساهمون: The research was carried out at the expense of the grant of the Russian Science Foundation № 22-71-10092, https://rscf.ru/project/22-71-10092Test/, Исследование выполнено за счет гранта Российского научного фонда № 22-71-10092, https://rscf.ru/project/22-71-10092Test/

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 6 (2023); 90-96 ; Вестник анестезиологии и реаниматологии; Том 20, № 6 (2023); 90-96 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    العلاقة: https://www.vair-journal.com/jour/article/view/904/682Test; Борщаговский М. Л., Дубикайтис Ю. В. Клинические типы патофизиологических реакций на операционную и неоперационную травму головного мозга // Труды 3-й конференции нейрохирургов Прибалтийских республик. Рига. – 1972. – С. 26–29.; Ценципер Л. М., Терехов И. С., Шевелев О. А. и др. Синдром пароксизмальной симпатической гиперактивности (обзор). // Общая реаниматология. – 2022. – Т. 18, № 4. – С. 55–67. DOI:10.15360/1813-9779-2022-4-55-67.; Ценципер Л. М., Шевелев О. А., Полушин Ю. С. и др. Синдром пароксизмальной симпатической гиперактивности: патофизиология, диагностика и лечение // Российский нейрохирургический журнал имени профессора А. Л. Поленова. – 2020. – Т. 12, № 4. – С. 59–64.; Coravos A., Goldsack J. C., Karlin D. R. et al. Digital medicine: a primer on measurement // Digital Biomarkers. – 2019. – Vol. 3, № 2. – P. 31–71. DOI:10.1159/000500413.; Penfield W. Diencephalic autonomic epilepsy // Archives of Neurology & Psychiatry. – 1929. – Vol. 22, № 2. – P. 358–374.; Alofisan T. O., Algarni Y. A., Alharfi I. M. et al. Paroxysmal sympathetic hyperactivity after severe traumatic brain injury in children: prevalence, risk factors, and outcome // Pediatric critical care medicine. – 2019. – Vol. 20, № 3. – P. 252–258. DOI:10.1097/PCC.0000000000001811.; Baguley I. J., Heriseanu R. E., Cameron I. D. et al. A critical review of the pathophysiology of dysautonomia following traumatic brain injury // Neurocritical care. – 2008. – Vol. 8. – P. 293–300. DOI:10.1007/s12028-007-9021-3.; Baguley I. J., Perkes I. E., Fernandez-Ortega J.-F. et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria // Journal of Neurotrauma. – 2014. – Vol. 31, № 17. – P. 1515–1520. DOI:10.1089/neu.2013.3301.; Hilz M. J., Liu M., Roy S., Wang R. Autonomic dysfunction in the neurological intensive care unit // Clinical Autonomic Research. – 2019. – Vol. 29. – P. 301–311. DOI:10.1007/s10286-018-0545-8.; Huang P.-H. The Application of smart medical care in the smart ward-take a company as an example. Ph.D. Thesis. – College of Management (Executive Master in Business Administration), 2022. – 85 p.; Rafanelli M., Walsh K., Hamdan M. H. et al. Autonomic dysfunction: diagnosis and management // Journal of Clinical Neurology. – 2019. – Vol. 167. – P. 123–137. DOI:10.1016/B978-0-12-804766-8.00008-X.; Shald E. A., Reeder J., Finnick M. et al. Pharmacological treatment for paroxysmal sympathetic hyperactivity // Critical Care Nurse. – 2020. – Vol. 40, № 3. – P. e9–e16. DOI:10.4037/ccn2020348; Tu J. S. Y., Reeve J., Deane A. M. et al. Pharmacological management of paroxysmal sympathetic hyperactivity: a scoping review // Journal of Neurotrauma. – 2021. – Vol. 38, № 16. – P. 2221–2237. DOI:10.1089/neu.2020.7597.; Yang L., Liao D., Hou X. et al. Systematic review and meta-analysis of the effect of nutritional support on the clinical outcome of patients with traumatic brain injury // Annals of Palliative Medicine. – 2021. – Vol. 10, № 11. – P. 11960–11969. DOI:10.21037/apm-21-3071.; Zheng R.-Z., Lei Z.-Q., Yang R.-Z. et al. Identification and management of paroxysmal sympathetic hyperactivity after traumatic brain injury // Frontiers in neurology. – 2020. – Vol. 11. – P. 81. DOI:10.3389/fneur.2020.00081.; https://www.vair-journal.com/jour/article/view/904Test

