يعرض 1 - 10 نتائج من 33 نتيجة بحث عن '"I. Yu. Razumova"', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Ophthalmology in Russia; Том 21, № 1 (2024); 162-166 ; Офтальмология; Том 21, № 1 (2024); 162-166 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-1

    وصف الملف: application/pdf

    العلاقة: https://www.ophthalmojournal.com/opht/article/view/2306/1200Test; Шпак НИ, Федорова АН, Чуйко НР. Некоторые особенности синдрома Фогта-Кoйанаги-Харада. Офтальмологический журнал 1975;7:546–548.; Fang W,, Yang P. Vogt-Koyanagi-Harada Syndrome. Curr Eye Res. 2008;33(7):517– 523. doi:10.1080/02713680802233968.; El Asrar AMA, Van Damme J, Struyf S, Opdenakker G. New perspectives on the immunopathogenesis and treatment of uveitis associated with Vogt-Koyanagi-Harada disease. Front Med (Lausanne). 2021;8:705796. doi:10.3389/fmed. 2021. 705796.; Xu J, Su G, Huang X, Chang R, Chen E, Ya Z, Cao Q, Kijlstra A, Yang P. Metabolomic Analysis of Aqueous Humor identifies Aberrant Amino Acid and Fatty Acid Metabolism in Voht-Koyanagi-Harada and Behçet Disease. Front Immunol. 2021;22:12587393. doi:10.3389/fimmu2021.587393.; Yamaki K, Hara K, Sakuragi S Application of revised diagnostic criteria for Vogt-Kayanagi-Harada disease in Japanise patients. J. Jpn Ophthalmol. 2005;49:143–148. doi:10.1007/s10384-004-0165-9.; DaSilva FT, Damico FM, Marin ML, Goldberg AC, Hirata CE, Takiuti PH, Olivalves E, Yamamoto JH. Revised diagnostic criteria for vogt-koyanagi-harada disease: considerations on the different disease categories. Am J Ophthalmol. 2009;147(2):339–345. doi:10.1016/j.ajo2008.08.034.; Sugiura E. Some observations on uveitis in Japan with special reference to VogtKayanagi-Harada and Behçet diseases. Nippon Ganks Gakkai Zasshi. 1976;80:464– 470.; Сорокин УЛ, Воронина НВ, Авраменко СЮ, Помыткина ТВ. Синдром Фогта-Коянаги-Харада (клинический случай). Вестник Офтальмологии. 2015; 131(3):90–98. doi:10.17116/jftalma2015.131390-98.; Ерохина УВ, Пупкова ТН, Ильина ЮЛ, Кальницкая ЕИ. Синдром Фогта-Кщянаги-Харада. Клинический случай. Современные технологии в офтальмологии. 2017;5:48–51.; Kim YH, Togloom A, Oh J. Correlation Between Hyperreflective Foci in the Choroid and Choroidal Discoloration in Vogt-Koyanagi-Harada Disease. Invest Ophthalmol Vis Sci. 2022;63(9):27. doi:10.1167/iovs.63.9.27.; Tabl AA, Elsayed MA, Tabl MA. Suprachoroidal triamcinolone acetonide injection: a novel therapy for serous retinal detachment due to Vogt-Koyanagi Harada disease. Eur J Ophthalmol. 2022;32(6):3482–3488. doi:10.1177/11206721221085420.; Ganesh SK, Mistry S, Nair N. Role of Swept source optical coherence tomography in management of acute Vogt-Koyanagi-Harada’s disease. Indian J Ophthalmol. 2022;70(7):2458–2463. doi:10.4103/ijo.IJO_1944_21.; Das D, Bhola P, Rehman O. Commentary: Swept source optical coherence tomography: Nuances in Vogt-Koyanagi-Harada disease. Indian J Ophthalmol. 2022;70:2463–2464. doi:10.4103/ijo.IJO_3128_21.; Pham AT, Onghanseng N, Halim MS. Reflectance adaptive optics findings in a patient with Vogt-Koyanagi-Harada disease. Am J Ophthalmol Case Reports. 2022;27:101660. doi:10.1016/j.ajoc.2022.101660.; Fayed AE, Gerges TK. Optical coherence tomography angiography reveals paradoxically decreasing choroidal thickness and increasing blood flow in remitting Vogt-Koyanagi-Harada syndrome. Retina. 2022;42(9):1788–1795. doi:10.1097/IAE.0000000000003525.; Rodrigues-Garcia A, Foster CS. Cataract Surgery in Patients with uveitis. Preoperative and surgical Considerations. In book; Difficulties in Cataract Surgery. 2018. doi:10.5772/Interchopen.71031.; Moshirfar M, Somani AN, Motlagh MN, Ronquillo YC. Management of Cataract in the Setting of Uveitis: a Review of the Current Literature. Curr. Opin. Ophthalmol. 2020;31(1):3–9. doi:10.1097/ICU.0000000000000626.; https://www.ophthalmojournal.com/opht/article/view/2306Test

  7. 7
