يعرض 1 - 10 نتائج من 18 نتيجة بحث عن '"Ischemic precondition"', وقت الاستعلام: 0.95s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Critical Care; Vol. 11 (6 2007), p. 216; https://ddd.uab.cat/record/183172Test; urn:10.1186/cc5930; urn:oai:ddd.uab.cat:183172; urn:pmid:17581271; urn:oai:egreta.uab.cat:publications/3cfaa361-db3f-4bf8-ada6-0187198a8e25; urn:scopus_id:40749097280; urn:articleid:1466609Xv11p216; urn:pmc-uid:2206421; urn:pmcid:PMC2206421; urn:oai:pubmedcentral.nih.gov:2206421

  4. 4
    دورية أكاديمية
  5. 5
  6. 6

    وصف الملف: 102 bytes; text/html

    العلاقة: Biomedical Reports, 16(19); 1. Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113:600–609. doi:10.1016/j.phrs.2016.09.040. [PubMed] [CrossRef] [Google Scholar] 2. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019;12(e005375) doi:10.1161/CIRCOUTCOMES.118.005375. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 3. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48:357–379. doi:10.1113/jphysiol.1914.sp001669. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 4. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 2005;14:170–175. doi:10.1016/j.carpath.2005.03.006. [PubMed] [CrossRef] [Google Scholar] 5. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of endothelial cells in myocardial ischemia-reperfusion injury. Vasc Dis Prev. 2010;7:1–14. doi:10.2174/1874120701007010001. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 6. Sheehan FH, Doerr R, Schmidt WG, Bolson EL, Uebis R, von Essen R, Effert S, Dodge HT. Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: An important determinant of survival. J Am Coll Cardiol. 1988;12:289–300. doi:10.1016/0735-1097(88)90397-x. [PubMed] [CrossRef] [Google Scholar] 7. Reeve JL, Duffy AM, O'Brien T, Samali A. Don't lose heart-therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med. 2005;9:609–622. doi:10.1111/j.1582-4934.2005.tb00492.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 8. Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–634. doi:10.1152/physrev.1999.79.2.609. [PubMed] [CrossRef] [Google Scholar] 9. Basso C, Thiene G. The pathophysiology of myocardial reperfusion: A pathologist's perspective. Heart. 2006;92:1559–1562. doi:10.1136/hrt.2005.086959. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 10. Ruiz-Meana M, Abellán A, Miró-Casas E, Garcia-Dorado D. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol. 2007;102:542–552. doi:10.1007/s00395-007-0675-y. [PubMed] [CrossRef] [Google Scholar] 11. Argaud L, Loufouat J, Gateau-Roesch O, Gomez L, Robert D, Ovize M. Persistent inhibition of mitochondrial permeability transition by preconditioning during the first hours of reperfusion. Shock. 2008;30:552–556. doi:10.1097/SHK.0b013e31816a1c1c. [PubMed] [CrossRef] [Google Scholar] 12. Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock. 1997;8:86–94. doi:10.1097/00024382-199708000-00003. [PubMed] [CrossRef] [Google Scholar] 13. Gross ER, Gross GJ. Ischemic preconditioning and myocardial infarction: An update and perspective. Drug Discov Today Dis Mech. 2007;4:165–174. doi:10.1016/j.ddmec.2007.10.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 14. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi:10.1161/01.cir.74.5.1124. [PubMed] [CrossRef] [Google Scholar] 15. Vegh A, Szekeres L, Parratt JR. Transient ischaemia induced by rapid cardiac pacing results in myocardial preconditioning. Cardiovasc Res. 1991;25:1051–1053. doi:10.1093/cvr/25.12.1051. [PubMed] [CrossRef] [Google Scholar] 16. Cumming DV, Heads RJ, Brand NJ, Yellon DM, Latchman DS. The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocytes. Basic Res Cardiol. 