  4. 4
    دورية أكاديمية

    المساهمون: Funds of the state task of the Ministry of Health of the Russian Federation No. 056-00017-23-00 (for 2023 and for the planning period 2024 and 2025), topic: «Development of a minimally invasive system for continuous assessment of the biomechanical properties of the craniospinal fluid circulation system and cortical perfusion», EGISU R&D: 121031100314-1., Средства государственного задания Минздрава России № 056-00017-23-00 (на 2023 г. и на плановый период 2024 и 2025 гг.), тема: «Разработка малоинвазивной системы непрерывной оценки биомеханических свойств краниоспинальной системы ликворообращения и корковой перфузии», ЕГИСУ НИОКТР: 121031100314-1.

    المصدر: Translational Medicine; Том 10, № 6 (2023); 581-590 ; Трансляционная медицина; Том 10, № 6 (2023); 581-590 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/839/549Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/839/1874Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/839/1875Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/839/1876Test; GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388(10053):1545-1602. DOI:10.1016/S0140-6736(16)316786. PMID: 27733282; PMCID: PMC5055577.; Дымочка М.А., Красновская Е.С., Веригина Н.Б. Закономерности формирования инвалидности взрослого населения. ФГБУ ФБ МСЭ Минтруда России, Москва, 2020.; Естественное движение населения Российской Федерации. Федеральная служба государственной статистики, Москва, 2021.; Myrcha P, Gloviczki P. A systematic review of endovascular treatment for chronic total occlusion of the internal carotid artery. Annals of Translational Medicine. 2021; 9(14):1203. DOI:10.21037/atm-20-6980. PMID: 34430644; PMCID: PMC8350681.; Ogasawara K, Ogawa A. [JET study (Japanese EC-IC Bypass Trial)]. Nichon Rinsho. 2006; 64(7):524-7. PMID:17461199.; Powers WJ, Clarke WR, Grubb RL Jr, et al. COSS Investigators. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial. JAMA. 2011; 306(18):1983-92. DOI:10.1001/jama.2011.1610. PMID: 22068990; PMCID: PMC3601825.; Xu B, Li C, Guo Y, et al. Current understanding of chronic total occlusion of the internal carotid artery. Biomedical Reports. 2018;8(2):117-125. DOI:10.3892/ br.2017.1033. PMID: 29435269; PMCID: PMC5776422.; Российское общество ангиологов и сосудистых хирургов, Ассоциация сердечно-сосудистых хирургов России, Российское научное общество рентгенэндоваскулярных хирургов и интервенционных радиологов, Всероссийское научное общество кардиологов, Ассоциация флебологов России. Национальные рекомендации по ведению пациентов с заболеваниями брахиоцефальных артерий. Москва, 2013.; Кривошапкин А.Л., Дуйшобаев А.Р., Мелиди Е.Г. и др. Радиочастотная термодеструкция шейного, симпатического узла с целью разрешения ангиоспазма при субарахноидальном аневризматическом кровоизлиянии. Бюллетень сибирской медицины. 2008;7(5-1): 204-207.; Леменев В.Л., Асланян Л.С., Ахметов В.В. и др. Шейная симпатэктомия в лечении больных с ишемией головного мозга. Нейрохирургия. 2011;1: 66-70.; Forbes HS, Wolff HG. Cerebral circulation: III. The vasomotor control of cerebral vessels. Journal of Nervous and Mental Disease. 1928;19:1057-1086. DOI:10.1001/ARC HNEURPSYC.1928.02210120090008.; Leriche R, Fontaine R. Infiltrations stellaires dans l’embolies cérébrales dans les spasmes vasculaires postopératoires de l’encephale et chez les hémiplégiques. Rev de Chir. 1936;74:755-758.; Leriche R. Treatment of embolism and thrombosis of the cerebral vessels. British medical journal. 