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 375-381 ; Медицинский Совет; № 23 (2023); 375-381 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8040/7132Test; Разумова ИЮ, Годзенко АА, Воробьева ОК, Гусева ИА. Проспективное исследование увеитов при системных аутоиммунных заболеваниях группы спондилоартритов и их ассоциация с антигеном гистосовместимости HLA-B27. Вестник офтальмологии. 2016;(4):4–9. https://doi.org/10.17116/oftalma201613244-9Test.; Martin TM, Smith JR, Rosenbaum JT. Anterior uveitis: current concepts of pathogenesis and interactions with the spondyloarthropathies. Curr Opin Rheumatol. 2002;14(4):337–341. https://doi.org/10.1097/00002281200207000-00001Test.; Yang PZ, Wang H, Zhang Z, Zhong HH, Yu Q, Fu T et al. Clinical diagnosis and treatment of uveitis associated with ankylosing spondylitis. Zhonghua Yan Ke Za Zhi. 2005;41(6):515–518. (In Chinese) Available at: https://pubmed.ncbi.nlm.nih.gov/16008911Test.; Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–516. https://doi.org/10.1016/j.ajo.2005.03.057Test.; Pato E, Martin-Martinez MA, Castelló A, Méndez-Fernandez R, Muñoz-Fernández S, Cordero-Coma M et al. Development of an activity disease score in patients with uveitis (UVEDAI). Rheumatol Int. 2017;37(4):647–656. https://doi.org/10.1007/s00296-016-3593-1Test.; Hogan MJ, Kimura SJ, Thygeson P. Signs and symptoms of uveitis. Am J Ophthalmol. 1959;47(5):155–170. https://doi.org/10.1016/s00029394Test(14)78239-x.; Kiichle M. Laser Tyndallometry in anterior segment diseases. Curr Opin Ophthalmol. 1994;5(4):110–116. https://doi.org/10.1097/00055735199408000-00016Test.; Agrawal R, Keane PA, Singh J, Saihan Z, Kontos A, Pavesio CE. Comparative analysis of anterior chamber flare grading between clinicians with different levels of experience and semi-automated laser flare photometry. Ocul Immunol Inflamm. 2016;24(2):184–193. https://doi.org/10.3109/09273948.2014.990042Test.; Herbort CP, Tugal-Tutkun I. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed. Int Ophthalmol. 2017;37(3):469–473. https://doi.org/10.1007/s10792-016-0253-0Test.; Sawa M. Laser flare-cell photometer: principle and significance in clinical and basic ophthalmology. Jpn J Ophthalmol. 2017;61(1):21–42. https://doi.org/10.1007/s10384-016-0488-3Test.; Tappeiner C, Heinz C, Roesel M, Heiligenhaus A. Elevated laser flare values correlate with complicated course of anterior uveitis in patients with juvenile idiopathic arthritis. Acta Ophthalmologica. 2011;89(6): e521–e527. https://doi.org/10.1111/j.1755-3768.2011.02162.xTest.; Bernasconi O, Papadia M, Herbort CP. Sensitivity of laser flare photometry compared to slit-lamp cell evaluation in monitoring anterior chamber inflammation in uveitis. Int Ophthalmol. 2010;30(5):495–500. https://doi.org/10.1007/s10792-010-9386-8Test.; Liu X, McNally TW, Beese S, Downie LE, Solebo AL, Faes L et al. Noninvasive instrument-based tests for quantifying anterior chamber flare in uveitis: A systematic review. Ocul Immunol Inflamm. 2020;29(5):982–990. https://doi.org/10.1080/09273948.2019.1709650Test.; Onal S, Tugal-Tutkun I, Neri P, Herbort C. Optical coherence tomography imaging in uveitis. Int Ophthalmol. 2014;34(2):401–435. https://doi.org/10.1007/s10792-013-9822-7Test.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. https://doi.org/10.1126/science.1957169Test.; Pakzad-Vaezi K, Or C, Yeh S, Forooghian F. Optical coherence tomography in the diagnosis and management of uveitis. Can J Ophthalmol. 2014;49(1):18–29. https://doi.org/10.1016/j.jcjo.2013.10.005Test.; Invernizzi A, Marchi S, Aldigeri R, Mastrofilippo V, Viscogliosi F, Soldani A et al. Objective Quantification of Anterior Chamber Inflammation: Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. Ophthalmology. 2017;124(11):1670–1677. https://doi.org/10.1016/j.ophtha.2017.05.013Test.; Lu M, Wang X, Lei L, Deng Y, Yang T, Dai Y et al. Quantitative Analysis of Anterior Chamber Inflammation Using the Novel CASIA2 Optical Coherence Tomography. Am J Ophthalmol. 2020;216:59–68. https://doi.org/10.1016/j.ajo.2020.03.032Test.; Ahuja AS. The impact of Artificial Intelligence in medicine on the future role of the physician. PeerJ. 2019;7. https://doi.org/10.7717/peerj.7702Test.; Liu X, Solebo AL, Faes L et al. Instrument-based Tests for Measuring Anterior Chamber Cells in Uveitis: A Systematic Review. Ocul Immunol Inflamm. 