1996;91:79–85. doi:10.1007/BF00788868. [PubMed] [CrossRef] [Google Scholar] 17. Huang CH, Kim SJ, Ghaleh B, Kudej RK, Shen YT, Bishop SP, Vatner SF. An adenosine agonist and preconditioning shift the distribution of myocardial blood flow in conscious pigs. Am J Physiol. 1999;276:H368–H375. doi:10.1152/ajpheart.1999.276.2.H368. [PubMed] [CrossRef] [Google Scholar] 18. Schott RJ, Rohmann S, Braun ER, Schaper W. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res. 1990;66:1133–1142. doi:10.1161/01.res.66.4.1133. [PubMed] [CrossRef] [Google Scholar] 19. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350–356. doi:10.1161/01.cir.84.1.350. [PubMed] [CrossRef] [Google Scholar] 20. Li Y, Kloner RA. The cardioprotective effects of ischemic ‘preconditioning’ are not mediated by adenosine receptors in rat hearts. Circulation. 1993;87:1642–1648. doi:10.1161/01.cir.87.5.1642. [PubMed] [CrossRef] [Google Scholar] 21. Sumeray MS, Yellon DM. Ischaemic preconditioning reduces infarct size following global ischaemia in the murine myocardium. Basic Res Cardiol. 1998;93:384–390. doi:10.1007/s003950050106. [PubMed] [CrossRef] [Google Scholar] 22. Wilmore JH. Aerobic exercise and endurance: Improving fitness for health benefits. Phys Sportsmed. 2003;31:45–51. doi:10.3810/psm.2003.05.367. [PubMed] [CrossRef] [Google Scholar] 23. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97:141–147. doi:10.1016/j.amjcard.2005.07.130. [PubMed] [CrossRef] [Google Scholar] 24. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904. doi:10.1001/jama.290.7.898. [PubMed] [CrossRef] [Google Scholar] 25. Lawson WE, Hui JC, Zheng ZS, Burgen L, Jiang L, Lillis O, Oster Z, Soroff H, Cohn P. Improved exercise tolerance following enhanced external counterpulsation: cardiac or peripheral effect? Cardiology. 1996;87:271–275. doi:10.1159/000177103. [PubMed] [CrossRef] [Google Scholar] 26. Demirel HA, Powers SK, Zergeroglu MA, Shanely RA, Hamilton K, Coombes J, Naito H. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. J Appl Physiol (1985) 2001;91:2205–2212. doi:10.1152/jappl.2001.91.5.2205. [PubMed] [CrossRef] [Google Scholar] 27. Perrault H, Turcotte RA. Exercise-induced cardiac hypertrophy. Fact or fallacy? Sports Med. 1994;17:288–308. doi:10.2165/00007256-199417050-00003. [PubMed] [CrossRef] [Google Scholar] 28. Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, Van Peborgh J, Paoni NF. Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol. 2000;279:H2994–H3002. doi:10.1152/ajpheart.2000.279.6.H2994. [PubMed] [CrossRef] [Google Scholar] 29. McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–962. doi:10.1161/01.cir.57.5.958. [PubMed] [CrossRef] [Google Scholar] 30. Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol. 1992;263:H804–H809. doi:10.1152/ajpheart.1992.263.3.H804. [PubMed] [CrossRef] [Google Scholar] 31. Gul M, Demircan B, Taysi S, Oztasan N, Gumustekin K, Siktar E, Polat MF, Akar S, Akcay F, Dane S. Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp Biochem Physiol A Mol Integr Physiol. 2006;143:239–245. doi:10.1016/j.cbpa.2005.12.001. [PubMed] [CrossRef] [Google Scholar] 32. Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial infarction in the rat: Heart structure, function, and gene expression. J Am Coll Cardiol. 2005;45:931–938. doi:10.1016/j.jacc.2004.11.052. [PubMed] [CrossRef] [Google Scholar] 33. Ozturk N, Olgar Y, Er H, Kucuk M, Ozdemir S. Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations. Cardiol J. 2017;24:85–93. doi:10.5603/CJ.a2016.0069. [PubMed] [CrossRef] [Google Scholar] 34. Nagaraja HS, Jeganathan PS. Forced swimming stress-induced changes in the physiological and biochemical parameters in albino rats. Indian J Physiol Pharmacol. 