1952; 1:231235. DOI:10.1136/bmj.1.4752.231.; Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. The Journal of Clinical Investigation. 1948;27(4):476-83. DOI:10.1172/JCI101994. PMID: 16695568; PMCID: PMC439518.; Harmel MH, Hafkenschiel JH, Austin GM, et al. The effect of bilateral stellate ganglion block on the cerebral circulation in normotensive and hypertensive patients. The Journal of Clinical Investigation. 1949;28(3):415-8. DOI:10.1172/JCI102085. PMID: 16695692; PMCID: PMC439616.; Shenkin HA, Cabieses F, Van Den Noordt G. The effect of bilateral stellectomy upon the cerebral circulation of man. The Journal of Clinical Investigation. 1951;30(1):903. DOI:10.1172/JCI102421. PMID: 14803562; PMCID: PMC436232.; Linden L. The effect of stellate ganglion block on cerebral circulation in cerebrovascular accidents. Acta Medica Scandinavica. 1955;301:1-110. DOI:10.1590/S0004282X1956000100008. PMID: 14375827.; Treggiari MM, Romand J-A, Martin J-B, et al. Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke. 2003; 34:961-967. DOI:10.1161/01.STR.0000060893.72098.80. PMID: 12649526.; Gupta MM, Bithal PK, Dash HH, et al. Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography. British Journal of Anaesthesia. 2005; 95(5):669–73. DOI:10.1093/bja/aei230. PMID: 16155036.; Jain V, Rath GP, Dash HH, et al. Stellate ganglion block for treatment of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage — A preliminary study. Journal of Anaesthesiology Clinical Pharmacology. 2011; 27(4):516–21. DOI:10.4103/0970-9185.86598. PMID: 22096287; PMCID: PMC3214559.; Ohta S, Hadeishi H, Suzuki M. Effect of stellate ganglion block on cerebral blood flow in normoxemic and hyperoxemic states. Journal of neurosurgical anesthesiology. 1990;2(4):272-9. DOI:10.1097/00008506199012000-00004. PMID: 15815363.; Kang C-K, Oh S-T, Chung RK, et al. Effect of stellate ganglion block on the cerebrovascular system. Magnetic Resonance Angiography Study. Anesthesiology. 2010;113(4):936-44. DOI:10.1097/ALN.0b013e3181ec63f5. PMID: 20823762.; Brassard P, Tymko MM, Ainslie PN. Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Autonomic Neuroscience: Basic and Clinical. 2017;207:3747. DOI:10.1016/j.autneu.2017.05.003. PMID: 28506501.; ter Laan M, van Dijk JM, Elting JW, et al. Sympathetic regulation of cerebral blood flow in humans: a review. British Journal of Anaesthesia. 2013;111(3):361-7. DOI:10.1093/bja/aet122. PMID: 23616589.; Alborch E, Gomez B, Dieguez G, et al. Cerebral blood flow and vascular reactivity after removal of the superior cervical sympathetic ganglion in the goat. Circulation Research. 1977;41(3):278-82. DOI:10.1161/01.res.41.3.278. PMID: 19161.; Lee RH, Couto E Silva A, et al. Interruption of perivascular sympathetic nerves of cerebral arteries offers neuroprotection against ischemia. American journal of physiology. Heart and circulatory physiology. 2017;312(1):H182-H188. DOI:10.1152/ajpheart.00482.2016. PMID: 27864234.; Shackelford RT, Hegedus SA. Factors affecting cerebral blood flow. Experimental review: sympathectomy, hypothermia, CO2 inhalation and pavarine. Annals of Surgery. 1966;163(5):771-7. DOI:10.1097/00000658196605000-00014. PMID: 5930460. PMCID PMC1477179.; Heistad DD, Marcus ML, Gross P.M. Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey. American Journal of Physiology. 1978;235(5):H54452. DOI:10.1152/ajpheart.1978.235.5.H544. PMID: 103441.; Igloffstein J, Laas R. Cerebral infarction due to carotid occlusion and carbon monoxide exposure. II. Influence of preganglionic cervical sympathectomy. Journal of neurology, neurosurgery and psychiatry. 