2020;28(6):898–907. https://doi.org/10.1080/09273948.2019.1640883Test; Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol. 2019;203:37–45. https://doi.org/10.1016/j.ajo.2019.02.028Test.; Sharma S, Lowder CY, Vasanji A, Baynes K, Kaiser PK, Srivastava SK. Automated analysis of anterior chamber inflammation by spectral-domain optical coherence tomography. Ophthalmology. 2015;122(7):1464–1470. https://doi.org/10.1016/j.ophtha.2015.02.032Test.; Sorkhabi MA, Potapenko IO, Ilginis T, Alberti M, Cabrerizo J. Assessment of anterior uveitis through anterior-segment optical coherence tomography and artificial intelligence-based image analyses. Transl Vis Sci Technol. 2022;11(4):7. https://doi.org/10.1167/tvst.11.4.7Test.; Li Y, Lowder C, Zhang X, Huang D. Anterior chamber cell grading by optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):258–265. https://doi.org/10.1167/iovs.12-10477Test.; Аветисов CЭ, Черненкова НА, Сурнина ЗВ. Анатомо-функциональные особенности и методы исследования нервных волокон роговицы. Вестник офтальмологии. 2018;(6):102–106. https://doi.org/10.17116/oftalma2018134061102Test.; Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15(1):15–47. https://doi.org/10.1016/j.jtos.2016.09.004Test.; Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10(4):128–138. https://doi.org/10.1002/sca.4950100403Test.; Mocan M, Kadayifcilar S, İrkeç M. In vivo confocal microscopic evaluation of keratic precipitates and endothelial morphology in Fuchs’ uveitis syndrome. Eye (Lond). 2011;26(1):119–125. https://doi.org/10.1038/eye.2011.268Test.; Mocan M, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2008;23(5):1221–1227. https://doi.org/10.1038/eye.2008.239Test.; Mahendradas P, Shetty R, Narayana K, Shetty B. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117(2):373–380. https://doi.org/10.1016/j.ophtha.2009.07.016Test.; Mocan MC, Irkec M, Mikropoulos DG, Bozkurt B, Orhan M, Konstas AG. In vivo confocal microscopic evaluation of the inflammatory response in non-epithelial herpes simplex keratitis. Curr Eye Res. 2012;37(12):1099–1106. https://doi.org/10.3109/02713683.2012.707270Test.; Wertheim M, Mathers WD, Planck SJ, Martin TM, Suhler EB, Smith JR, Rosenbaum JT. In vivo confocal microscopy of keratic precipitates. Arch Ophthalmol. 2004;122(12):1773–1181. https://doi.org/10.1001/archopht.122.12.1773Test.; Liang H, Baudouin C, Daull P, Garrigue JS, Brignole-Baudouin F. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound-healing model and an acute in vivo rabbit model. Mol Vis. 2012;18:2195–2204. Available at: https://pubmed.ncbi.nlm.nih.gov/22919267Test.; Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):1056–1061. https://doi.org/10.1007/s00417-004-1075-8Test.; Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers. Cornea. 2007;26(1):47–54. https://doi.org/10.1097/ico.0b013e31802e3b55Test.; Hamrah P, Liu Y, Zhang Q, Dana MR. Alterations in corneal stromal den-dritic cell phenotype and distribution in inflammation. Arch Ophthalmol. 2003;121(8):1132–1140. https://doi.org/10.1001/archopht.121.8.1132Test.; Mattey DL, Packham JC, Nixon NB, Coates L, Creamer P, Hailwood S, Taylor GJ, Bhalla AK. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res Ther. 2012;14(3):R127. https://doi.org/10.1186/ar3857Test.; Аветисов СЭ, Сурнина ЗВ, Троицкая НА, Патеюк ЛС, Велиева ИА, Гамидов АА, Сидамонидзе АЛ. Результаты лазерной конфокальной микроскопии роговицы при вирусных увеитах (предварительное сообщение). Вестник офтальмологии. 2019;135(1):53–58. https://doi.org/10.17116/oftalma201913501153Test.; Swartz T, Marten L, Wang M. Measuring the cornea: the latest developments in corneal topography. Curr Opin Ophthalmol. 2007;18(4):325–333. https://doi.org/10.1097/ICU.0b013e3281ca7121Test.; Ambrósio RJr, Valbon BF, Faria-Correia F, Ramos I, Luz A. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24(4):310–320. https://doi.org/10.1097/ICU.0b013e3283622a94Test.; Shajari M, Kolb CM, Mayer WJ, Agha B, Steinwender G, Dirisamer M et al. Characteristics of preoperative and postoperative astigmatism in patients having Descemet membrane endothelial keratoplasty. J Cataract Refract Surg. 2019;45(7):1001–1006. https://doi.org/10.1016/j.jcrs.2019.02.002Test.; Yong Park C, Do JR, Chuck RS. Predicting postoperative astigmatism using Scheimpflug keratometry (Pentacam) and automated keratometry (IOLMaster). Curr Eye Res. 2012;37(12):1091–1098. https://doi.org/10.3109/02713683.2012.713158Test.; Cho YK, Chang HS, La TY, Ji D, Kim H, Choi JA et al. Anterior segment parameters using Pentacam and prediction of corneal endothelial cell loss after cataract surgery. Korean J Ophthalmol. 2010;24(5):284–290. https://doi.org/10.3341/kjo.2010.24.5.284Test.; De Bernardo M, Borrelli M, Imparato R, Rosa N. Calculation of the real corneal refractive power after photorefractive keratectomy using pentacam, when only the preoperative refractive error is known. J Ophthalmol. 2020;2020:1–5. https://doi.org/10.1155/2020/1916369Test.; Fukuda S, Kawana K, Yasuno Y, Oshika T. Anterior ocular biometry using 3-dimensional optical coherence tomography. Ophthalmology. 2009;116(5):882–889. https://doi.org/10.1016/j.ophtha.2008.12.022Test.; Gunes A, Erkol Inal E, Tok L, Tok O. Assessment of corneal parameters with Scheimpflug imaging in patients with ankylosing spondylitis. Semin Ophthalmol. 2017;32(3):276–280. https://doi.org/10.3109/08820538.2015.1068340Test.; Karmiris E, Soulantzou K, Machairoudia G, Ntravalias T, Tsiogka A, Chalkiadaki E. Corneal densitometry assessed with Scheimpflug camera in healthy corneas and correlation with specular microscopy values and age. Cornea. 2022;41(1):60–68. https://doi.org/10.1097/ICO.0000000000002722Test.; Cetin EN, Bozkurt K, Akbulut S, Pekel G, Taşcı M, Çobankara V. Corneal and anterior chamber morphology in patients with nonınfectious ıntraocular ınflammation. Arq Bras Oftalmol. 2021;84(3):220–224. https://doi.org/10.5935/0004-2749.20210030Test.; Yılmaz Çebi A, Kılıçarslan O, Kasapçopur Ö, Uçar D. Case-control study of corneal topography and specular microscopy parameters in JIA patients with and without ocular involvement. Int Ophthalmol. 2023;43(2):635–641. https://doi.org/10.1007/s10792-022-02467-3Test.; Cetin EN, Akbulut S, Ekici Tekin Z, Otar Yener G, Bozkurt K, Pekel G, Yüksel S. Corneal and lenticular clarity in children with inflammatory disease as assessed by Scheimpflug imaging. Photodiagnosis Photodyn Ther. 2022;39:103032. https://doi.org/10.1016/j.pdpdt.2022.103032Test.; https://www.med-sovet.pro/jour/article/view/8040Test

  8. 8
    دورية أكاديمية

    المصدر: Rheumatology Science and Practice; Vol 61, No 5 (2023); 590-595 ; Научно-практическая ревматология; Vol 61, No 5 (2023); 590-595 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    العلاقة: https://rsp.mediar-press.net/rsp/article/view/3442/2321Test; Sbidian E, Chaimani A, Garcia-Doval I, Do G, Hua C, Mazaud C, et al. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst Rev. 2017;12(12):CD011535. doi:10.1002/14651858.CD011535.pub2; Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al.; Secukinumab in Crohn’s Disease Study Group. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693-1700. doi:10.1136/gutjnl-2011-301668; Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY, Landers C, et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am J Gastroenterol. 2016;111(11):1599-1607. doi:10.1038/ajg.2016.298; Braun J, Baraliakos X, Listing J, Sieper J. Decreased incidence of anterior uveitis in patients with ankylosing spondylitis treated with the anti-tumor necrosis factor agents infliximab and etanercept. Arthritis Rheum. 