1999;43:53–59. [PubMed] [Google Scholar] 35. Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, et al. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci Adv. 2020;6(eabc4149) doi:10.1126/sciadv.abc4149. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 36. Chou PL, Chen KH, Chang TC, Chien CT. Repetitively hypoxic preconditioning attenuates ischemia/reperfusion-induced liver dysfunction through upregulation of hypoxia-induced factor-1 alpha-dependent mitochondrial Bcl-xl in rat. Chin J Physiol. 2020;63:68–76. doi:10.4103/CJP.CJP_74_19. [PubMed] [CrossRef] [Google Scholar] 37. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17:865–886. doi:10.1038/nrd.2018.174. [PubMed] [CrossRef] [Google Scholar] 38. Jiang T, Ma X, Chen H, Jia H, Xiong Y. Diazepam ameliorated myocardial ischemia-reperfusion injury via inhibition of C-C chemokine receptor type 2/Tumor necrosis factor-alpha/Interleukins and Bcl-2-associated X protein/Caspase-3 pathways in experimental rats. J Vet Med Sci. 2021;83:1965–1976. doi:10.1292/jvms.21-0344. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 39. Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019;9(5612) doi:10.1038/s41598-019-42023-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 40. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR Journal. 1997;38:41–48. doi:10.1093/ilar.38.1.41. [PubMed] [CrossRef] [Google Scholar] 41. Gazdag P, Oravecz K, Acsai K, Demeter-Haludka V, Ördög B, Szlovák J, Kohajda Z, Polyák A, Barta BA, Oláh A, et al. Increased Ca2+ content of the sarcoplasmic reticulum provides arrhythmogenic trigger source in swimming-induced rat athlete's heart model. Sci Rep. 2020;10(19596) doi:10.1038/s41598-020-76496-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 42. Lee HW, Han TH, Yi KJ, Choi MC, Lee SY, Ryu PD. Time course of diurnal rhythm disturbances in autonomic function of rats with myocardial infarction. Auton Neurosci. 2013;179:28–36. doi:10.1016/j.autneu.2013.06.007. [PubMed] [CrossRef] [Google Scholar] 43. Zhao C, Yin M, Li F, Ling W, Luo C, Qin S. Mechanisms of Paeoniflorin against myocardial ischemia reperfusion injury based on network pharmacology. Mater Exp. 2021;11:1505–1515. [Google Scholar] 44. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18:607–613. doi:10.1016/j.cardfail.2012.06.416. [PubMed] [CrossRef] [Google Scholar] 45. Sabatasso S, Mangin P, Fracasso T, Moretti M, Docquier M, Djonov V. Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med. 2016;130:1265–1280. doi:10.1007/s00414-016-1401-9. [PubMed] [CrossRef] [Google Scholar] 46. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science. 1998;281:1312–1316. doi:10.1126/science.281.5381.1312. [PubMed] [CrossRef] [Google Scholar] 47. Guski H, Meerson FZ, Wassilew G. Comparative study of ultrastructure and function of the rat heart hypertrophied by exercise or hypoxia. Exp Pathol. 1981;20:108–120. doi:10.1016/s0232-1513(81)80018-7. [PubMed] [CrossRef] [Google Scholar] 48. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–1135. doi:10.1056/NEJMra071667. [PubMed] [CrossRef] [Google Scholar] 49. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012;16:123–132. doi:10.1177/1089253211436350. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 50. Pluijmert NJ, Bart CI, Bax WH, Quax PH, Atsma DE. Effects on cardiac function, remodeling and inflammation following myocardial ischemia-reperfusion injury or unreperfused myocardial infarction in hypercholesterolemic APOE* 3-Leiden mice. Sci Rep. 2020;10(16601) doi:10.1038/s41598-020-73608-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 51. Hong XY, Hong X, Gu WW, Lin J, Yin WT. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1. Eur J Pharmacol. 2019;842:79–88. doi:10.1016/j.ejphar.2018.10.033. [PubMed] [CrossRef] [Google Scholar] 52. Bolli R. The late phase of preconditioning. Circ Res. 2000;87:972–983. doi:10.1161/01.res.87.11.972. [PubMed] [CrossRef] [Google Scholar] 53. Marini M, Lapalombella R, Margonato V, Ronchi R, Samaja M, Scapin C, Gorza L, Maraldi T, Carinci P, Ventura C, Veicsteinas A. Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol. 2007;99:503–510. doi:10.1007/s00421-006-0369-4. [PubMed] [CrossRef] [Google Scholar] 54. Labarca G, Gower J, Lamperti L, Dreyse J, Jorquera J. Chronic intermittent hypoxia in obstructive sleep apnea: A narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath. 2020;24:751–760. doi:10.1007/s11325-019-01967-4. [PubMed] [CrossRef] [Google Scholar] 55. Sanderson JE, Fang F, Lu M, Ma CY, Wei YX. Obstructive sleep apnoea, intermittent hypoxia and heart failure with a preserved ejection fraction. Heart. 2021;107:190–194. doi:10.1136/heartjnl-2020-317326. [PubMed] [CrossRef] [Google Scholar] 56. Nanduri J, Nanduri RP. Cellular mechanisms associated with intermittent hypoxia. Essays Biochem. 2007;43:91–104. doi:10.1042/BSE0430091. [PubMed] [CrossRef] [Google Scholar] 57. Chen L, Shi D, Guo M. The roles of PKC-delta and PKC-epsilon in myocardial ischemia/reperfusion injury. Pharmacol Res. 2021;170(105716) doi:10.1016/j.phrs.2021.105716. [PubMed] [CrossRef] [Google Scholar] 58. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–159. doi:10.1016/j.freeradbiomed.2007.01.029. [PubMed] [CrossRef] [Google Scholar] 59. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020;9:415–425. doi:10.1016/j.jshs.2020.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 60. Soukhova-O'Hare GK, Ortines RV, Gu Y, Nozdrachev AD, Prabhu SD, Gozal D. Postnatal intermittent hypoxia and developmental programming of hypertension in spontaneously hypertensive rats: The role of reactive oxygen species and L-Ca2+ channels. Hypertension. 2008;52:156–162. doi:10.1161/HYPERTENSIONAHA.108.110296. [PubMed] [CrossRef] [Google Scholar] 61. Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med. 2020;152:395–410. doi:10.1016/j.freeradbiomed.2020.04.005. [PubMed] [CrossRef] [Google Scholar] 62. Lee MG, Park KS, Kim DU, Choi SM, Kim HJ. Effects of high-intensity exercise training on body composition, abdominal fat loss, and cardiorespiratory fitness in middle-aged Korean females. Appl Physiol Nutr Metab. 2012;37:1019–1027. doi:10.1139/h2012-084. [PubMed] [CrossRef] [Google Scholar] 63. Pattwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med. 2004;37:1064–1072. doi:10.1016/j.freeradbiomed.2004.06.026. [PubMed] [CrossRef] [Google Scholar] 64. McArdle A, van der Meulen J, Close GL, Pattwell D, Van Remmen H, Huang TT, Richardson AG, Epstein CJ, Faulkner JA, Jackson MJ. Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol. 2004;286:C1152–C1158. doi:10.1152/ajpcell.00322.2003. [PubMed] [CrossRef] [Google Scholar] 65. Rinaldi B, Corbi G, Boccuti S, Filippelli W, Rengo G, Leosco D, Rossi F, Filippelli A, Ferrara N. Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol. 2006;41:764–770. doi:10.1016/j.exger.2006.05.008. [PubMed] [CrossRef] [Google Scholar] 66. Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the pulmonary vasculature in health and disease: Oxygen-sensing, metabolism, and dynamics. Compr Physiol. 