1983;46(8):768– 73. DOI:10.1136/jnnp.46.8.768. PMID: 6886721; PMCID: PMC1027532.; Pereira A de S. Surgical treatment of internal carotid thrombosis. Annals of Surgery. 1955; 141(2):218–33. DOI:10.1097/00000658-195502000-00007. PMID: 13229256, PMCID: PMC1609777.; Suzuki J, Iwabuchi T, Hori S. Cervical sympathectomy for cerebral vasospasm after aneurysm rupture. Neurologia Medico-Chirurgica (Tokyo). 1975;15pt1:41–50. DOI:10.2176/nmc.15pt1.41. PMID: 60719.; Jeng JS, Yip PK, Huang SJ, et al. Changes in hemodynamics of the carotid and middle cerebral arteries before and after endoscopic sympathectomy in patients with palmar hyperhidrosis: preliminary results. Journal of Neurosurgery. 1999;90(3):463–7. DOI:10.3171/jns.1999.90.3.0463. PMID: 10067914.; Fan JL, Brassard P, Rickards CA, et al. Integrative cerebral blood flow regulation in ischemic stroke. Journal of Cerebral Blood Flow Metabolism. 2022;42(3):387–403. DOI:10.1177/0271678X211032029. PMID: 34259070; PMCID: PMC8985438.; Угрюмов В.М., Теплов С.И., Тиглиев Г.С. Регуляция мозгового кровообращения. Л.: Медицина, 1984.; Теплов С.И. Нейрогенная регуляция кровоснабжения сердца и головного мозга. Л.: Наука, 1980.; Balestreri M, Czosnyka M, Steiner LA, et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochirurgica. 2004;146(2):131–41. DOI:10.1007/s00701-003-0187-y. PMID: 14963745.; Hayashi M, Kobayashi H, Kawano H, et al. Cerebral blood flow and ICP patterns in patients with communicating hydrocephalus after aneurysm rupture. Journal of neurosurgery. 1984;61(1):30–6. DOI:10.3171/jns.1984.61.1.0030. PMID: 6726408.; Lalou DA, Donnelly J, Czosnyka M, et al. Are B waves of intracranial pressure suppressed by general anesthesia? Fluids and Barriers of the CNS. 2018;126:129– 132. DOI:10.1007/978-3-319-65798-1_27. PMID: 29492547.; Momjian S, Czosnyka Z, Czosnyka M, et al. Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. British Journal of Neurosurgery. 2004;18(1):56–61. DOI:10.1080/02688690410001660481. PMID: 15040716.; MartinezTejada I, Arum A, Wilhjelm JE, et al. B waves: a systematic review of terminology, characteristics, and analysis methods. Fluids and Barriers of the CNS. 2019;16(1):33. DOI:10.1186/s12987-019-01536. PMID: 31610775; PMCID: PMC6792201.; Newell DW, Aaslid R, Stooss R, et al. The relationship of blood flow velocity fluctuations to intracranial pressure B waves. Journal of Neurosurgery. 1992;76(3):415–21. DOI:10.3171/jns.1992.76.3.0415. PMID: 1738020.; Cardim D, Schmidt B, Robba C, et al. Transcranial Doppler monitoring of intracranial pressure plateau waves. Neurocritical Care. 2016; 25(3):473– 491. DOI:10.1007/s12028-016-0258-6. PMID: 26940914; PMCID: PMC5138275.; Newell DW, Maiken N, Aaslid R. Physiological Mechanisms and Significance of Intracranial B Waves. Frontiers in Neurology. 2022; 13:872701. DOI:10.3389/fneur.2022.872701. PMID: 35651339; PMCID: PMC9149212.; Semenyutin V, Aliev V, Panuntsev G, et al. Perioperative Dynamics of Intracranial B-waves of Blood Flow Velocity in the Basal Cerebral Arteries in Patients with Brain Arteriovenous Malformation. Acta Neurochirurgica Supplement. 2021;131:63–68. DOI:10.1007/978-3-03059436-7_14.; Schytz HW, Hansson A, Phillip D, et al. Spontaneous low-frequency oscillations in cerebral vessels: applications in carotid artery disease and ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 2010; 19(6):465–74. DOI:10.1016/j.jstrokecerebrovasdis.2010.06.001. PMID: 20864356; PMCID: PMC3752675.; https://transmed.almazovcentre.ru/jour/article/view/839Test