2005;52(8):2447-2451. doi:10.1002/art.21197; Lindström U, Olofsson T, Wedrén S, Qirjazo I, Askling J. Impact of extra-articular spondyloarthritis manifestations and comorbidities on drug retention of a first TNF-inhibitor in ankylosing spondylitis: A population-based nationwide study. RMD Open. 2018;4(2):e000762. doi:10.1136/rmdopen-2018-000762; Lie E, Lindström U, Zverkova-Sandström T, Olsen IC, Forsbladd’Elia H, Askling J, et al. Tumour necrosis factor inhibitor treatment and occurrence of anterior uveitis in ankylosing spondylitis: Results from the Swedish biologics register. Ann Rheum Dis. 2017;76(9):1515-1521. doi:10.1136/annrheumdis-2016-210931; Wendling D, Joshi A, Reilly P, Jalundhwala YJ, Mittal M, Bao Y. Comparing the risk of developing uveitis in patients initiating antitumor necrosis factor therapy for ankylosing spondylitis: An analysis of a large US claims database. Curr Med Res Opin. 2014;30(12):2515-2521. doi:10.1185/03007995.2014.969368; Jaffe GJ, Dick AD, Brézin AP, Nguyen QD, Thorne JE, Kestelyn P, et al. Adalimumab in patients with active noninfectious uveitis. N Engl J Med. 2016;375(10):932-943. doi:10.1056/NEJMoa1509852; How Shing Koy E, Labauge P, Baillet A, Prati C, Marotte H, Pers YM. Immunomodulation with IL-17 and TNF-α in spondyloarthritis: Focus on the eye and the central nervous system. Ther Adv Musculoskelet Dis. 2021;9(13):1-15. doi:10.1177/1759720X211025894; Atzeni F, Carriero A, Boccassini L, D’Angelo S. Anti-IL-17 аgents in the treatment of axial spondyloarthritis. Immunotargets Ther. 2021:10;141-153. doi:10.2147/ITT.S259126; Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86 doi:10.14412/1995-4484-2017-68-86; Насонов ЕЛ, Мазуров ВИ, Усачева ЮВ, Черняева ЕВ, Устюгов ЯЮ, Улитин АБ, и др. Разработки отечественных оригинальных генно-инженерных биологических препаратов для лечения иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2017;55(2):201-210. doi:10.14412/1995-4484-2017-201-210; Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научно-практическая ревматология. 2019;55(4):400-406. doi:10.14412/1995-4484-2019-400-406; Эрдес Ш, Мазуров ВИ, Дубинина ТВ, Гайдукова ИЗ, Лапшина СА, Зонова ЕВ, и др. Эффективность и безопасность нового оригинального ингибитора интерлейкина 17А в лечении пациентов с активным анкилозирующим спондилитом – результаты основного (BCD-085-3/AILAS) и продленного (BCD-085-3ext/AILAS-II) клинического исследования II фазы. Научнопрактическая ревматология. 2019;57(6):668-677. doi:10.14412/1995-4484-2019-668-677; Дубинина ТВ, Гайдукова ИЗ, Соколова ВД, Младов ВВ, Толкачева ДГ. Эффективность и безопасность генно-инженерных биологических препаратов для лечения анкилозирующего спондилита: систематический обзор и метаанализ препаратов, зарегистрированных в РФ. Научно-практическая ревматология. 2020;58(6):646-657. doi:10.47360/1995-4484-2020-646-657; Дубинина ТВ, Гайдукова ИЗ, Саблева НА, Сапожников КВ, Соколова ВД, Толкачева ДГ. Сравнительная оценка клинико-экономической эффективности ингибиторов интерлейкина 17 при лечении анкилозирующего спондилита. Научно-практическая ревматология. 2022;60(6):594-601. doi:10.47360/1995-4484-2022-594-601; Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107; Letko E, Yeh S, Foster CS, Pleyer U, Brigell M, Grosskreutz CL; AIN457A2208 Study Group. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939-948. doi:10.1016/j.ophtha.2014.12.033; Ruiz de Morales JMG, Puig L, Daudén E, Cañete JD, Pablos JL, Martín AO, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev. 2020;19(1):102429. doi:10.1016/j.autrev.2019.102429; Braun J, Baraliakos X, Deodhar A, Baeten D, Sieper J, Emery P, et al.; MEASURE 1 study group. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann Rheum Dis. 2017;76(6):1070-1077. doi:10.1136/annrheumdis-2016-209730; Deodhar AA, Miceli-Richard C, Baraliakos X, Marzo-Ortega H, Gladman DD, Blanco R, et al. Incidence of uveitis in secukinumab-treated patients with ankylosing spondylitis: Pooled data analysis from three phase 3 studies. ACR Open Rheumatol. 2020;2(5):294-299. doi:10.1002/acr2.11139; Lindström U, Bengtsson K, Olofsson T, Di Giuseppe D, Glintborg B, Forsblad-d’Elia H, et al. Anterior uveitis in patients with spondyloarthritis treated with secukinumab or tumour necrosis factor inhibitors in routine care: Does the choice of biological therapy matter? Ann Rheum Dis. 2021;80(11):1445-1452. doi:10.1136/annrheumdis-2021-220420; Ramiro S, Nikiphorou E, Sepriano A, Ortolan A, Webers C, Baraliakos X, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 2023;82(1):19-34. doi:10.1136/ard-2022-223296; Dick AD, Rosenbaum JT, Al-Dhibi HA, Belfort R Jr, Brézin AP, Chee SP, et al.; Fundamentals of Care for Uveitis International Consensus Group. Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: Fundamentals Of Care for UveitiS (FOCUS) initiative. Ophthalmology. 2018;125(5):757-773. doi:10.1016/j.ophtha.2017.11.017; Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V, et al. Secukinumab in the treatment of noninfectious uveitis: Results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777-787. doi:10.1016/j.ophtha.2012.09.040; van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361-368. doi:10.1002/art.1780270401; van Denderen JC, Visman IM, Nurmohamed MT, SuttorpSchulten MS, van der Horst-Bruinsma IE. Adalimumab significantly reduces the recurrence rate of anterior uveitis in patients with ankylosing spondylitis. J Rheumatol. 2014;41(9):1843-1848. doi:10.3899/jrheum.131289; Rudwaleit M, Rødevand E, Holck P, Vanhoof J, Kron M, Kary S, et al. Adalimumab effectively reduces the rate of anterior uveitis flares in patients with active ankylosing spondylitis: Results of a prospective open-label study. Ann Rheum Dis. 2009;68(5):696-701. doi:10.1136/ard.2008.092585; Nadwi H, Janaini M, Zammo M, Cheikh M, Almoallim H. Newonset uveitis рossibly caused by secukinumab in a 47-year-old male patient with long-standing ankylosing spondylitis. Int Med Case Rep J. 2020;13:331-334. doi:10.2147/IMCRJ.S265812; https://rsp.mediar-press.net/rsp/article/view/3442Test

  9. 9
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 209-213 ; Медицинский Совет; № 6 (2023); 209-213 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7281/6507Test; Grumet P., Kodjikian L., de Parisot A., Errera M.H., Sedira N., Heron E. et al. Contribution of diagnostic tests for the etiological assessment of uveitis, data from the ULISSE study (Uveitis: Clinical and medicoeconomic evaluation of a standardized strategy of the etiological diagnosis). Autoimmun Rev. 2018;17(4):331–343. https://doi.org/1016/j.autrev.2017.10.018Test.; Barisani-Asenbauer T., Maca S., Mejdoubi L., Emminger W., Machold K., Auer H. Uveitis- a rare disease often associated with systemic diseases and infections- a systematic review of 2619 patients. Orphanet J Rare Dis. 2012;7(1):57. https://doi.org/10.1186/1750-1172-7-57Test.; Bodaghi B., Cassoux N., Wechsler B., Hannouche D., Fardeau C., Papo T. et al. Chronic Severe Uveitis. Medicine (Baltimore). 2001;80(4):263–270. https://doi.org/10.1097/00005792-200107000-00005Test.; de Parisot A., Kodjikian L., Errera M., Sedira N., Heron E., Pérard L. et al. Randomized Controlled Trial Evaluating a Standardized Strategy for Uveitis Etiologic Diagnosis (ULISSE). Am J Ophthalmol. 2017;178:176–185. https://doi.org/10.1016/j.ajo.2017.03.029Test.; Kurup S.К. Uveitis, fundamentals and clinical practice 4th edition by Robert B. Nussenblatt and Scott M. Whitcup. Graefes Arch Clin Exp Ophthalmol. 2012;250(8):1253. https://doi.org/10.1007/s00417-011-1690-0Test.; Mitulescu T., Voinea L., Predeteanu D., Banica L., Stavaru C., Matache C. Abnormalities in soluble CD147/MMPs/TIMPs axis in Ankylosing Spondylitis patients with and without a history of Acute Anterior Uveitis. Rev Rom Lab Med. 2014;22(4):479–496. https://doi.org/10.2478/rrlm-2014-0039Test.; Эрдес Ш.Ф., Бадокин В.В., Бочкова А.Г., Бугрова О.В. Гайдукова И.З., Годзенко А.А. и др. О терминологии спондилоартритов. Научнопрактическая ревматология. 2015;(6):657–660. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/2159Test.; Разумова И.Ю., Годзенко А.А., Воробьева О.К., Гусева И.А. Проспективное исследование увеитов при системных аутоиммунных заболеваниях группы спондилоартритов и их ассоциация с антигеном гистосовместимости HLA-B27. Вестник офтальмологии. 