2020;10:713–765. doi:10.1002/cphy.c190027. [PubMed] [CrossRef] [Google Scholar] 67. Siu PM, Bryner RW, Martyn JK, Always SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18:1150–1152. doi:10.1096/fj.03-1291fje. [PubMed] [CrossRef] [Google Scholar] 68. O'Brien PJ, Smith DE, Knechtel TJ, Marchak MA, Pruimboom-Brees I, Brees DJ, Spratt DP, Archer FJ, Butler P, Potter AN, et al. Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim. 2006;40:153–171. [PubMed] [Google Scholar] 69. Evran B, Karpuzoğlu H, Develi S, Kalaz EB, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Effects of carnosine on prooxidant-antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacol Rep. 2014;66:81–86. doi:10.1016/j.pharep.2013.08.008. [PubMed] [CrossRef] [Google Scholar] 70. Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med. 2020;24:7102–7114. doi:10.1111/jcmm.15341. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 71. Marcil M, Bourduas K, Ascah A, Burelle Y. Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. Am J Physiol Heart Circ Physiol. 2006;290:H1549–H1557. doi:10.1152/ajpheart.00913.2005. [PubMed] [CrossRef] [Google Scholar] 72. Kavazis AN, McClung JM, Hood DA, Powers SK. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol. 2008;294:H928–H935. doi:10.1152/ajpheart.01231.2007. [PubMed] [CrossRef] [Google Scholar] 73. Mnafgui K, Hajji R, Derbali F, Khlif I, Kraiem F, Ellefi H, Elfeki A, Allouche N, Gharsallah N. Protective effect of hydroxytyrosol Against cardiac remodeling after isoproterenol-induced myocardial infarction in rat. Cardiovasc Toxicol. 2016;16:147–155. doi:10.1007/s12012-015-9323-1. [PubMed] [CrossRef] [Google Scholar] 74. Leite CF, Lopes CS, Alves AC, Fuzaro CS, Silva MV, Oliveira LF, Garcia LP, Farnesi TS, Cuba MB, Rocha LB, et al. Endogenous resident c-kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart. Stem Cell Res. 2015;15:151–164. doi:10.1016/j.scr.2015.05.011. [PubMed] [CrossRef] [Google Scholar] 75. Pan C, Yuan Q, Xu F. Progress in cardiorespiratory ischemia-reperfusion injury. In: Sudden Death. pp 79-92, 2021. [Google Scholar] 76. Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis. J Clin Immunol. 1999;19:350–364. doi:10.1023/a:1020546615229. [PubMed] [CrossRef] [Google Scholar] 77. Cook AD, Lee MC, Saleh R, Khiew HW, Christensen AD, Achuthan A, Fleetwood AJ, Lacey DC, Smith JE, Förster I, Hamilton JA. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight. 2018;3(e99249) doi:10.1172/jci.insight.99249. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 78. Sheikh MS, Huang Y. Death receptor activation complexes: It takes two to activate TNF receptor 1. Cell Cycle. 2003;2:550–552. [PubMed] [Google Scholar] 79. Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F, Varela-Andrés N, Montoliu C, et al. Sustained hyperammonemia induces TNF-α IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation. 2020;17(70) doi:10.1186/s12974-020-01746-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 80. Takeshita M, Tani T, Harada S, Hayashi H, Itoh H, Tajima H, Ohnishi I, Takamura H, Fushida S, Kayahara M. Role of transcription factors in small intestinal ischemia-reperfusion injury and tolerance induced by ischemic preconditioning. Transplant Proc. 2010;42:3406–3413. doi:10.1016/j.transproceed.2010.06.038. [PubMed] [CrossRef] [Google Scholar] 81. Huldani Pattelongi I, Massi MN, Idris I, Bukhari A, Widodo ADW, Uinarni H, Carmelita AB, Trisia A, Gunma S, Prayudhistya BKA, Achmad H. Cortisol, IL-6, TNF Alfa, Leukocytes and DAMP on Exercise. Sys Rev Pharm. 