يعرض 1 - 10 نتائج من 472 نتيجة بحث عن '"Impaired consciousness"', وقت الاستعلام: 1.21s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    رسالة جامعية
  7. 7
    دورية أكاديمية

    المصدر: Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева, Vol 0, Iss 0 (2023)

    مصطلحات موضوعية: coronavirus infection, delirium, impaired consciousness, disruption of the "wake-sleep" cycle, dimensia, Psychiatry, RC435-571

    وصف الملف: electronic resource

  8. 8
    رسالة جامعية
  9. 9
    دورية أكاديمية

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 11, № 4 (2022); 592-599 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 11, № 4 (2022); 592-599 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    العلاقة: https://www.jnmp.ru/jour/article/view/1516/1235Test; Сабиров Д.М., Хашимова Д.Х., Акалаев Р.Н., Красненкова М.Б., Росстальная А.Л., Залялова З.С. и др. Анализ причин летальности больных с тяжелыми черепно-мозговыми травмами. Вестник экстренной медицины. 2011; 4:5–9; Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med Clin North Am. 2020; 104(2):213–238. PMID: 32035565. https://doi.org/10.1016/j.mcna.2019.11.001Test.; Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant. 2017;26(7):1118–1130. PMID: 28933211. https://doi.org/10.1177/0963689717714102Test.; Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary. 2019; 22(3):270–282. PMID: 30929221. https://doi.org/10.1007/s11102-019-00957-9Test.; Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015; 72(3):355–362. PMID: 25599342. https://doi.org/10.1001/jamaneurol.2014.3558Test; Jo M, Kim JH, Song GJ, Seo M, Hwang EM, Suk K. Astrocytic Orosomucoid2 Modulates Microglial Activation and Neuroinflammation. J Neurosci. 2017;37(11):2878–2894. PMID: 28193696. https://doi.org/10.1523/JNEUROSCI.2534-16.2017Test.; Maze M, Laitio T. Neuroprotective Properties of Xenon. Mol Neurobiol. 2020; 57(1):118–124. PMID: 31758401. https://doi.org/10.1007/s12035019-01761-zTest; Licastro F, Hrelia S, Porcellini E, Malaguti M, Di Stefano C, Angeloni C, et al. Peripheral Inflammatory Markers and Antioxidant Response during the Post-Acute and Chronic Phase after Severe Traumatic Brain Injury. Front Neurol. 2016; 7:189. PMID: 27853449. https://doi.org/10.3389/fneur.2016.00189Test; McDonald SJ, Sun M, Agoston DV, Shultz SR. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation. 2016;13(1):90. PMID: 27117191. https://doi.org/10.1186/s12974-016-0555-1Test; Гребенчиков О.А., Шабанов А.К., Николаев Л.Л., Шпичко А.И., Братищев И.В., Марченко Л.Ю. и др. Влияние ксенона на провоспалительную активацию и апоптоз нейтрофилов человека в условиях ex vivo. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2021;10(3):511–520. https://doi.org/10.23934/2223-90222021-10-3-511-520Test; Filev AD, Silachev DN, Ryzhkov IA, Lapin KN, Babkina AS, Grebenchikov OA, et al. Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci. 2021; 11(7):889. PMID: 34356124. https://doi.org/10.3390/brainsci11070889Test.; Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002; 96(6):1485–1491. PMID: 12170064. https://doi.org/10.1097/00000542-200206000-00031Test; David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab. 2003; 23(10):1168–1173. PMID: 14526227. https://doi.org/10.1097/01.WCB.0000087342.31689.18Test.; Alam A, Suen KC, Hana Z, Sanders RD, Maze M, Ma D. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol. 2017; 60:102116. PMID: 28065636. https://doi.org/10.1016/j.ntt.2017.01.001Test. Epub 2017 Jan 6.; Höllig A, Coburn M. Noble gases and neuroprotection: summary of current evidence. Curr Opin Anaesthesiol. 2021; 34(5):603–606. PMID: 34224430. https://doi.org/10.1097/ACO.0000000000001033Test.; Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004; 85(12):2020–2029. PMID: 15605342. https://doi.org/10.1016/j.apmr.2004.02.033Test.; Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. PMID: 3809245. https://doi.org/10.1093/ptj/67.2.206Test.; Стряпко Н.В., Сазонтова Т.Г., Потиевская В.И., Хайруллина А.А., Вдовина И.Б., Куликов А.Н. и др. Адаптационный эффект многократного применения ксенона. Общая реаниматология. 2014;10(2):50–6. https://doi.org/10.15360/1813-9779-2014-2-50-56Test; Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxicischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019;123(5):601–609. PMID: 31470983. https://doi.org/10.1016/j.bja.2019.07.010Test.; Höllig A, Coburn M. Noble gases and neuroprotection: summary of current evidence. Curr Opin Anaesthesiol. 2021;34(5):603–606. PMID: 34224430. https://doi.org/10.1097/ACO.0000000000001033Test.; Lavaur J, Lemaire M, Pype J, Le Nogue D, Hirsch EC, Michel PP. Neuroprotective and neurorestorative potential of xenon. Cell Death Dis. 2016;7(4):e2182. PMID: 27054337. https://doi.org/10.1038/cddis.2016.86Test.; Fahlenkamp AV, Rossaint R, Coburn M. Neuroprotektion durch Edelgase: Neue Entwicklungen und Erkenntnisse [Neuroprotection by noble gases: New developments and insights]. Anaesthesist. 2015;64(11):855– 858. (In Ger). PMID: 26329914. https://doi.org/:10.1007/s00101-0150079-6Test.; Azzopardi D, Robertson NJ, Kapetanakis A, Griffiths J, Rennie JM, Mathieson SR, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed. 2013; 98(5): F437–F439. PMID: 23572341. https://doi.org/:10.1136/archdischild2013-303786Test.; Azzopardi D, Robertson NJ, Bainbridge A, Cady E, Charles-Edwards G, Deierl A, et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBYXe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol. 2016;15(2):145–153. PMID: 26708675. https://doi.org/10.1016/S1474-4422Test(15)00347-6. Epub 2015 Dec 19; Dingley J, Tooley J, Liu X, Scull-Brown E, Elstad M, Chakkarapani E, et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics. 2014;133(5):809–818. PMID: 24777219. https://doi.org/10.1542/peds.2013-0787Test.; Задворнов А.А., Голомидов А.В., Григорьев Е.В. Медикаментозная нейропротекция у доношенных новорожденных с тяжелой церебральной ишемией. Вестник анестезиологии и реаниматологии. 2016;13(3):51–62. https://doi.org/10.21292/2078-5658-2016-13-3-51-62Test; https://www.jnmp.ru/jour/article/view/1516Test

  10. 10
    دورية أكاديمية