2016;(4):4–9. https://doi.org/10.17116/oftalma201613244-9Test.; Javaux C., El-Jammal T., Neau P., Fournier N., Gerfaud-Valentin M., Perard L. et al. Detection and Prediction of Macrophage Activation Syndrome in Still’s Disease. J Clin Med. 2021;11(1):206. https://doi.org/10.3390/jcm11010206Test.; Wan L., Gao Y., Gu J., Chi H., Wang Z., Hu Q. et al. Total metabolic lesion volume of lymph nodes measured by 18F-FDG PET/CT: a new predictor of macrophage activation syndrome in adult-onset Still’s disease. Arthritis Res Ther. 2021;23(1):97. https://doi.org/10.1186/s13075-021-02482-2Test.; Whitcup S.M. The initiating stimul for uveitis. Eye (Lond). 1997;11(2):167–170. https://doi.org/10.1038/eye.1997.46Test. corpusID:27105753.; Колеченкова И.В. Современный взгляд на патогенез увеитов. Российская детская офтальмология. 2014;(4):42–47. Режим доступа: https://eyepress.ru/article.aspx?15680Test.; Sonoda K.-N., Sasa Yu., Qiao H., Tsutsumi Ch., Hisatomi T., Komiyana S. et al. Immunoregulatory Role of Jcular Macrophages. The Macrophages Produce RANTES to Suppress. J Immunol. 2003;171(5):2652–2659. https://doi.org/10.4049/jimmunol.171.5.2652Test.; Zeidler H., Amor B. The Assessment in Spondyloarthritis International Society (ASAS) classification Criteria for Peripheral Spondyloarthritis in general the Spondyloarthritis Consept in Progress. Ann Rheum Dis. 2011;70(1):1–3. https://doi.org/10.1136/ard2010.1325645Test.; Годзенко А.А., Разумова И.Ю., Бочкова А.Г. Клиническая оценка увеита и ее значение в диагностике спондилоартритов. Научно-практическая ревматология. 2011;(6):38–42. Режим доступа: https://rsp.mediar-press.net/rsp/article/view/657Test.; Oh B.L., Lee J.S., Lee E.Y., Lee H.Y., Yu H.G. Recurrent anterior uveitis and subsequent incidence of ankylosing spondylitis: a nationwide cohort study from 2002 to 2013. Arthritis Res Ther. 2018;20(1):22. https://doi.org/10.1186/s13075-018-1522-2Test.; Аветисов C.Э., Черненкова Н.А., Сурнина З.В. Анатомо-функциональные особенности и методы исследования нервных волокон роговицы. Вестник офтальмологии. 2018;(6):102–106. https://doi.org/10.17116/oftalma2018134061102Test.; Cruzat A., Qazi Y., Hamrah P. In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease. Ocul Surf. 2017;15(1):15–47. https://doi.org/10.1016/j.jtos.2016.09.004Test.; Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10(4):128–138. https://doi.org/10.1002/sca.4950100403Test.; Labbe A., Dupas B., Offret H., Baudouin C., Labetoulle M. Evaluation of keratic precipitates and corneal endothelium in Fuchs’ heterochromic cyclitis by in vivo confocal microscopy. Br J Ophthalmol. 2008;93(5):673–677. https://doi.org/10.1136/bjo.2008.146100Test.; Mocan M., Kadayifcilar S., Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2008;23(5):1221–1227. https://doi.org/10.1038/eye.2008.239Test.; Kanavi M., Soheilian M., Naghshgar N. Confocal Scan of Keratic Precipitates in Uveitic Eyes of Various Etiologies. Cornea. 2010;29(6):650–654. https://doi.org/10.1097/ico.0b013e3181c2967eTest.; Kanavi M., Soheilian M., Yazdani S., Peyman G. Confocal Scan Features of Keratic Precipitates in Fuchs Heterochromic Iridocyclitis. Cornea. 2010;29(1):39–42. https://doi.org/10.1097/ico.0b013e3181acf674Test.; Mahendradas P., Shetty R., Narayana K., Shetty B. In Vivo Confocal Microscopy of Keratic Precipitates in Infectious Versus Noninfectious Uveitis. Ophthalmology. 2010;117(2):373–380. https://doi.org/10.1016/j.ophtha.2009.07.016Test.; Mocan M.C., Irkec M., Mikropoulos D.G., Bozkurt B., Orhan M., Konstas A.G. In vivo confocal microscopic evaluation of the inflammatory response in non-epithelial herpes simplex keratitis. Curr Eye Res. 2012;37(12):1099–1106. https://doi.org/10.3109/02713683.2012.707270Test.; Hong Y., Wang M., Wu L. In vivo Confocal Microscopy of Posner-Schlossman Syndrome: Comparison with herpes simplex keratitis, HLA-B27 anterior uveitis and acute attack of primary angle closure. Sci Rep. 2017;7(1):9832. https://doi.org/10.1038/s41598-017-10496-7Test.; McKay K., Jacobs D. In Vivo Confocal Microscopy of Keratic Precipitates in Uveitis. Int Ophthalmol Clin. 2019;59(4):95–103. https://doi.org/10.1097/iio.0000000000000290Test.; Wertheim M., Mathers W.D., Planck S.J., Martin T.M., Suhler E.B., Smith J.R., Rosenbaum J.T. In Vivo Confocal Microscopy of Keratic Precipitates. Arch Ophthalmol. 2004;122(12):1773–1181. https://doi.org/10.1001/archopht.122.12.1773Test.; Liang H., Baudouin C., Daull P., Garrigue J.S., Brignole-Baudouin F. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound-healing model and an acute in vivo rabbit model. Mol Vis. 2012;18:2195–2204. Available at: https://pubmed.ncbi.nlm.nih.gov/22919267Test.; Аветисов С.Э., Сурнина З.В., Троицкая Н.А., Патеюк Л.С., Велиева И.А., Гамидов А.А., Сидамонидзе А.Л. Результаты лазерной конфокальной микроскопии роговицы при вирусных увеитах (предварительное сообщение). Вестник офтальмологии. 2019;(1):53–58. https://doi.org/10.17116/oftalma201913501153Test.; Postole A., Knoll A., Auffarth G., Mackensen F. In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol. 2016;100(11):1551–1556. https://doi.org/10.1136/bjophthalmol-2015-307429Test.; Frank G., Buela K., Maker D., Harvey S., Hendricks R. Early Responding Dendritic Cells Direct the Local NK Response To Control Herpes Simplex Virus 1 Infection within the Cornea. J Immunol. 2011;188(3):1350–1359. https://doi.org/10.4049/jimmunol.1101968Test.; Kaisho T., Akira S. Dendritic-cell function in Toll-like receptor- and MyD88- knockout mice. Trends Immunol. 2001;22(2):78–83. https://doi.org/10.1016/s1471-4906Test(00)01811-1.; Niederer R., McGhee C. Clinical in vivo confocal microscopy of the human cornea in health and disease. Prog Retin Eye Res. 2010;29(1):30–58. https://doi.org/10.1016/j.preteyeres.2009.11.001Test.; Hamrah P., Huq S., Liu Y., Zhang Q., Dana M. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol. 2003;74(2):172–178. https://doi.org/10.1189/jlb.1102544Test.; Zhivov A., Stave J., Vollmar B., Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243(10):1056–1061. https://doi.org/10.1007/s00417-004-1075-8Test.; Zhivov A., Stave J., Vollmar B., Guthoff R. In Vivo Confocal Microscopic Evaluation of Langerhans Cell Density and Distribution in the Corneal Epithelium of Healthy Volunteers and Contact Lens Wearers. Cornea. 2007;26(1):47–54. https://doi.org/10.1097/ico.0b013e31802e3b55Test.; Mastropasqua L., Nubile M., Lanzini M., Carpineto P., Ciancaglini M., Pannellini T. et al. Epithelial Dendritic Cell Distribution in Normal and Inflamed Human Cornea: In Vivo Confocal Microscopy Study. Am J Ophthalmol. 2006;142(5):736–744.e2. https://doi.org/10.1016/j.ajo.2006.06.057Test.; Rosenberg M., Tervo T., Müller L., Moilanen J., Vesaluoma M. In Vivo Confocal Microscopy After Herpes Keratitis. Cornea. 2002;21(3):265–269. https://doi.org/10.1097/00003226-200204000-00006Test.; Hamrah P., Liu Y., Zhang Q., Dana M.R. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol. 2003;121(8):1132–1140. https://doi.org/10.1001/archopht.121.8.1132Test.; Аветисов С.Э., Сурнина З.В., Новиков И.А., Черненкова Н.А., Тюрина А.А. Влияние слезной пленки на результаты прямой оценки чувствительности роговицы. Вестник офтальмологии. 2020;(2):81–85. https://doi.org/10.17116/oftalma202013602181Test.; Mocan M., Kadayifcilar S., İrkeç M. In vivo confocal microscopic evaluation of keratic precipitates and endothelial morphology in Fuchs’ uveitis syndrome. Eye (Lond). 2011;26(1):119–125. https://doi.org/10.1038/eye.2011.268Test.; Pillai C., Dua H.S., Azuara-Blanco A., Sarhan A.R. Evaluation of corneal endothelium and keratic precipitates by specular microscopy in anterior uveitis. Br J Ophthalmol. 2000;84(12):1367–1371. https://doi.org/10.1136/bjo.84.12.1367Test.; Green W., Muir M. Corneal complications of cataract surgery. Curr Opin Ophthalmol. 1994;5(4):98–104. https://doi.org/10.1097/00055735-199408000-00014Test.; Wilczynski M., Drobniewski I., Synder A., Omulecki W. Evaluation of Early Corneal Endothelial Cell Loss in Bimanual Microincision Cataract Surgery (MICS) in Comparison with Standard Phacoemulsification. Eur J Ophthalmol. 2006;16(6):798–803. https://doi.org/10.1177/112067210601600603Test.; Brooks A., Grant G., Glllles W. Differentiation and Assessment of Corneal Endothelial Changes Associated with Diseases of the Anterior Segment of the Eye. Aust N Z J Ophthalmol. 1987;15(1):65–70. https://doi.org/10.1111/j.1442-9071.1987.tb00306.xTest.; https://www.med-sovet.pro/jour/article/view/7281Test

  10. 10