2020;11:474–485. [Google Scholar] 82. Wertz IE. TNFR1-activated NF-κB signal transduction: Regulation by the ubiquitin/proteasome system. Curr Opin Chem Biol. 2014;23:71–77. doi:10.1016/j.cbpa.2014.10.011. [PubMed] [CrossRef] [Google Scholar] 83. Valen G. The basic biology of apoptosis and its implications for cardiac function and viability. Ann Thorac Surg. 2003;75:S656–S660. doi:10.1016/s0003-4975(02)04687-8. [PubMed] [CrossRef] [Google Scholar] 84. Ji HB, Zhai QW, Liu XY, Zheng ZC. Transcription regulation of bcl-2 gene. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2000;32:95–99. [PubMed] [Google Scholar] 85. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 1998;97:276–281. doi:10.1161/01.cir.97.3.276. [PubMed] [CrossRef] [Google Scholar] 86. Shimamoto A, Matsuo E, Kaneda S, Ito A, Kawaguchi K, Takao M. Heat shock protein 70 performs as pharmacological preconditioning to protect against lung ischemia reperfusion injury through toll-like receptor 4 signaling. J Heart Lung Transplant. 2021;40(S69) [Google Scholar] 87. Mitra S, Dasgupta R, Bagchi A. Heat shock proteins and their associated oxidative stress-induced heart disease. Modulation of Oxidative Stress in Heart Disease, 215-235, 2019. [Google Scholar] 88. Shamsi MM, Hassan ZM, Gharakhanlou R. Exercise-induced chaperokine activity of hsp70: Possible role in chronic diseases. In: Chaperokine Activity of Heat Shock Proteins. Springer, Cham, pp193-209, 2019. [Google Scholar] 89. Milne KJ, Thorp DB, Krause M, Noble EG. Core temperature is a greater influence Than endogenous 17β-estradiol on the exercise-induced accumulation of myocardial heat shock protein mRNA. Can J Physiol Pharmacol. 2011;89:855–860. doi:10.1139/y11-089. [PubMed] [CrossRef] [Google Scholar] 90. Liu X, Zhang C, Zhang C, Li J, Guo W, Yan D, Yang C, Zhao J, Xia T, Wang Y, et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. In Vitro Cell Dev Biol Anim. 2016;52:690–698. doi:10.1007/s11626-016-0039-8. [PubMed] [CrossRef] [Google Scholar] 91. Rani N, Bharti S, Manchanda M, Nag TC, Ray R, Chauhan SS, Kumari S, Arya DS. Regulation of heat shock Proteins 27 and 70, p-Akt/p-eNOS and MAPKs by naringin dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion. PLoS One. 2013;8(e82577) doi:10.1371/journal.pone.0082577. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 92. Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res. 2020;160(105162) doi:10.1016/j.phrs.2020.105162. [PubMed] [CrossRef] [Google Scholar] 93. Hsu SF, Hsu CC, Cheng BC, Lin CH. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70. Apoptosis. 2014;19:1571–1580. doi:10.1007/s10495-014-1033-9. [PubMed] [CrossRef] [Google Scholar]; 全文連結 https://doi.org/10.3892/br.2022.1502Test; PMID: 35251606; 2049-9442;2049-9434; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123182Test; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/123182/1/index.htmlTest

  7. 7
  8. 8

    المساهمون: Çukurova Üniversitesi

    المصدر: Volume: 49, Issue: 4 387-393
    Acta Orthopaedica et Traumatologica Turcica

    وصف الملف: application/pdf

  9. 9
  10. 10
    كتاب

    المساهمون: J.L. Vincent, Scolletta, S., Biagioli, B., Giomarelli, P.

    وصف الملف: STAMPA

    العلاقة: info:eu-repo/semantics/altIdentifier/isbn/978-3-642-18080-4; info:eu-repo/semantics/altIdentifier/isbn/978-3-642-18081-1; info:eu-repo/semantics/altIdentifier/wos/WOS:000290418200018; ispartofbook:Annual Update in Intensive Care and Emergency Medicine 2011; volume:2011; firstpage:209; lastpage:219; numberofpages:11; serie:ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE; alleditors:J.L. Vincent; http://hdl.handle.net/11365/426478Test; https://link.springer.com/chapter/10.1007/978-3-642-18081-1_18Test