  5. 5
    دورية أكاديمية

    المصدر: Translational Medicine; Том 10, № 4 (2023); 285-292 ; Трансляционная медицина; Том 10, № 4 (2023); 285-292 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/801/522Test; BMJ 2020;371:m3658 http://dx.doi.org/10.1136/bmj.m3658Test; Karlov V.A. Epilepsy in children and adult women and men. A guide for doctors. 2nd ed. Moscow: BINOM; 2019 (in Russ.). [Карлов В.А. Эпилепсия у детей и взрослых женщин и мужчин. Руководство для врачей. 2-е изд. М.: БИНОМ; 2019.]; Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296-303. doi:10.1212/WNL.0000000000003509; Shova N.I., Mikhailov V.A., Odintsova G.V., Druzhinin A.K., Popov Yu.V., Ulitin А.Yu. The Modern View on the Problem of Formation of Suicidal Behavior in Patients with a Pharmacoresistance Form of Epilepsy in the Postoperative Period (Review). Translational Medicine. 2019;6(2):5-11. (In Russ.) [Шова Н.И., Михайлов В.А., Одинцова Г.В., Дружинин А.К., Попов Ю.В., У. А. Ю. (2019). Современный взгляд на проблему формирования суицидального поведения у пациентов с фармакорезистентной формой эпилепсии в послеоперационном периоде (литературный обзор). Трансляционная Медицина, 6(2), 5–11.] https://doi.org/10.18705/2311-4495-2019-6-2-5-11Test; Mikhalovska-Karlova EP. Epilepsy and society: a new model of attitudes. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014;114(4‑2):76‑81. [Михаловска-Карлова Е.П. Эпилепсия и общество: новая модель отношений. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2014;114(4‑2):76‑81.]; Nesterova S.V., Odintsova G.V. Peculiarities of family functioning of women of reproductive age with epilepsy and migraine. Modern Problems of Science and Education. 2018; 5. (In Russ). [Нестерова С.В., Одинцова Г.В. Особенности семейного функционирования женщин репродуктивного возраста при эпилепсии и мигрени при. Современные Проблемы Науки и Иобразования. 2018; 5.] http://www.science-education.ru/article/view?id=28032Test; Thurman DJ, Begley CE, Carpio A, et al. The primary prevention of epilepsy: A report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia. 2018;59(5):905-914. doi:10.1111/epi.14068; GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-480. doi:10.1016/S1474-4422(18)30499-X; «Эпилепсия. Важнейшая задача общественного здравоохранения. Резюме». Женева: Всемирная организация здравоохранения; (WHO/MSD/MER/19.2) 2019. Лицензия CC BY-NC-SA 3.0 IGO.; Krasko A. S., Mikhailova N. F., Dengina N. O., Mikhailov V. A., Odintsova G. V. The history of cognition and stigmatization of epilepsy patients. Healthcare. 2023; 3: 16-23.; https://transmed.almazovcentre.ru/jour/article/view/801Test

  6. 6
    دورية أكاديمية

    المصدر: Translational Medicine; Том 10, № 3 (2023); 223-228 ; Трансляционная медицина; Том 10, № 3 (2023); 223-228 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/854/516Test; Podzimek S, Tomka M, Sommerova P, et al. Immune markers in oral discomfort patients before and after elimination of oral galvanism. Neuro Endocrinol Lett. 2013; 34(8):802–808.; Борисова Э.Г., Комова А.А., Вербитский Е.С. и др. Гальваноз полости рта. Проблемы стоматологии. 2019; 1:5–9. DOI:10.18481/2077-7566-2019-15-1-5-9.; Понякина И.Д., Митронин А.В., Саган Н.Н. и др. Выявление электрических токов в полости рта, определяющих патологический гальваносиндром. Эндодонтия Today. 2007. № 1. С. 34–38.; Lambert DMH, Mann PC, Sonesson A, et al. Implant-Related Galvanic Pain A Case Report. J Mass Dent Soc. 2016; 65(3):26–29.; Серхель Е.В., Пурсанова А.Е. Синдром гальванизма в полости рта. Бюллетень медицинских интернет-конференций. 2015; 11(5):1362.; Tan L, Hu Y, Hou Y, et al. Osteogenic differentiation of mesenchymal stem cells by silica/calcium micro-galvanic effects on the titanium surface. J Mater Chem B. 2020; 8(11):2286–2295. DOI:10.1039/d0tb00054j.; Jin G, Qin H, Cao H, et al. Zn/Ag micro-galvanic couples formed on titanium and osseointegration effects in the presence of S. aureus. Biomaterials. 2015; 10(65):22–31. DOI:10.1016/j.biomaterials.2015.06.040.; Zhu S, Chen Y, Lin F, et al. Complications following titanium cranioplasty compared with nontitanium implants cranioplasty: A systematic review and metaanalysis. J Clin Neurosci. 2021; 84:66–74. DOI:10.1016/j.jocn.2020.12.009.; Hill CS, Luoma AM, Wilson SR, et al. Titanium cranioplasty and the prediction of complications. Br J Neurosurg. 2012; 26(6):832–837. DOI:10.3109/02688697.2012.692839.; Sahoo NK, Tomar K, Thakral A, et al. Complications of Cranioplasty. J Craniofac Surg. 2018; 29(5):1344–1348. DOI:10.1097/SCS.0000000000004478.; https://transmed.almazovcentre.ru/jour/article/view/854Test

  7. 7
    دورية أكاديمية

    المساهمون: The work was carried out within the framework of the state task of the Ministry of Health of the Russian Federation No. 056-00119-22-00 «Risk stratification, selection of optimal surgical treatment strategy and prediction of outcomes in patients with pharmacoresistant structural epilepsy», EGISU number — 122011900530-8., Работа выполнена в рамках государственного задания Министерства здравоохранения Российской Федерации № 056-00119-22-00 «Стратификация рисков, выбор оптимальной стратегии хирургического лечения и прогнозирование исходов у пациентов с фармакорезистентной структурной эпилепсией», номер ЕГИСУ — 122011900530- 8.

    المصدر: Translational Medicine; Том 9, № 6 (2022); 36-43 ; Трансляционная медицина; Том 9, № 6 (2022); 36-43 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/726/491Test; https://transmed.almazovcentre.ru/jour/article/view/726/493Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/726/1545Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/726/1546Test; Epilepsy: a public health imperative. Summary. Geneva: World Health Organization; 2019 (WHO/MSD/MER/19.2). Licence: CC BY-NC-SA 3.0 IGO.; Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017 Apr;58(4):512–521.; Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010 Jun;51(6):1069–77.; Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285–293.; Шова Н.И., Михайлов В.А., Одинцова Г.В., и др. Современный взгляд на проблему формирования суицидального поведения у пациентов с фармакорезистентной формой эпилепсии в послеоперационном периоде (литературный обзор). Трансляционная медицина. 2019;6(2):5–11.; Одинцова Г.В., Сайкова Л.А. Побочное действие антиэпилептических препаратов на репродуктивное здоровье при эпилепсии у женщин. Фарматека. 2012;4(237):60-64.; Ушанов В.В., Одинцова Г.В., Герасимов А.П., Нездоровина В.Г., Иванова Н.Е., Улитин А.Ю. Хирургическое лечение эпилепсии: субъективная готовность пациентов. Российский нейрохирургический журнал им. профессора А.Л. Поленова. 2020;12(3):31-36.; Liu SY, Yang XL, Chen B, et al. Clinical outcomes and quality of life following surgical treatment for refractory epilepsy: a systematic review and metaanalysis.Medicine.2015Feb;94(6).; Garcia Gracia C, Yardi R, Kattan MW, et al. Seizure freedom score: a new simple method to predict success of epilepsy surgery. Epilepsia. 2015 Mar;56(3):359-65.; Mula M, Zaccara G, Galimberti CA, Ferrò B, Canevini MP, Mascia A, et al. Validated outcome of treatment changes according to International League Against Epilepsy criteria in adults with drug‐resistant focal epilepsy. 2019.; https://transmed.almazovcentre.ru/jour/article/view/726Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية