يعرض 1 - 10 نتائج من 70 نتيجة بحث عن '"I. Torshin Yu."', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 15, No 1 (2022); 73-86 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 15, No 1 (2022); 73-86 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/660/416Test; Peyrin-Biroulet L., Williet N., Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr. 2015; 102 (6): 1585–94. https://doi.org/10.3945/ajcn.114.103366Test.; Хофманн А., Аапро М., Федорова Т.А. и др. Менеджмент крови пациентов в онкологии в Российской Федерации. Резолюция во имя улучшения оказания помощи онкологическим больным. Современная онкология. 2020; 22 (3): 59–78. https://doi.org/10.26442/18151434.2020.3.200340Test.; Клинические рекомендации. Железодефицитная анемия. 2021 год. URL: https://labdep.com/storage/editor/JDA_2021_klin_rek.pdfTest (дата обращения 05.02.2022); Ягудина Р.И., Куликов А.Ю., Серпик В.Г. Фармакоэкономика. Учебное пособие. 2-е изд. Ростов-на Дону: Феникс; 2018: 237 с.; Торшин И.Ю., Громова О.А. Экспертный анализ данных в молекулярной фармакологии. М.: МЦНМО; 2012: 748 с.; Маркова И.В, Афанасьев В.В., Цыбулькин Э.К. Клиническая токсикология детей и подростков. СПб.: Интермедика; 1999: 399 c.; Jahn M.R., Andreasen H.B., Fütterer S., et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm. 2011; 78 (3): 480–91. https://doi.org/10.1016/j.ejpb.2011.03.016Test.; Государственный реестр лекарственных средств. URL: https://grls.rosminzdrav.ruTest (дата обращения 02.09.2021).; Gordon M., Sinopoulou V., Iheozor-Ejiofor Z., et al. Interventions for treating iron deficiency anaemia in inflammatory bowel disease. Cochrane Database Syst Rev. 2021; 1 (1): CD013529. https://doi.org/10.1002/14651858.CD013529.pub2Test.; Shin H.W., Go D.Y., Lee S.W., et al. Comparative efficacy and safety of intravenous ferric carboxymaltose and iron sucrose for iron deficiency anemia in obstetric and gynecologic patients: a systematic review and meta-analysis. Medicine (Baltimore). 2021; 100 (20): e24571. https://doi.org/10.1097/MD.0000000000024571Test.; Aksan A., Işık H., Radeke H.H., et al. Systematic review with network meta-analysis: comparative efficacy and tolerability of different intravenous iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2017; 45 (10): 1303–18. https://doi.org/10.1111/apt.14043Test.; Pollock R.F., Muduma G. A systematic literature review and indirect comparison of iron isomaltoside and ferric carboxymaltose in iron deficiency anemia after failure or intolerance of oral iron treatment. Expert Rev Hematol. 2019; 12 (2): 129–36. https://doi.org/10.1080/17474086.2019.1575202Test.; Официальный сайт Единой информационной системы в сфере закупок. URL: https://zakupki.gov.ruTest (дата обращения 03.09.2021).; Государственный реестр предельных отпускных цен производителей на лекарственные препараты, включенные в перечень жизненно необходимых и важнейших лекарственных препаратов. URL: https://minzdrav.gov.ru/opendata/7707778246-gosreestrpredelnyhotpusknyhcen/visualTest (дата обращения 02.09.2021).; Schaefer B., Tobiasch M., Viveiros A., et al. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis. Br J Clin Pharmacol. 2021; 87 (5): 2256–73. https://doi.org/10.1111/bcp.14643Test.; Pollock R.F., Muduma G. A patient-level cost-effectiveness analysis of iron isomaltoside versus ferric carboxymaltose for the treatment of iron deficiency anemia in the United Kingdom. J Med Econ. 2020; 23 (7): 751–9. https://doi.org/10.1080/13696998.2020.1745535Test.; Городская поликлиника № 2 Департамента здравоохранения города Москвы. Стоимость услуг. URL: https://gp2dzm.ru/stoimostuslugTest (дата обращения 04.09.2021).; Trentino K.M., Mace H., Symons K., et al. Associations of a preoperative anemia and suboptimal iron stores screening and management clinic in colorectal surgery with hospital cost, reimbursement, and length of stay: a net cost analysis. Anish Analog. 2021; 132 (2): 344–52. https://doi.org/10.1213/ANE.0000000000005241Test.; Багова М.О., Магомедова А.У., Кравченко С.К. и др. Фармакоэкономический анализ комбинированной иммунохимиотерапии R-DA-EPOCH и R-mNHL-BFM-90 у пациентов с прогностически неблагоприятной диффузной В-крупноклеточной лимфомой в рамках рандомизированного многоцентрового клинического исследования ДВККЛ-2015. Клиническая онкогематология. 2021; 14 (3): 321–32. https://doi.org/10.21320/2500-2139-2021-14-3-321-332Test.; Серов В.Н. (ред.) Диагностика и лечение периоперационной анемии и дефицита железа у хирургических пациентов: методическое руководство. Чебоксары: ИД «Среда»; 2021: 60 с.; Прайс-лист сети лабораторий Invitro. URL: https://www.invitro.ruTest (дата обращения 04.09.2021).; Kulnigg S., Stoinov S., Simanenkov V., et al. A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am J Gastroenterol. 2008; 103 (5): 1182–92. https://doi.org/10.1111/j.1572-0241.2007.01744.xTest.; Lima J., Gago P., Rocha M., et al. Role of intravenous iron in the treatment of anemia in patients with gastrointestinal tract tumors undergoing chemotherapy: a single-center, observational study. Int J Gen Med. 2018; 11: 331–6. https://doi.org/10.2147/IJGM.S165947Test.; Slaats J., ten Oever J., van der Veerdonk F.L., Netea M.G. IL-1β/ IL-6/СRP and IL-18/ferritin: distinct inflammatory programs in infections. PloS Pathog. 2016; 12 (12): e1005973. https://doi.org/10.1371/journal.ppat.1005973Test.; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020: 112 с.; Bach M., Geisel T., Martin J., et al. Efficacy and safety of intravenous ferric carboxymaltose in geriatric inpatients at a German Tertiary University Teaching Hospital: a retrospective observational cohort study of clinical practice. Anemia. 2015; 2015: 647930. https://doi.org/10.1155/2015/647930Test.; Keeler B.D., Simpson J.A., Ng S., et al. The feasibility and clinical efficacy of intravenous iron administration for preoperative anaemia in patients with colorectal cancer. Colorectal Dis. 2014; 16 (10): 794– 800. https://doi.org/10.1111/codi.12683Test.; Moore R.A., Gaskell H., Rose P., Allan J. Meta-analysis of efficacy and safety of intravenous ferric carboxymaltose (Ferinject) from clinical trial reports and published trial data. BMC Blood Disord. 2011; 11: 4. https://doi.org/10.1186/1471-2326-11-4Test.; Ifie E., Oyibo S.O., Joshi H., Akintade O. Symptomatic hypophosphataemia after intravenous iron therapy: an underrated adverse reaction. Endocrinol Diabetes Metab Case Rep. 2019; 2019 (1): 19–0065. https://doi.org/10.1530/EDM-19-0065Test.; Jensen G., Gøransson L.G., Fernström A., et al. Treatment of iron deficiency in patients with chronic kidney disease: a prospective observational study of iron isomaltoside (NIMO Scandinavia). Clin Nephrol. 2019; 91 (4): 246–53. https://doi.org/10.5414/CN109474Test.; Wikström B., Bhandari S., Barany P., et al. Iron isomaltoside 1000: a new intravenous iron for treating iron deficiency in chronic kidney disease. J Nephrol. 2011; 24 (5): 589–96. https://doi.org/10.5301/JN.2011.6248Test.; Kalra P.A., Bhandari S., Saxena S., et al. A randomized trial of iron isomaltoside 1000 versus oral iron in non-dialysis-dependent chronic kidney disease patients with anaemia. Nephrol Dial Transplant. 2016; 31 (4): 646–55. https://doi.org/10.1093/ndt/gfv293Test.; Clemmensen S.Z., Kragholm K.H., Melgaard D., et al. Association between intravenous iron therapy and short-term mortality risk in older patients undergoing hip fracture surgery: an observational study. J Orthop Surg Res. 2021; 16 (1): 320. https://doi.org/10.1186/s13018-021-02462-xTest.; Goh H.J., Lee K.S., Kim T.H., et al. Intravenous iron isomaltoside 1000 reduces postoperative anemia in patients undergoing elective urologic surgery and those with urosepsis. Drug Des Devel Ther. 2020; 14: 5679–87. https://doi.org/10.2147/DDDT.S276904Test.; Johansson P.I., Rasmussen A.S., Thomsen L.L. Intravenous iron isomaltoside 1000 (Monofer) reduces postoperative anaemia in preoperatively non-anaemic patients undergoing elective or subacute coronary artery bypass graft, valve replacement or a combination thereof: a randomized double-blind placebo-controlled clinical trial (the PROTECT trial). Vox Sang. 2015; 109 (3): 257–66. https://doi.org/10.1111/vox.12278Test.; Holm C., Thomsen L.L., Langhoff-Roos J. Intravenous iron isomaltoside treatment of women suffering from severe fatigue after postpartum hemorrhage. J Matern Fetal Neonatal Med. 2019; 32 (17): 2797–804. https://doi.org/10.1080/14767058.2018.1449205Test.; Gybel-Brask M., Seeberg J., Thomsen L.L., Johansson P.I. Intravenous iron isomaltoside improves hemoglobin concentration and iron stores in female iron-deficient blood donors: a randomized double-blind placebo-controlled clinical trial. Transfusion. 2018; 58 (4): 974–81. https://doi.org/10.1111/trf.14521Test.; Dahlerup J.F., Jacobsen B.A., van der Woude J., et al. High-dose fast infusion of parenteral iron isomaltoside is efficacious in inflammatory bowel disease patients with iron-deficiency anaemia without profound changes in phosphate or fibroblast growth factor 23. Scand J Gastroenterol. 2016; 51 (11): 1332–8. https://doi.org/10.1080/00365521.2016.1196496Test.; Федеральная антимонопольная служба. Предельные размеры оптовых надбавок и предельные размеры розничных надбавок к ценам на жизненно необходимые и важнейшие лекарственные препараты, установленные в субъектах Российской Федерации (данные по состоянию на 21.10.2020). URL: https://fas.gov.ru/documents/687272Test (дата обращения 01.07.2021).; https://www.pharmacoeconomics.ru/jour/article/view/660Test

  2. 2
    دورية أكاديمية

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 15, No 1 (2022); 162-169 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 15, No 1 (2022); 162-169 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/665/421Test; Sukhikh S., Noskova S., Ivanova S., et al. Chondroprotection and molecular mechanism of action of phytonutraceuticals on osteoarthritis. Molecules. 2021; 26 (8): 2391. https://doi.org/10.3390/molecules26082391Test.; Aweid O., Haider Z., Saed A., Kalairajah Y. Treatment modalities for hip and knee osteoarthritis: a systematic review of safety. J Orthop Surg (Hong Kong). 2018; 26 (3): 2309499018808669. https://doi.org/10.1177/2309499018808669Test.; Kellesarian S.V., Malignaggi V.R., Kellesarian T.V., et al. Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and metaanalysis. Int J Oral Maxillofac Surg. 2018; 47 (2): 241–51. https://doi.org/10.1016/j.ijom.2017.10.010Test.; Bauza-Mayol G., Quintela M., Brozovich A., et al. Biomimetic scaffolds modulate the posttraumatic inflammatory response in articular cartilage contributing to enhanced neoformation of cartilaginous tissue in vivo. Adv Healthc Mater. 2022; 11 (1): e2101127. https://doi.org/10.1002/adhm.202101127Test.; Wartenberg A., Weisser J., Schnabelrauch M. Glycosaminoglycanbased cryogels as scaffolds for cell cultivation and tissue regeneration. Molecules. 2021; 26 (18): 5597. https://doi.org/10.3390/molecules26185597Test.; Lee S., Choi J., Youn J., et al. Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering. Biomolecules. 2021; 11 (8): 1184. https://doi.org/10.3390/biom11081184Test.; Sharma S., Madhyastha H., Laxmi Swetha K., et al. Development of an in-situ forming, self-healing scaffold for dermal wound healing: invitro and in-vivo studies. Mater Sci Eng C Mater Biol Appl. 2021; 128: 112263. https://doi.org/10.1016/j.msec.2021.112263Test.; Lin T.S., Hsieh C.H., Kuo C., et al. Sulfation pattern of chondroitin sulfate in human osteoarthritis cartilages reveals a lower level of chondroitin-4-sulfate. Carbohydr Polym. 2020; 229: 115496. https://doi.org/10.1016/j.carbpol.2019.115496Test.; Silva F.S. Jr., Yoshinari N.H., Castro R.R., et al. Combined glucosamine and chondroitin sulfate provides functional and structural benefit in the anterior cruciate ligament transection model. Clin Rheumatol. 2009; 28 (2): 109–17. https://doi.org/10.1007/s10067-008-0988-8Test.; Лила А.М., Громова О.А. Торшин И.Ю. и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (3): 88–97. https://doi.org/10.14412/2074-2711-2017-3-88-97Test.; Торшин И.Ю., Громова О.А., Лила А.М. и др. Толл-подобные рецепторы как компонент патофизиологии остеоартрита: противовоспалительное, анальгетическое и нейропротекторное действие. Неврология, нейропсихиатрия, психосоматика. 2021; 13 (4): 123–9. https://doi.org/10.14412/2074-2711-2021-4-123-129Test.; Громова О.А., Торшин И.Ю., Лила А.М. и др. Стандартизированные формы хондроитина сульфата как патогенетическое средство лечения остеоартрита в контексте постгеномных исследований. Современная ревматология. 2021; 15 (1): 136–43. https://doi.org/10.14412/1996-7012-2021-1-136-143Test.; Uitterlinden E.J., Jahr H., Koevoet J.L., et al. Glucosamine decreases expression of anabolic and catabolic genes in human osteoarthritic cartilage explants. Osteoarthritis Cartilage. 2006; 14 (3): 250–7. https://doi.org/10.1016/j.joca.2005.10.001Test.; Кирчанов В.А., Федорищев В.А. Показания и притивопоказания к эндопротезированию крупных суставов конечностей. Методические указания для врачей. Воронеж; 2017.; Obertacke U., Nast-Kolb D. Specific features of accidents, injuries and surgical care in the elderly. Unfallchirurg. 2000; 103 (3): 227–2 (на нем. яз). https://doi.org/10.1007/s001130050527Test.; Jawhar A., Skeirek D., Stetzelberger V., Obertacke U. Influence of the tourniquet on pain and function in total knee arthroplasty: a systematic review and meta-analysis. Z Orthop Unfall. 2020; 158 (6): 630–40. https://doi.org/10.1055/a-0983-3808Test.; Schneider H., Maheu E., Cucherat M. Symptom-modifying effect of chondroitin sulfate in knee osteoarthritis: a meta-analysis of randomized placebo-controlled trials performed with Structum®. Open Rheumatol J. 2012; 6: 183–9. https://doi.org/10.2174/1874312901206010183Test.; Meng Z., Liu J., Zhou N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2022; Jan 13. https://doi.org/10.1007/s00402-021-04326-9Test.; Gregori D., Giacovelli G., Minto C., et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: a systematic review and meta-analysis. JAMA. 2018; 320 (24): 2564–79. https://doi.org/10.1001/jama.2018.19319Test.; Honvo G., Reginster J.Y., Rabenda V., et al. Safety of symptomatic slow-acting drugs for osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging. 2019; 36 (Suppl. 1): 65–99. https://doi.org/10.1007/s40266-019-00662-zTest.; Майко О.Ю. Фармакоэкономические аспекты применения хондроитина сульфата у пациентов с остеоартрозом в амбулаторных условиях. Проблемы стандартизации в здравоохранении. 2020; 3-4: 72–7. https://doi.org/10.26347/1607-2502202003-04072-077Test.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 388– 99. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066Test.; Crovace A., Lacitignola L., Miolo A., Fanizzi F.P. Surgery plus chondroprotection for canine cranial cruciate ligament (CCL) rupture: a proton-NMR study. Vet Comp Orthop Traumatol. 2006; 19 (4): 239–45.; Kamarul T., Ab-Rahim S., Tumin M., et al. A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage. Eur Cell Mater. 2011; 21: 259–71. https://doi.org/10.22203/ecm.v021a20Test.; Sobue Y., Kojima T., Kurokouchi K., et al. Prediction of progression of damage to articular cartilage 2 years after anterior cruciate ligament reconstruction: use of aggrecan and type II collagen biomarkers in a retrospective observational study. Arthritis Res Ther. 2017; 19 (1): 265. https://doi.org/10.1186/s13075-017-1471-1Test.; Bruyere O., Pavelka K., Rovati L.C., et al. Total joint replacement after glucosamine sulphate treatment in knee osteoarthritis: results of a mean 8-year observation of patients from two previous 3-year, randomised, placebo-controlled trials. Osteoarthritis Cartilage. 2008; 16 (2): 254–60. https://doi.org/10.1016/j.joca.2007.06.011Test.; https://www.pharmacoeconomics.ru/jour/article/view/665Test

  3. 3
    دورية أكاديمية

    المساهمون: This work was financially supported by the Rhana company., Статья подготовлена при поддержке компании «Рхана».

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 4 (2021); 468-479 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 4 (2021); 468-479 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/625/400Test; Пузик С.Г. Эндотелиальная дисфункция в патогенезеартериальной гипертензии и прогрессировании атеросклероза. Семейная медицина. 2018; 2: 69–74.; Чучалин А.Г. Роль оксида азота в современной клинической практике: научный доклад на V Всероссийском конгрессе «Легочная гипертензия» (13 декабря 2017 г.). Пульмонология. 2018; 28 (4): 503–11. https://doi.org/10.18093/0869-0189-2018-28-4-503-511Test.; Панина И.Ю., Петрищев Н.Н., Смирнов А.В. и др. Артериальная гипертензия и эндотелиальная дисфункция при хронической болезни почек. Артериальная гипертензия. 2006; 12 (4): 352–7. https://doi.org/10.18705/1607-419X-2006-12-4-352-357Test.; Шолкова М.В., Доценко Э.А. Эндотелиальная дисфункция при хронических обструктивных заболеваниях легких. Неотложная кардиология и кардиооваскулярные риски. 2019; 3 (1): 539–45.; Liu C., Jiang Z.C., Shao C.X., Zhang H.G., et al. Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study]. Zhonghua Gan Zang Bing Za Zhi. 2020; 28 (2): 148–52 (на кит. яз.). https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.003Test.; Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–7. https://doi.org/10.1111/jth.14768Test.; Jin X., Lian J.S., Hu J.H., et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1002–9. https://doi.org/10.1136/gutjnl-2020-320926Test.; Iba T., Connors J.M., Levy J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res. 2020; 69 (12): 1181–9. https://doi.org/10.1007/s00011-020-01401-6Test.; Zhang J., McCullough P.A., Tecson K.M. Vitamin D deficiency in association with endothelial dysfunction: Implications for patients with COVID-19. Rev Cardiovasc Med. 2020; 21 (3): 339–44. https://doi.org/10.31083/j.rcm.2020.03.131Test.; Kang S., Tanaka T., Inoue H., et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA. 2020; 117 (36): 22351–6. https://doi.org/10.1073/pnas.2010229117Test.; McConnell M.J., Kawaguchi N., Kondo R., et al. Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. J Hepatol. 2021: 75 (3): 647–58. https://doi.org/10.1016/j.jhep.2021.04.050Test.; Philippe A., Chocron R., Gendron N., et al. Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis. 2021: 24 (3): 505–17. https://doi.org/10.1007/s10456-020-09762-6Test.; Syed F., Li W., Relich R.F., et al. Excessive matrix metalloproteinase-1 and hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19. medRxiv. 2021 Jan 20: 2021.01.19.21250115. https://doi.org/10.1101/2021.01.19.21250115Test.; Chioh F.W., Fong S.W., Young B.E., et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife. 2021; 10: e64909. https://doi.org/10.7554/eLife.64909Test.; Pine A.B., Meizlish M.L., Goshua G., et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm Circ. 2020; 10 (4): 2045894020966547. https://doi.org/10.1177/2045894020966547Test.; Nicosia R.F., Ligresti G., Caporarello N., et al. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am J Pathol. 2021; 191 (8): 1374–84. https://doi.org/10.1016/j.ajpath.2021.05.007Test.; Федин А.И., Старых Е.П., Парфёнов А.С. и др. Фармакологическая коррекция эндотелиальной дисфункции при атеросклеротической хронической ишемии головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013; 113 (10): 45–8.; Филиппов Е.В. Возможности коррекции эндотелиальной дисфункции у пациентов с артериальной гипертензией и ишемической болезнью сердца. Медицинский cовет. 2019; 5: 64– 7. https://doi.org/10.21518/2079-701X-2019-5-64-67Test.; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020: 112 с.; Максимов В.А., Торшин И.Ю., Чучалин А.Г. и др. Опыт применения препарата Лаеннек у пациентов с высоким риском развития «цитокинового шторма» на фоне COVID-19 и гиперферритинемии. Пульмонология. 2020; 30 (5): 587–98. https://doi.org/10.18093/0869-0189-2020-30-5-587-598Test.; Громова О.А., Торшин И.Ю., Максимов В.А. и др. Пептиды в составе препарата Лаеннек, способствующие устранению гиперферритинемии и перегрузки железом. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 413–25. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.070Test.; Торшин И.Ю., Громова О.А., Диброва Е.А. и др. Пептиды в составе препарата Лаеннек, потенцирующие его антивирусные эффекты в лечении атопического дерматита герпетической инфекции. Российский аллергологический журнал. 2018; 15 (1): 82–90. https://doi.org/10.36691/rja191Test.; Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognit Image Anal. 2017; 27 (1): 16–28. https://doi.org/10.1134/S1054661817010151Test.; Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognit Image Anal. 2017; 27 (2): 184–99. https://doi.org/10.1134/S1054661817020110Test.; Torshin I.Y. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognit Image Anal. 2013; 23 (2): 319–27. https://doi.org/10.1134/S1054661813020156Test.; Torshin I.Yu., Rudakov K.V. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019; 29 (4): 654–67. https://doi.org/10.1134/S1054661819040175Test.; Torshin I.Y., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014; 24 (1): 11−23. https://doi.org/10.1134/S1054661814010209Test.; Торшин И.Ю., Громова О.А. Мировой опыт использования гидролизатов плаценты человека в терапии. Экспериментальная и клиническая гастроэнтерология. 2019; 170 (10): 79–89. https://doi.org/10.31146/1682-8658-ecg-170-10-79-89Test.; Торшин И.Ю., Громова О.А. Экспертный анализ данных в молекулярной фармакологии. М.: МЦНМО; 2012: 748 с. 30. Xu S., Yan Y., Yan Z., et al. Septic serum mediates inflammatory injury in human umbilical vein endothelial cells via reactive oxygen species, mitogen activated protein kinases and nuclear factor-κB. Int J Mol Med. 2021; 47 (1): 267–75. https://doi.org/10.3892/ijmm.2020.4785Test.; Vrints C.J., Krychtiuk K.A., Van Craenenbroeck E.M., et al. Endothelialitis plays a central role in the pathophysiology of severe COVID-19 and its cardiovascular complications. Acta Cardiol. 2021; 76 (2): 109–24. https://doi.org/10.1080/00015385.2020.1846921Test.; Pan Y., Wang Y., Xu J., et al. TG and VLDL cholesterol activate NLRP1 inflammasome by Nuclear Factor-κB in endothelial cells. Int J Cardiol. 2017; 234: 103. https://doi.org/10.1016/j.ijcard.2016.12.156Test.; Baer J.T., Du Laney T.V., Wyrick P.B., et al. Nuclear factor-kappaB activation in endothelium by Chlamydia pneumoniae without active infection. J Infect Dis. 2003; 188 (8): 1094–7. https://doi.org/10.1086/378564Test.; Song D., Ye X., Xu H., Liu S.F. Activation of endothelial intrinsic NF- {kappa}B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood. 2009; 114 (12): 2521–9. https://doi.org/10.1182/blood-2009-02-205914Test.; Morita M., Yano S., Yamaguchi T., Sugimoto T. Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells. J Diabetes Complications. 2013; 27 (1): 11–5. https://doi.org/10.1016/j.jdiacomp.2012.07.006Test.; Pan W., Yu H., Huang S., Zhu P. Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One. 2016; 11 (1): e0147034. https://doi.org/10.1371/journal.pone.0147034Test.; Dong H.J., Shang C.Z., Peng D.W., et al. Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol Sci. 2014; 35 (9): 1387–92. https://doi.org/10.1007/s10072-014-1718-4Test.; Hu W., Zhang Q., Yang X., et al. Puerarin inhibits adhesion molecule expression in tnf-alpha-stimulated human endothelial cells via modulation of the nuclear factor kappaB pathway. Pharmacology. 2010; 85 (1): 27–35. https://doi.org/10.1159/000264938Test.; Ohkita M., Takaoka M., Shiota Y., et al. A nuclear factor-kappaB inhibitor BAY 11-7082 suppresses endothelin-1 production in cultured vascular endothelial cells. Jpn J Pharmacol. 2002; 89 (1): 81–4. https://doi.org/10.1254/jjp.89.81Test.; Guo G., Cheng X., Fu R. Losartan inhibits nuclear factor-κB activation induced by small, dense LDL cholesterol particles in human umbilical vein endothelial cells. Curr Ther Res Clin Exp. 2013; 76: 17–20. https://doi.org/10.1016/j.curtheres.2013.11.006Test.; Zhou S.J., Bai L., Lv L., et al. Liraglutide ameliorates renal injury in streptozotocin-induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor-κB pathway. Mol Med Rep. 2014; 10 (5): 2587–94. https://doi.org/10.3892/mmr.2014.2555Test.; Lei L., Huaiyong C., Qi W., et al. The role of nuclear factor-κB in endothelial cell inflammatory injury by intermittent hypoxia in rat with emphysema. Zhonghua Jie He He Hu Xi Za Zhi. 2015; 38 (3): 196–201 (на кит. яз.).; Bian Y., Song C., Cheng K., et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014; 96: 253–62. https://doi.org/10.1016/j.jprot.2013.11.014Test.; Song P., Xie Z., Wu Y., et al. Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem. 2008; 283 (18): 12446–55. https://doi.org/10.1074/jbc.M708208200Test.; Hurov J.B., Watkins J.L., Piwnica-Worms H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol. 2004; 14 (8): 736–41. https://doi.org/10.1016/j.cub.2004.04.007Test.; Preuss K.D., Pfreundschuh M., Fadle N., et al. Hyperphosphorylation of autoantigenic targets of paraproteins is due to inactivation of PP2A. Blood. 2011; 118 (12): 3340–6. https://doi.org/10.1182/blood-2011-04-351668Test.; Tsuchiya Y., Asano T., Nakayama K., et al. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UVinduced NF-kappaB activation. Mol Cell. 2010; 39 (4): 570–82. https://doi.org/10.1016/j.molcel.2010.07.030Test.; Serra R.W., Fang M., Park S.M., et al. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. Elife. 2014; 3: e02313. https://doi.org/10.7554/eLife.02313Test.; Xu P., Derynck R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell. 2010; 37 (4): 551–66. https://doi.org/10.1016/j.molcel.2010.01.034Test.; Reinhardt H.C., Hasskamp P., Schmedding I., et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell. 2010; 40 (1): 34–49. https://doi.org/10.1016/j.molcel.2010.09.018Test.; Werz O., Szellas D., Steinhilber D., Rådmark O. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPKactivated protein kinase 2 (MK2). J Biol Chem. 2002; 277 (17): 14793– 800. https://doi.org/10.1074/jbc.M111945200Test.; Gimm T., Wiese M., Teschemacher B., et al. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J. 2010; 24 (11): 4443–58. https://doi.org/10.1096/fj.10-159806Test.; Tanimoto K., Makino Y., Pereira T., Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von HippelLindau tumor suppressor protein. EMBO J. 2000; 19 (16): 4298–309. https://doi.org/10.1093/emboj/19.16.4298Test.; https://www.pharmacoeconomics.ru/jour/article/view/625Test

  4. 4
    دورية أكاديمية

    المساهمون: Обзор выполнен при поддержке ЗАО «ФармФирма «Сотекс».

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 15, No 1 (2022); 107-118 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 15, No 1 (2022); 107-118 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/651/410Test; Herrero-Beaumont G., Pérez-Baos S., Sánchez-Pernaute O., et al. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol. 2019; 165: 24–32. https://doi.org/10.1016/j.bcp.2019.02.030Test.; Громова О.А., Торшин И.Ю., Лила А.М. и др. Стандартизированные формы хондроитина сульфата как патогенетическое средство лечения остеоартрита в контексте постгеномных исследований. Современная ревматология. 2021; 15 (1): 136–43. https://doi.org/10.14412/1996-7012-2021-1-136-143Test.; Barreto G., Manninen M., Eklund K.K. Osteoarthritis and toll-like receptors: when innate immunity meets chondrocyte apoptosis. Biology (Basel). 2020; 9 (4): 65. https://doi.org/10.3390/biology9040065Test.; Торшин И.Ю., Громова О.А., Нечаева Г.И. и др. Систематический анализ молекулярно-биологических механизмов поддержки хондроитина сульфатом метаболизма соединительной ткани. Неврология, нейропсихиатрия, психосоматика. 2021; 13 (1): 154– 62. https://doi.org/10.14412/2074-2711-2021-1-154-162Test.; Goerres G.W., Häuselmann H.J., Seifert B., et al. Patients with knee osteoarthritis have lower total hip bone mineral density in the symptomatic leg than in the contralateral hip. J Clin Densitom. 2005; 8 (4): 484–7. https://doi.org/10.1385/jcd:8:4:484Test.; Yu D., Xu J., Liu F., et al. Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis. Clin Exp Rheumatol. 2016; 34 (5): 929–34.; Salbach J., Rachner T.D., Rauner M., et al. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl). 2012; 90 (6): 625–35. https://doi.org/10.1007/s00109-011-0843-2Test.; Fournier P., Dupuis Y. Antirachitic power of various socalled structural compounds: lactose, glucosamine, L-xylose, mannitol. C R Hebd Seances Acad Sci. 1960; 250: 3050–2 (на фр. яз.).; Шавловская О.А., Золотовская И.А., Прокофьева Ю.С. Антирезорбтивная активность фармацевтического хондроитина сульфата у лиц старшей возрастной группы. Терапевтический архив. 2020; 92 (12): 75–9. https://doi.org/10.26442/00403660.2020.12.200448Test.; Torshin I.Yu., Rudakov K.V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015; 25 (4): 577–87. https://doi.org/10.1134/S1054661815040252Test.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 1: properties of compactness. Pattern Recognition and Image Analysis. 2016; 26 (2): 274–84. https://doi.org/10.1134/S1054661816020255Test.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021Test.; Stanford Biomedical Network Dataset Collection. URL: http://snap.stanford.edu/biodataTest (дата обращения 27.12.2021).; The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019; 47 (D1): D330– 8. https://doi.org/10.1093/nar/gky1055Test.; Maeda K., Kobayashi Y., Koide M., et al. The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci. 2019; 20 (22): 5525. https://doi.org/10.3390/ijms20225525Test.; Deng H., Liu H., Yang Z., et al. Progress of selenium deficiency in the pathogenesis of arthropathies and selenium supplement for their treatment. Biol Trace Elem Res. 2021; Nov. 15. https://doi.org/10.1007/s12011-021-03022-4Test.; Hong S.W., Kang J.H. Bone mineral density, bone microstructure, and bone turnover markers in females with temporomandibular joint osteoarthritis. Clin Oral Investig. 2021; 25 (11): 6435–48. https://doi.org/10.1007/s00784-021-03946-0Test.; Lin Z., Miao J., Zhang T., et al. d-Mannose suppresses osteoarthritis development in vivo and delays IL-1β-induced degeneration in vitro by enhancing autophagy activated via the AMPK pathway. Biomed Pharmacother. 2021; 135: 111199. https://doi.org/10.1016/j.biopha.2020.111199Test.; Monasterio G., Castillo F., Rojas L., et al. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: a preliminary report. J Oral Rehabil. 2018; 45 (8): 589–97. https://doi.org/10.1111/joor.12649Test.; Berardi S., Corrado A., Maruotti N., et al. Osteoblast role in the pathogenesis of rheumatoid arthritis. Mol Biol Rep. 2021; 48 (3): 2843–52. https://doi.org/10.1007/s11033-021-06288-yTest.; Ragipoglu D., Dudeck A., Haffner-Luntzer M., et al. The role of mast cells in bone metabolism and bone disorders. Front Immunol. 2020; 11: 163. https://doi.org/10.3389/fimmu.2020.00163Test.; Kamiya N., Kuroyanagi G., Aruwajoye O., Kim H.K.W. IL6 receptor blockade preserves articular cartilage and increases bone volume following ischemic osteonecrosis in immature mice. Osteoarthritis Cartilage. 2019; 27 (2): 326–35. https://doi.org/10.1016/j.joca.2018.10.010Test.; Ren Y., Deng Z., Gokani V., et al. Anti-interleukin-6 therapy decreases hip synovitis and bone resorption and increases bone formation following ischemic osteonecrosis of the femoral head. J Bone Miner Res. 2021; 36 (2): 357–68. https://doi.org/10.1002/jbmr.4191Test.; Takeuchi T., Sugimoto A., Imazato N., et al. Glucosamine suppresses osteoclast differentiation through the modulation of glycosylation including O-GlcNAcylation. Biol Pharm Bull. 2017; 40 (3): 352–6. https://doi.org/10.1248/bpb.b16-00877Test.; Nagaoka I., Igarashi M., Sakamoto K. Biological activities of glucosamine and its related substances. Adv Food Nutr Res. 2012; 65: 337–52. https://doi.org/10.1016/B978-0-12-416003-3.00022-6Test.; Ivanovska N., Dimitrova P. Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine. Arthritis Res Ther. 2011; 13 (2): R44. https://doi.org/10.1186/ar3283Test.; Золотовская И.А., Давыдкин И.Л. Антирезорбтивноцитокиновые эффекты хондропротективной терапии у пациентов с болью в нижней части спины. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120 (4): 65–71. https://doi.org/10.17116/jnevro202012004165Test.; Veronese N., Koyanagi A., Stubbs B., et al. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin Nutr. 2019; 38 (6): 2735–9. https://doi.org/10.1016/j.clnu.2018.11.032Test.; Bahrambeigi S., Yousefi B., Rahimi M., Shafiei-Irannejad V. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother. 2019; 109: 1593–601. https://doi.org/10.1016/j.biopha.2018.11.032Test.; Zheng H.X., Chen J., Zu Y.X., et al. Chondroitin sulfate prevents STZ induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and OPG/RANKL expression regulation. Int J Mol Sci. 2020; 21 (15): 5303. https://doi.org/10.3390/ijms21155303Test.; Fan R., Hao Y., Liu X., et al. Undenatured type II collagen relieves bone impairment through improving inflammation and oxidative stress in ageing db/db mice. Molecules. 2021; 26 (16): 4942. https://doi.org/10.3390/molecules26164942Test.; Veronese N., Cooper C., Reginster J.Y., et al. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019; 49 (1): 9–19. https://doi.org/10.1016/j.semarthrit.2019.01.005Test.; Громова О.А., Торшин И.Ю., Зайчик Б.Ц. и др. О различиях в стандартизации лекарственных препаратов на основе экстрактов хондроитина сульфата. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 40– 52. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.083Test.; Wu Y., Kadota-Watanabe C., Ogawa T., Moriyama K. Combination of estrogen deficiency and excessive mechanical stress aggravates temporomandibular joint osteoarthritis in vivo. Arch Oral Biol. 2019; 102: 39–46. https://doi.org/10.1016/j.archoralbio.2019.03.012Test.; Asai H., Nakatani S., Kato T., et al. Glucosamines attenuate bone loss due to menopause by regulating osteoclast function in ovariectomized mice. Biol Pharm Bull. 2016; 39 (6): 1035–41. https://doi.org/10.1248/bpb.b16-00066Test.; Jiang Z., Li Z., Zhang W., et al. Dietary natural N-acetyl-Dglucosamine prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. Molecules. 2018; 23 (9): 2302. https://doi.org/10.3390/molecules23092302Test.; Miyazaki T., Miyauchi S., Anada T., et al. Chondroitin sulfate-E binds to both osteoactivin and integrin αVβ3 and inhibits osteoclast differentiation. J Cell Biochem. 2015; 116 (10): 2247–57. https://doi.org/10.1002/jcb.25175Test.; Koike T., Mikami T., Shida M., et al. Chondroitin sulfate-E mediates estrogen-induced osteoanabolism. Sci Rep. 2015; 5: 8994. https://doi.org/10.1038/srep08994Test.; Yoo T.K., Kim S.K., Kim D.W., et al. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning. Yonsei Med J. 2013; 54 (6): 1321–30. https://doi.org/10.3349/ymj.2013.54.6.1321Test.; Kiyomoto K., Iba K., Hanaka M., et al. High bone turnover state under osteoporotic changes induces pain-like behaviors in mild osteoarthritis model mice. J Bone Miner Metab. 2020; 38 (6): 806–18. https://doi.org/10.1007/s00774-020-01124-yTest.; Sun Q., Zhen G., Li T.P., et al. Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife. 2021; 10: e66532. https://doi.org/10.7554/eLife.66532Test.; Nwosu L.N., Allen M., Wyatt L., et al. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage. 2017; 25 (6): 858–65. https://doi.org/10.1016/j.joca.2017.01.002Test.; Nakamura Y., Uchiyama S., Kamimura M., et al. Bone alterations are associated with ankle osteoarthritis joint pain. Sci Rep. 2016; 6: 18717. https://doi.org/10.1038/srep18717Test.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 18– 29. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066Test.; Salbach-Hirsch J., Ziegler N., Thiele S., et al. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J Cell Biochem. 2014; 115 (6): 1101–11. https://doi.org/10.1002/jcb.24750Test.; Salbach J., Kliemt S., Rauner M., et al. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials. 2012; 33 (33): 8418–29. https://doi.org/10.1016/j.biomaterials.2012.08.028Test.; Trabszo C., Ramms B., Chopra P., et al. Arylsulfatase K inactivation causes mucopolysaccharidosis due to deficient glucuronate desulfation of heparan and chondroitin sulfate. Biochem J. 2020; 477 (17): 3433–51. https://doi.org/10.1042/BCJ20200546Test.; Peck S.H., Tobias J.W., Shore E.M., et al. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone. 2019; 128: 115042. https://doi.org/10.1016/j.bone.2019.115042Test.; Лила А.М., Громова О.А., Торшин И.Ю. и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (3): 88–97. https://doi.org/10.14412/2074-2711-2017-3-88-97Test.; Noonan K.J., Stevens J.W., Tammi R., et al. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res. 1996; 14 (4): 573–81. https://doi.org/10.1002/jor.1100140411Test.; Martins J.M.S., Dos Santos Neto L.D., Noleto-Mendonça R.A., et al. Dietary supplementation with glycosaminoglycans reduces locomotor problems in broiler chickens. Poult Sci. 2020; 99 (12): 6974–82. https://doi.org/10.1016/j.psj.2020.09.061Test.; Lambertini E., Penolazzi L., Pandolfi A., et al. Human osteoclasts/ osteoblasts 3D dynamic co culture system to study the beneficial effects of glucosamine on bone microenvironment. Int J Mol Med. 2021; 47 (4): 57. https://doi.org/10.3892/ijmm.2021.4890Test.; Lv C., Wang L., Zhu X., et al. Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed Pharmacother. 2018; 99: 271–7. https://doi.org/10.1016/j.biopha.2018.01.066Test.; https://www.pharmacoeconomics.ru/jour/article/view/651Test

  5. 5
    دورية أكاديمية

    المساهمون: This work was financially supported by the grant of the Russian Science Foundation (No. 20-12-00175) in Ivanovo State University of Chemistry and Technology., Работа выполнена по гранту Российского научного фонда (проект № 20-12-00175) в Ивановском государственном химико-технологическом университете.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 4 (2021); 537-547 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 4 (2021); 537-547 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/630/405Test; Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019; 15 (5): 288–98. https://doi.org/10.1038/s41574-019-0176-8Test.; Reginato A.M., Riera H., Vera M., et al. Osteoarthritis in Latin America: study of demographic and clinical characteristics in 3040 patients. J Clin Rheumatol. 2015; 21(8): 391–7. https://doi.org/10.1097/RHU.0000000000000281Test.; Bruyère O., Honvo G., Veronese N., et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019; 49 (3): 337–50. https://doi.org/10.1016/j.semarthrit.2019.04.008Test.; Торшин И.Ю., Лила А.М., Лиманова О.А., Громова О.А. Перспективы применения хондроитина сульфата и глюкозамина сульфата при остеоартрите в сочетании с патологией почек и мочевыделительной системы. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (1): 23–34. https://doi.org/10.17749/2070-4909.2020.13.1.23-34Test.; Raksasuk S., Ungprasert P. Patients with rheumatoid arthritis have an increased risk of incident chronic kidney disease: a systematic review and meta-analysis of cohort studies. Int Urol Nephrol. 2020; 52 (1): 147–54. https://doi.org/10.1007/s11255-019-02346-4Test.; Jóźwiak-Bebenista M., Nowak J.Z. Paracetamol: mechanism of action, applications and safety concern. Acta Pol Pharm. 2014; 71 (1): 11–23.; Machado G.C., Maher C.G., Ferreira P.H., et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo controlled trials. BMJ. 2015; 350: h1225. https://doi.org/10.1136/bmj.h1225Test.; Bourhia M., Ullah R., Alqahtani A.S., Ibenmoussa S. Evidence of druginduced hepatotoxicity in the Maghrebian population. Drug Chem Toxicol. 2020: 1–5. https://doi.org/10.1080/01480545.2020.1797088Test.; Kwon J., Kim S., Yoo H., Lee E. Nimesulide-induced hepatotoxicity: a systematic review and meta-analysis. PLoS One. 2019; 14 (1): e0209264. https://doi.org/10.1371/journal.pone.0209264Test.; Лила А.М., Торшин И.Ю., Громова О.А. Стоит ли переосмыслить полученный полвека назад положительный опыт применения хондроитинсульфатов при атеросклерозе? ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 184–91. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.043Test.; Громова О.А., Торшин И.Ю., Лила А.М. и др. О безопасности применения глюкозамина сульфата у пациентов с резистентностью к инсулину. Consilium Medicum. 2019; 21 (4): 22–30. https://doi.org/10.26442/20751753.2019.4.190309Test.; Torshin I.Yu., Rudakov K.V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit Image Anal. 2015; 25 (4): 577–87.; Torshin I.Yu., Rudakov K.V. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019; 29 (4): 654–67. https://dx.doi.org/10.1134/S1054661819040175Test.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных Pubmed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021Test.; Лила А.М., Громова О.А., Торшин И.Ю. и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (3): 88–97. http://dx.doi.org/10.14412/2074-2711-2017-3-88-97Test.; Luo J., Zhang Z., Zeng Y., et al. Co-encapsulation of collagenase type I and silibinin in chondroitin sulfate coated multilayered nanoparticles for targeted treatment of liver fibrosis. Carbohydr Polym. 2021; 263: 117964. https://doi.org/10.1016/j.carbpol.2021.117964Test.; Luo J., Gong T., Ma L. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr Polym. 2020; 249: 116887. https://doi.org/10.1016/j.carbpol.2020.116887Test.; Vallières M., du Souich P. Modulation of inflammation by chondroitin sulfate. Osteoarthritis Cartilage. 2010; 18 (Suppl. 1): S1–6. https://doi.org/10.1016/j.joca.2010.02.017Test.; Li S., Jiang W., Hu S., et al. Fucosylated chondroitin sulphate from Cusumaria frondosa mitigates hepatic endoplasmic reticulum stress and inflammation in insulin resistant mice. Food Funct. 2015; 6 (5): 1547–56. https://doi.org/10.1039/c4fo01153hTest.; Panicker S., Borgia J., Fhied C., et al. Oral glucosamine modulates the response of the liver and lymphocytes of the mesenteric lymph nodes in a papain-induced model of joint damage and repair. Osteoarthritis Cartilage. 2009; 17 (8): 1014–21. https://doi.org/10.1016/j.joca.2009.01.011Test.; Hao X., Li Y., Wang J., et al. Deficient O-GlcNAc glycosylation impairs regulatory T cell differentiation and Notch signaling in autoimmune hepatitis. Front Immunol. 2018; 9: 2089. https://doi.org/10.3389/fimmu.2018.02089Test.; Hwang J.S., Kim K.H., Park J., et al. Glucosamine improves survival in a mouse model of sepsis and attenuates sepsis-induced lung injury and inflammation. J Biol Chem. 2019; 294 (2): 608–22. https://doi.org/10.1074/jbc.RA118.004638Test.; Caramés B., Kiosses W.B., Akasaki Y., et al. Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum. 2013; 65 (7): 1843–52. https://doi.org/10.1002/art.37977Test.; Olsson U., Egnell A.C., Lee M.R., et al. Changes in matrix proteoglycans induced by insulin and fatty acids in hepatic cells may contribute to dyslipidemia of insulin resistance. Diabetes. 2001; 50 (9): 2126–32. https://doi.org/10.2337/diabetes.50.9.2126Test.; Kiran G., Prasada Rao U.J., Salimath P.V., Chilkunda N.D. Dietinduced hypercholesterolemia alters liver glycosaminoglycans and associated-lipoprotein receptors in rats. J Physiol Biochem. 2017; 73 (4): 539–50. https://doi.org/10.1007/s13105-017-0583-zTest.; Seol B.G., Kim J.H., Woo M., et al. Skate cartilage extracts containing chondroitin sulfate ameliorates hyperlipidemia-induced inflammation and oxidative stress in high cholesterol diet-fed LDL receptor knockout mice in comparison with shark chondroitin sulfate. Nutr Res Pract. 2020; 14 (3): 175–87. https://doi.org/10.4162/nrp.2020.14.3.175Test.; Huang L., Chen J., Cao P., et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs. 2015; 13 (5): 2732–56. https://doi.org/10.3390/md13052732Test.; Li W., Kobayashi T., Moroi S., et al. Anti-obesity effects of chondroitin sulfate oligosaccharides from the skate Raja pulchra. Carbohydr Polym. 2019; 214: 303–10. https://doi.org/10.1016/j.carbpol.2019.03.025Test.; Han L.K., Sumiyoshi M., Takeda T., et al. Inhibitory effects of chondroitin sulfate prepared from salmon nasal cartilage on fat storage in mice fed a high-fat diet. Int J Obes Relat Metab Disord. 2000; 24 (9): 1131–8. https://doi.org/10.1038/sj.ijo.0801378Test.; Zhu Q., Lin L., Zhao M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int J Biol Macromol. 2020; 159: 34–45. https://doi.org/10.1016/j.ijbiomac.2020.05.043Test.; Wu N., Zhang Y., Ye X., et al. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate. Carbohydr Polym. 2016; 147: 1–7. https://doi.org/10.1016/j.carbpol.2016.03.013Test.; Hu S.W., Tian Y.Y., Chang Y.G., et al. Fucosylated chondroitin sulfate from sea cucumber improves glucose metabolism and activates insulin signaling in the liver of insulin-resistant mice. J Med Food. 2014; 17 (7): 749–57. https://doi.org/10.1089/jmf.2013.2924Test.; Chen T.Y., Sun D., Lin W.S., et al. Glucosamine regulation of fibroblast growth factor 21 expression in liver and adipose tissues. Biochem Biophys Res Commun. 2020; 529 (3): 714–9. https://doi.org/10.1016/j.bbrc.2020.06.070Test.; Barrientos C., Racotta R., Quevedo L. Glucosamine attenuates increases of intraabdominal fat, serum leptin levels, and insulin resistance induced by a high-fat diet in rats. Nutr Res. 2010; 30 (11): 791–800. https://doi.org/10.1016/j.nutres.2010.10.008Test.; Phoomak C., Vaeteewoottacharn K., Silsirivanit A., et al. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci Rep. 2017; 7: 43842. https://doi.org/10.1038/srep43842Test.; Lv H., Yu G., Sun L., et al. Elevate level of glycosaminoglycans and altered sulfation pattern of chondroitin sulfate are associated with differentiation status and histological type of human primary hepatic carcinoma. Oncology. 2007; 72 (5–6): 347–56. https://doi.org/10.1159/000113145Test.; Wang Y., Liu G., Liu R., et al. EPS364, a novel deep-sea bacterial exopolysaccharide, inhibits liver cancer cell growth and adhesion. Mar Drugs. 2021; 19 (3): 171. https://doi.org/10.3390/md19030171Test.; Zhang L., Liu W.S., Han B.Q., et al. Antitumor activities of D-glucosamine and its derivatives. J Zhejiang Univ Sci B. 2006; 7 (8): 608–14. https://doi.org/10.1631/jzus.2006.B0608Test.; Ryanto G.R.T., Yorifuji K., Ikeda K., Emoto N. Chondroitin sulfate mediates liver responses to injury induced by dual endothelin receptor inhibition. Can J Physiol Pharmacol. 2020; 98 (9): 618–24. https://doi.org/10.1139/cjpp-2019-0649Test.; Nagano F., Mizuno T., Mizumoto S., et al. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. Eur J Pharmacol. 2018; 826: 48–55. https://doi.org/10.1016/j.ejphar.2018.02.043Test.; Song Y.O., Kim M., Woo M., et al. Chondroitin sulfate-rich extract of skate cartilage attenuates lipopolysaccharide-induced liver damage in mice. Mar Drugs. 2017; 15 (6): 178. https://doi.org/10.3390/md15060178Test.; Campo G.M., Avenoso A., Campo S., et al. The antioxidant activity of chondroitin-4-sulphate, in carbon tetrachloride-induced acute hepatitis in mice, involves NF-kappaB and caspase activation. Br J Pharmacol. 2008; 155 (6): 945–56. https://doi.org/10.1038/bjp.2008.338Test.; Ha B.J., Lee J.Y. The effect of chondroitin sulfate against CCl4- induced hepatotoxicity. Biol Pharm Bull. 2003; 26 (5): 622–6. https://doi.org/10.1248/bpb.26.622Test.; Parise E.R., Chehter L., Nogueira M.D., et al. Effects of vitamin A administration on collagen and sulfated glycosaminoglycans contents in the livers of rats treated with carbon tetrachloride. J Lab Clin Med. 1992; 119 (6): 676–81.; Sal'nikova S.I., Drogovoz S.M., Zupanets I.A. The liver-protective properties of D-glucosamine. Farmakol Toksikol. 1990; 53 (4): 33–5.; Vietrova K.V., Zupanets I.A., Sakharova T.S. The hepatoprotective effect of the combination of glucosamine derivatives with quercetin against methotrexate-induced liver toxicity. Ceska Slov Farm. 2020; 69 (5–6): 222–9.; Qinna N.A., Shubbar M.H., Matalka K.Z., et al. Glucosamine enhances paracetamol bioavailability by reducing its metabolism. J Pharm Sci. 2015; 104 (1): 257–65. https://doi.org/10.1002/jps.24269Test.; Gromova O.A., Torshin I.Yu., Maiorova L.A., et al. Bioinformatic and chemoneurocytological analysis of the pharmacological properties of vitamin B12 and some of its derivatives. J Porph Phthal. 2021; 25 (9): 835–42. https://doi.org/10.1142/S1088424621500644Test.; Громова О.А., Торшин И.Ю., Зайчик Б.Ц. и др. О различиях в стандартизации лекарственных препаратов на основе экстрактов хондроитина сульфата. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 40– 52. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.083Test.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 18– 29. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066Test.; https://www.pharmacoeconomics.ru/jour/article/view/630Test

  6. 6
    دورية أكاديمية

    المساهمون: This work was financially supported by the grant of the Russian Science Foundation (No. 20-12-00175) in Ivanovo State University of Chemistry and Technology., Работа выполнена по гранту Российского научного фонда (проект № 20-12-00175) в Ивановском государственном химико-технологическом университете.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 4 (2021); 563-579 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 4 (2021); 563-579 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/632/407Test; Reginato A.M., Riera H., Vera M., et al. Osteoarthritis in Latin America: study of demographic and clinical characteristics in 3040 patients. J Clin Rheumatol. 2015; 21 (8): 391–7. https://doi.org/10.1097/RHU.0000000000000281Test.; Торшин И.Ю., Лила А.М., Лиманова О.А., Громова О.А. Перспективы применения хондроитина сульфата и глюкозамина сульфата при остеоартрите в сочетании с патологией почек и мочевыделительной системы. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (1): 23–34. https://doi.org/10.17749/2070-4909.2020.13.1.23-34Test.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Перспективы персонификации профилактики и терапии остеоартрита на основании анализа коморбидного фона, генетических полиморфизмов и микроэлементного статуса. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 28–39. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.077Test.; Mendy A., Apewokin S., Wells A.A., Morrow A.L. Factors associated with hospitalization and disease severity in a racially and ethnically diverse population of COVID-19 patients. medRxiv. 2020; Jun 27, 2020. https://doi.org/10.1101/2020.06.25.20137323Test.; Bruyère O., Honvo G., Veronese N., et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2019; 49 (3): 337–50. https://doi.org/10.1016/j.semarthrit.2019.04.008Test.; Торшин И.Ю., Громова О.А., Чучалин А.Г., Журавлев Ю.И. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (2): 191–211. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.078Test.; Shannon J.M., McCormick-Shannon K., Burhans M.S., et al. Chondroitin sulfate proteoglycans are required for lung growth and morphogenesis in vitro. Am J Physiol Lung Cell Mol Physiol. 2003; 285 (6): L1323–36. https://doi.org/10.1152/ajplung.00226.2003Test.; Souza-Fernandes A.B., Pelosi P., Rocco P.R. Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. Crit Care. 2006; 10 (6): 237. https://doi.org/10.1186/cc5069Test.; Negrini D., Passi A., Moriondo A. The role of proteoglycans in pulmonary edema development. Intensive Care Med. 2008; 34 (4): 610– 8. https://doi.org/10.1007/s00134-007-0962-yTest.; Torshin I.Yu., Rudakov K.V. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019; 29 (4): 654–67. https://doi.org/10.1134/S1054661819040175Test.; Torshin I.Y. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognit Image Anal. 2013; 23: 319–27. https://doi.org/10.1134/S1054661813020156Test.; Torshin I.Yu., Rudakov K.V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit Image Anal. 2015; 25 (4): 577–87.; Wu Y.L., Kou Y.R., Ou H.L., et al. Glucosamine regulation of LPS-mediated inflammation in human bronchial epithelial cells. Eur J Pharmacol. 2010; 635 (1-3): 219–26. https://doi.org/10.1016/j.ejphar.2010.02.044Test.; Chuang K.H., Peng Y.C., Chien H.Y., et al. Attenuation of LPSinduced lung inflammation by glucosamine in rats. Am J Respir Cell Mol Biol. 2013; 49 (6): 1110–9. https://doi.org/10.1165/rcmb.2013-0022OCTest.; Rao N.V., Kennedy T.P., Rao G., et al. Sulfated polysaccharides prevent human leukocyte elastase-induced acute lung injury and emphysema in hamsters. Am Rev Respir Dis. 1990; 142 (2): 407–12. https://doi.org/10.1164/ajrccm/142.2.407Test.; Kantor E.D., Lampe J.W., Navarro S.L., et al. Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J Altern Complement Med. 2014; 20 (6): 479– 85. https://doi.org/10.1089/acm.2013.0323Test.; Wang D., DuBois R.N. Urinary PGE-M: a promising cancer biomarker. Cancer Prev Res (Phila). 2013; 6 (6): 507–10. https://doi.org/10.1158/1940-6207.CAPR-13-0153Test.; Thompson H.L., Schulman E.S., Metcalfe D.D. Identification of chondroitin sulfate E in human lung mast cells. J Immunol. 1988; 140 (8): 2708–13.; Stevens R.L., Fox C.C., Lichtenstein L.M., Austen K.F. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells. Proc Natl Acad Sci USA. 1988; 85 (7): 2284–7. https://doi.org/10.1073/pnas.85.7.2284Test.; Jung A.Y., Heo M.J., Kim Y.H. Glucosamine has an antiallergic effect in mice with allergic asthma and rhinitis. Int Forum Allergy Rhinol. 2017; 7 (8): 763–9. https://doi.org/10.1002/alr.21967Test.; Chung M.J., Park J.K., Park Y.I. Anti-inflammatory effects of lowmolecular weight chitosan oligosaccharides in IgE-antigen complexstimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol. 2012; 12 (2): 453–9. https://doi.org/10.1016/j.intimp.2011.12.027Test.; Pouvelle B., Meyer P., Robert C., et al. Chondroitin-4-sulfate impairs in vitro and in vivo cytoadherence of Plasmodium falciparum infected erythrocytes. Mol Med. 1997; 3 (8): 508–18.; Bastos M.F., Albrecht L., Kozlowski E.O., et al. Fucosylated chondroitin sulfate inhibits Plasmodium falciparum cytoadhesion and merozoite invasion. Antimicrob Agents Chemother. 2014; 58 (4): 1862– 71. https://doi.org/10.1128/AAC.00686-13Test.; Bachman H. Prolonged use of oxytetracycline hydrochloride with glucosamine in twenty-five patients for nonspecific complications associated with pulmonary tuberculosis. Dis Chest. 1960; 38: 303–4. https://doi.org/10.1378/chest.38.3.303Test.; Rodrigues S., da Costa A.M.R., Flórez-Fernández N., et al. Inhalable spray-dried chondroitin sulphate microparticles: effect of different solvents on particle properties and drug activity. Polymers (Basel). 2020; 12 (2): 425. https://doi.org/10.3390/polym12020425Test.; Hwang J.S., Kim K.H., Park J., et al. Glucosamine improves survival in a mouse model of sepsis and attenuates sepsis-induced lung injury and inflammation. J Biol Chem. 2019; 294 (2): 608–22. https://doi.org/10.1074/jbc.RA118.004638Test.; Vishniakova L.A., Reztsova Iu.V. A method for preventing experimental pneumococcal infection. Zh Mikrobiol Epidemiol Immunobiol. 1997; 2: 20–3.; Bensadoun E.S., Burke A.K., Hogg J.C., Roberts C.R. Proteoglycan deposition in pulmonary fibrosis. Am J Respir Crit Care Med. 1996; 154 (6 Pt. 1): 1819–28. https://doi.org/10.1164/ajrccm.154.6.8970376Test.; Yoshida A., Hiramatsu M., Hatakeyama K., Minami N. Elevation of glucosamine 6-phosphate synthetase activity in bleomycin-induced pulmonary fibrosis in hamsters. J Antibiot (Tokyo). 1982; 35 (7): 882–5. https://doi.org/10.7164/antibiotics.35.882Test.; Kai Y., Yoneyama H., Yoshikawa M., et al. Chondroitin sulfate in tissue remodeling: therapeutic implications for pulmonary fibrosis. Respir Investig. 2021; 59 (5): 576–88. https://doi.org/10.1016/j.resinv.2021.05.012Test.; Mizumoto S., Sugahara K. Glycosaminoglycans are functional ligands for receptor for advanced glycation end-products in tumors. FEBS J. 2013; 280 (10): 2462–70. https://doi.org/10.1111/febs.12156Test.; Ju Y., Yu A., Sun X., et al. Glucosamine, a naturally occurring amino monosaccharide, inhibits A549 and H446 cell proliferation by blocking G1/S transition. Mol Med Rep. 2013; 8 (3): 794–8. https://doi.org/10.3892/mmr.2013.1584Test.; Song K.H., Kang J.H., Woo J.K., et al. The novel IGF-IR/Aktdependent anticancer activities of glucosamine. BMC Cancer. 2014; 14: 31. https://doi.org/10.1186/1471-2407-14-31Test.; Liang Y., Xu W., Liu S., et al. N-acetyl-glucosamine sensitizes nonsmall cell lung cancer cells to TRAIL-induced apoptosis by activating death receptor 5. Cell Physiol Biochem. 2018; 45 (5): 2054–70. https://doi.org/10.1159/000488042Test.; Brezillon S., Zeltz C., Schneider L., et al. Lumican inhibits B16F1 melanoma cell lung metastasis. J Physiol Pharmacol. 2009; 60 (Suppl. 4): 15–22.; Borsig L., Wang L., Cavalcante M.C., et al. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. J Biol Chem. 2007; 282 (20): 14984–91. https://doi.org/10.1074/jbc.M610560200Test.; Zhang J.S., Imai T., Otagiri M. Effects of a cisplatin-chondroitin sulfate A complex in reducing the nephrotoxicity of cisplatin. Arch Toxicol. 2000; 74 (6): 300–7. https://doi.org/10.1007/s002040000124Test.; Lei X., Ma N., Liang Y., et al. Glucosamine protects against radiationinduced lung injury via inhibition of epithelial-mesenchymal transition. J Cell Mol Med. 2020; 24 (18): 11018–23. https://doi.org/10.1111/jcmm.15662Test.; Brasky T.M., Lampe J.W., Slatore C.G., White E. Use of glucosamine and chondroitin and lung cancer risk in the VITamins And Lifestyle (VITAL) cohort. Cancer Causes Control. 2011; 22 (9): 1333–42. https://doi.org/10.1007/s10552-011-9806-8Test.; Li G., Zhang X., Liu Y., et al. Relationship between glucosamine use and the risk of lung cancer: data from a nationwide prospective cohort study. Eur Respir J. 2021: 2101399. https://doi.org/10.1183/13993003.01399-2021Test.; Navarro S.L., White E., Kantor E.D., et al. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One. 2015; 10 (2): e0117534. https://doi.org/10.1371/journal.pone.0117534Test.; Wang Q., Zhang Y., Zhang T., et al. Low claudin-6 expression correlates with poor prognosis in patients with non-small cell lung cancer. Onco Targets Ther. 2015; 8: 1971–7. https://doi.org/10.2147/OTT.S85478Test.; Peng Z., Gong Y., Liang X. Role of FAT1 in health and disease. Oncol Lett. 2021; 21 (5): 398. https://doi.org/10.3892/ol.2021.12659Test.; Foxler D.E., Bridge K.S., James V., et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol. 2012; 14 (2): 201–8. https://doi.org/10.1038/ncb2424Test.; Zeng X., Wang H., He D., et al. LIMD1 increases the sensitivity of lung adenocarcinoma cells to cisplatin via the GADD45α/p38 MAPK signaling pathway. Front Oncol. 2020; 10: 969. https://doi.org/10.3389/fonc.2020.00969Test.; Cui Y., Liang S., Zhang S., et al. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. J Exp Clin Cancer Res. 2020; 39 (1): 90. https://doi.org/10.1186/s13046-020-01591-1Test.; Gong M., Li Y., Ye X., et al. Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal. 2020; 18 (1): 98. https://doi.org/10.1186/s12964-020-00568-zTest.; Salimi U., Menden H.L., Mabry S.M., et al. Angiopoietin-1 protects against endotoxin-induced neonatal lung injury and alveolar simplification in mice. Pediatr Res. 2021; May 12. https://doi.org/10.1038/s41390-021-01544-0Test.; Michael I.P., Orebrand M., Lima M., et al. Angiopoietin-1 deficiency increases tumor metastasis in mice. BMC Cancer. 2017; 17 (1): 539. https://doi.org/10.1186/s12885-017-3531-yTest.; Yuan L., Zhang X., Yang M., et al. Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond). 2020; 134 (13): 1735–49. https://doi.org/10.1042/CS20191188Test.; Liu X., Wu S., Xia Y., et al. Wingless homolog Wnt11 suppresses bacterial invasion and inflammation in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011; 301 (6): G992–1003. https://doi.org/10.1152/ajpgi.00080.2011Test.; Khairnar V., Duhan V., Maney S.K., et al. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production. Nat Commun. 2015; 6: 6217. https://doi.org/10.1038/ncomms7217Test.; Arcone R., Arpaia G., Ruoppolo M., et al. Structural characterization of a biologically active human lipocortin 1 expressed in Escherichia coli. Eur J Biochem. 1993; 211 (1-2): 347–55. https://doi.org/10.1111/j.1432-1033.1993.tb19904.xTest.; Leoni G., Neumann P.A., Kamaly N., et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest. 2015; 125 (3): 1215–27. https://doi.org/10.1172/JCI76693Test.; Easter M., Garth J., Harris E.S., et al. Fibroblast growth factor receptor 4 deficiency mediates airway inflammation in the adult healthy lung? Front Med (Lausanne). 2020; 7: 317. https://doi.org/10.3389/fmed.2020.00317Test.; Anderson B.D., Nakamura T., Russell S.J., Peng K.W. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004; 64 (14): 4919–26. https://doi.org/10.1158/0008-5472.CAN-04-0884Test.; Grumelli S., Lu B., Peterson L., et al. CD46 protects against chronic obstructive pulmonary disease. PLoS One. 2011; 6 (5): e18785. https://doi.org/10.1371/journal.pone.0018785Test.; Szabo R., Netzel-Arnett S., Hobson J.P., et al. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J. 2005; 390 (Pt. 1): 231–42. https://doi.org/10.1042/BJ20050299Test.; Akiyama M., Takeda S., Kokame K., et al. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci USA. 2009; 106 (46): 19274–9. https://doi.org/10.1073/pnas.0909755106Test.; Denorme F., Kraft P., Pareyn I., et al. Reduced ADAMTS13 levels in patients with acute and chronic cerebrovascular disease. PLoS One. 2017; 12 (6): e0179258. https://doi.org/10.1371/journal.pone.0179258Test.; Cao Z., Bhella D., Lindsay J.G. Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: general properties and factors affecting PrxIII activity and oligomeric state. J Mol Biol. 2007; 372 (4): 1022–33. https://doi.org/10.1016/j.jmb.2007.07.018Test.; Zhen W.Q., Xie Z.Z., Wang X., et al. Influences of PON1 on airway inflammation and remodeling in bronchial asthma. J Cell Biochem. 2018; 119 (1): 793–805. https://doi.org/10.1002/jcb.26242Test.; Amatullah H., Maron-Gutierrez T., Shan Y., et al. Protective function of DJ-1/PARK7 in lipopolysaccharide and ventilator-induced acute lung injury. Redox Biol. 2021; 38: 101796. https://doi.org/10.1016/j.redox.2020.101796Test.; Richarme G., Liu C., Mihoub M., et al. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science. 2017; 357 (6347): 208–11. https://doi.org/10.1126/science.aag1095Test.; Jang B.C., Sung S.H., Park J.G., et al. Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner. J Biol Chem. 2007; 282 (38): 27622–32. https://doi.org/10.1074/jbc.M610778200Test.; Громова О.А., Торшин И.Ю., Лила А.М. и др. Дифференциальный хемореактомный анализ глюкозамина сульфата и нестероидных противовоспалительных препаратов: перспективные синергичные комбинации. Современная ревматология. 2018; 12 (2): 36–43. https://doi.org/10.14412/1996-7012-2018-2-36-43Test.; Song P., Xie Z., Wu Y., et al. Protein kinase czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem. 2008; 283 (18): 12446–55. https://doi.org/10.1074/jbc.M708208200Test.; Cheng X., Ma Y., Moore M., et al. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci USA. 1998; 95 (17): 9849–54. https://doi.org/10.1073/pnas.95.17.9849Test.; Reimold A.M., Iwakoshi N.N., Manis J., et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001; 412 (6844): 300–7. https://doi.org/10.1038/35085509Test.; Ronkina N., Menon M.B., Schwermann J., et al. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol. 2010; 80 (12): 1915–20. https://doi.org/10.1016/j.bcp.2010.06.021Test.; Fan C., Rajasekaran D., Syed M.A., et al. MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations. Proc Natl Acad Sci USA. 2013; 110 (27): 10994–9. https://doi.org/10.1073/pnas.1221817110Test.; Aung G., Niyonsaba F., Ushio H., et al. Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology. 2011; 132 (4): 527–39. https://doi.org/10.1111/j.1365-2567.2010.03395.xTest.; Keegan A.D., Nelms K., White M., et al. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell. 1994; 76 (5): 811–20. https://doi.org/10.1016/0092-8674Test(94)90356-5.; Harashima S., Horiuchi T., Wang Y., et al. Sorting nexin 19 regulates the number of dense core vesicles in pancreatic β-cells. J Diabetes Investig. 2012; 3 (1): 52–61. https://doi.org/10.1111/j.2040-1124.2011.00138.xTest.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 18–29 https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066Test.; Громова О.А., Торшин И.Ю., Зайчик Б.Ц. и др. О различиях в стандартизации лекарственных препаратов на основе экстрактов хондроитина сульфата. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 40–52. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.083Test.; https://www.pharmacoeconomics.ru/jour/article/view/632Test

  7. 7
    دورية أكاديمية

    المساهمون: «Исследование выполнено за счет гранта Российского научного фонда (проект № 20- 12-00175)»

    المصدر: Pharmacokinetics and Pharmacodynamics; № 2 (2021); 42-48 ; Фармакокинетика и Фармакодинамика; № 2 (2021); 42-48 ; 2686-8830 ; 2587-7836

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacokinetica.ru/jour/article/view/287/275Test; Громова О.А., Торшин И.Ю., Лазебник Л.Б., Максимов В.А. Систематический компьютерный анализ исследований орнитина для выявления наиболее перспективных трендов терапевтического использования — акцент на функцию печени. Экспериментальная и клиническая гастроэнтерология. 2021;(7):30–36. DOI:10.31146/1682-8658-ecg-191-7-30-36/; Торшин И.Ю., Громова О.А., Максимов В.А. Хемомикробиомный анализ молекулы орнитина. Экспериментальная и клиническая гастроэнтерология. 2021; 6.; Torshin IYu, Rudakov KV. On the Application of the Combinatorial Theory of Solvability to the Analysis of Chemographs: Part 2. Local Completeness of Invariants of Chemographs in View of the Combinatorial Theory of Solvability. Pattern Recognition and Image Analysis. 2014;24(2):196–208. DOI:10.1134/S1054661814020151.; Torshin IYu, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis. 2017;27(2):184–199. DOI:10.1134/S1054661817020110.; Torshin IYu. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis. 2011;21(4):652–662. DOI:10.1134/S1054661811040171.; Torshin IY. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013;23(2):319–327. DOI:10.1134/S1054661813020156.; Torshin IYu, Rudakov KV. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015;25(4):577–587. DOI:10.1134/S1054661815040252.; Torshin IYu, Rudakov KV. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognition and Image Analysis. 2019, Vol. 29, No. 4, pp. 654–667. ISSN 1054-6618 DOI:10.1134/S1054661819040175; Silverman W, Locovei S, Dahl G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am J Physiol Cell Physiol. 2008 Sep;295(3):C. 761–767. DOI:10.1152/ajpcell.00227.2008.; Dong Y, Zhao T, Ai W, Zalloum WA, Kang D, Wu T, Liu X, Zhan P. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016-2019). Expert Opin Ther Pat. 2019 Nov;29(11):871–879. DOI:10.1080/13543776.2019.1676727.; Hullin DA, McGrane MT. Effect of bilirubin on uricase-peroxidase coupled reactions. Implications for urate measurement in clinical samples and external quality assessment schemes. Ann Clin Biochem. 1991 Jan;28 (Pt 1):98–100. DOI:10.1177/000456329102800117.; https://www.pharmacokinetica.ru/jour/article/view/287Test

  8. 8
    دورية أكاديمية

    المساهمون: The work was supported by the RFBR grant No. 20-07-00537., Работа выполнена при поддержке гранта РФФИ № 20-07-00537.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 1 (2021); 28-39 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 1 (2021); 28-39 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/484/359Test; Hootman J.M., Helmick C.G., Barbour K.E., et al. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritisattributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 2016; 68 (7): 1582–7. https://doi.org/10.1002/art.39692Test.; Puenpatom R.A., Victor T.W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med. 2009; 121 (6): 9–20. https://doi.org/10.3810/pgm.2009.11.2073Test.; Наумов А.В., Шамуилова М.М., Коцелапова Э.Ю. Остеоартроз в современной клинической практике: анализ факторов и рекомендации. Терапевт. 2009; 11: 4–15.; Scherzer Z.A., Alvarez C., Renner J.B., et al. Effects of comorbid cardiovascular disease and diabetes on hand osteoarthritis, pain, and functional state transitions: the Johnston county osteoarthritis project. J Rheumatol. 2020; 47 (10): 1541–9. https://doi.org/10.3899/jrheum.191075Test.; Alvarez C., Cleveland R.J., Schwartz T.A., et al. Comorbid conditions and the transition among states of hip osteoarthritis and symptoms in a community-based study: a multi-state time-to-event model approach. Arthritis Res Ther. 2020; 22 (1): 12. https://doi.org/10.1186/s13075-020-2101-xTest.; Bastick A.N., Runhaar J., Belo J.N., Bierma-Zeinstra S.M. Prognostic factors for progression of clinical osteoarthritis of the knee: a systematic review of observational studies. Arthritis Res Ther. 2015; 17(1): 152. https://doi.org/10.1186/s13075-015-0670-xTest.; Лила А.М., Торшин И.Ю., Громова О.А. Стоит ли переосмыслить полученный полвека назад положительный опыт применения хондроитинсульфатов при атеросклерозе? ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 184–91. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.043Test.; Berenbaum F., Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med. 2020; 132 (4): 377–84. https://doi.org/10.1080/00325481.2020.1730669Test.; de Munter W., Blom A.B., Helsen M.M., et al. Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther. 2013; 15 (6): R178. https://doi.org/10.1186/ar4367Test.; Торшин И.Ю., Громова О.А. Экспертный анализ данных в молекулярной фармакологии. М.: МЦНМО; 2012.; Trewick A.L., Moustafa J.S., de Smith A.J., et al. Accurate singlenucleotide polymorphism allele assignment in trisomic or duplicated regions by using a single base-extension assay with MALDI-TOF mass spectrometry. Clin Chem. 2011; 57 (8): 1188–95. https://doi.org/10.1373/clinchem.2010.159558Test.; Torshin I.Yu. Sensing the change: from molecular genetics to personalized medicine. N.Y.: Nova Biomedical Books; 2009.; Torshin I.Yu., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognit Image Anal. 2014; 24: 196–208. https://doi.org/10.1134/S1054661814020151Test.; Torshin I.Yu., Rudakov K.V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit Image Anal. 2015; 25: 577–87. https://doi.org/10.1134/S1054661815040252Test.; Торшин И.Ю., Лиманова О.А., Сардарян И.С. и др. Обеспеченность витамином D детей и подростков 7–14 лет и взаимосвязь дефицита витамина D с нарушениями здоровья детей: анализ крупномасштабной выборки пациентов посредством интеллектуального анализа данных. Педиатрия. Журнал им. Г.Н. Сперанского. 2015; 94 (2): 175–84.; Лиманова О.А., Торшин И.Ю., Сардарян И.С. и др. Обеспеченность микронутриентами и женское здоровье: интеллектуальный анализ клинико-эпидемиологических данных. Вопросы гинекологии, акушерства и перинатологии. 2014; 13 (2): 5–15.; Wearing J., Konings P., de Bie R.A., et al. Prevalence of probable sarcopenia in community-dwelling older Swiss people – a cross-sectional study. BMC Geriatr. 2020; 20: 307. https://doi.org/10.1186/s12877-020-01718-1Test.; Shimo-Nakanishi Y., Urabe T., Hattori N., et al. Polymorphism of the lipoprotein lipase gene and risk of atherothrombotic cerebral infarction in the Japanese. Stroke. 2001; 32 (7): 1481–6. https://doi.org/10.1161/01.str.32.7.1481Test.; Sobstyl J., Dzida G., Puzniak A., et al. Analiza zwiazku polimorfizmu genu śródbłonkowej syntetazy tlenku azotu z zawałem mieśnia sercowego [Analysis of association of human endothelial nitric oxide synthase gene polymorphism with myocardial infraction]. Pol Merkur Lekarski. 2002; 13 (73): 10–3 (in Polish).; Canavy I., Henry M., Morange P.E., et al. Genetic polymorphisms and coronary artery disease in the south of France. Thromb Haemost. 2000; 83 (2): 212–6.; Kim R.J., Becker R.C. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a metaanalysis of published studies. Am Heart J. 2003; 146 (6): 948–57. https://doi.org/10.1016/S0002-8703Test(03)00519-2.; Inanir A., Yigit S., Tural S., et al. MTHFR gene C677T mutation and ACE gene I/D polymorphism in Turkish patients with osteoarthritis. Dis Markers. 2013; 34 (1): 17–22. https://doi.org/10.3233/DMA-2012-00939Test.; Yamada S., Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol. 2008; 5 (4): 289–301. https://doi.org/10.2174/157016308786733564Test.; Торшин И.Ю., Лила А.М., Громова О.А. и др. Об антикоагулянтных и антиагрегантных свойствах молекулы глюкозамина сульфата. Современная ревматология. 2019; 13 (3): 135–41. https://doi.org/10.14412.1996-7012-2019-3-135-141Test.; Громова О.А., Торшин И.Ю., Лила А.М. и др. О безопасности применения глюкозамина сульфата у пациентов с резистентностью к инсулину. Consilium Medicum. 2019; 21 (4): 75–83. https://doi.org/10.26442/20751753.2019.4.190309Test.; Лила А.М., Громова О.А. Торшин И.Ю. и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (3): 88–97. https://doi.org/10.14412/20742711-2017-3-88-97Test.; Martín Arias L.H., Martín González A., Sanz Fadrique R., Vazquez E.S. Cardiovascular risk of nonsteroidal anti-inflammatory drugs and classical and selective cyclooxygenase-2 inhibitors: a meta-analysis of observational studies. J Clin Pharmacol. 2019; 59 (1): 55–73. https://doi.org/10.1002/jcph.1302Test.; Martel-Pelletier J., Farran A., Montell E., et al. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate. Molecules. 2015; 20 (3): 4277−89. https://doi.org/10.3390/molecules20034277Test.; Золотовская И.А., Давыдкин И.Л., Повереннова И.Е. Терапия неспецифической боли в нижней части спины у пациентов с высоким кардиоваскулярным риском. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (8): 18−23. https://doi.org/10.17116/jnevro201911908118Test.; Торшин И.Ю., Лила А.М., Наумов А.В. и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (4): 18–29. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.066Test.; https://www.pharmacoeconomics.ru/jour/article/view/484Test

  9. 9
    دورية أكاديمية

    المساهمون: The study was supported by the grant provided by the Russian Foundation for Basic Research 19-07-00356, Работа выполнена при поддержке гранта РФФИ № 19-07-00356

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 13, No 4 (2020); 413-425 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 13, No 4 (2020); 413-425 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/446/354Test; Liu C., Jiang Z.C., Shao C.X., Zhang H.G., Yue H.M., Chen Z.H., Ma B.Y., Liu W.Y., Huang H.H., Yang J., Wang Y., Liu H.Y., Xu D., Wang J.T., Yang J.Y., Pan H.Q., Zou S.Q., Li F.J., Lei J.Q., Li X., He Q., Gu Y., Qi X.L. Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study. Zhonghua Gan Zang Bing Za Zhi. 2020 Feb 20; 28 (2): 148−152. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.003Test.; Болезни перегрузки железом (гемохроматозы). Под ред. А.Г.Румянцева, Ю.Н. Токарева. М. 328 с.; Макацария А.Д., Григорьева К.Н., Мингалимов М.А., Бицадзе В.О., Хизроева Д.Х., Третьякова М.В., Элалами И., Шкода А.С., Немировский В.Б., Блинов Д.В., Митрюк Д.В. Коронавирусная инфекция (COVID-19) и синдром диссеминированного внутрисосудистого свертывания. Акушерство, Гинекология и Репродукция. 2020;14 (2): 123−131. https://doi.org/10.17749/2313-7347.132Test.; ГромоваО.А., ТоршинИ.Ю.,Шаповалова Ю.О., КурцерМ.А.,Чучалин А.Г. COVID-19 и железодефицитная анемия: взаимосвязи патогенеза и терапии. Акушерство, Гинекология и Репродукция. 2020; 14 (5): 644−655. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.179Test.; Торшин И. Ю., Громова О. А. Мировой опыт использования гидролизатов плаценты человека в терапии. Экспериментальная и клиническая гастроэнтерология. 2019; 170 (10): 79–89. https://doi.org/10.31146/1682-8658-ecg-170-10-79-89Test.; Максимов В. А., Торшин И. Ю., Чучалин А. Г., Лазебник Л. Б., Ткачева О. Н., Стражеско И. Д., Громова О. А. Эффективность и безопасность полипептидного препарата (Лаеннек) в терапии COVID-19. Экспериментальная и клиническая гастроэнтерология. 2020; 178 (6): 55–63.; Кейтс М. Техника липидологии. М. 1975; 322 с.; Громова О.А., Торшин И.Ю., Згода В.Г., Тихонова О.В. Комплексный протеомный анализ «легкой» пептидной фракции препарата Церебролизин. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (8): 75−83. https://doi.org/10.17116/jnevro201911908175Test.; Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: factorization approach. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017; 27 (1): 16−28.; Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: metric approach within the framework of the theory of classification of feature values. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2017; 27 (2): 184−199.; Torshin I.Y. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013; 23 (2): 319−327.; Torshin I. Yu., Rudakov K. V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2015; 25 (4): 577–587.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: density properties. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2016; 26 (3): 483−496.; Torshin I.Y., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2014; 24 (1): 11−23.; Torshin I. Yu., Rudakov K. V. On the Procedures of Generation of Numerical Features Over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognition and Image Analysis. 2019; 29 (4): 654–667. https://dx.doi.org/10.1134/S1054661819040175Test.; Faber H.R., Bland T., Day C.L., Norris G.E., Tweedie J.W., Baker E.N. Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. J Mol Biol. 1996 Feb 23; 256 (2): 352−63. https://dx.doi.org/10.1006/jmbi.1996.0091Test.; Громова О.А., Торшин И.Ю., Волков А.Ю., Смарыгин С.Н., Назаренко О.А. Препарат «ЛАЕННЕК»: элементный состав и фармакологическое действие. Пластическая хирургия и косметология. 2010; 327–333.; Chang T.Y., Liu K.L., Chang C.S., Su C.T., Chen S.H., Lee Y.C.,Chang J.S. Ferric Citrate Supplementation Reduces Red-BloodCell Aggregation and Improves CD163+ Macrophage-Mediated Hemoglobin Metabolism in a Rat Model of High-Fat-Diet-Induced Obesity. Mol Nutr Food Res. 2018 Jan; 62 (2).; Zhao Q., Garreau I., Sannier F., Piot J.M. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers. 1997; 43 (2): 75-98.; Громова О.А., Торшин И.Ю., Гришина Т.Р., Томилова И.К. Значение использования препаратов железа и его молекулярных синергистов для профилактики и лечения железодефицитной анемии у беременных. Российский вестник акушера-гинеколога. 2015; 15 (4): 85−94. https://doi.org/10.17116/rosakush201515485-94Test.; Mollbrink A., Holmström P., Sjöström M., Hultcrantz R., Eriksson L.C., Stål P. Iron-regulatory gene expression during liver regeneration. Scand J Gastroenterol. 2012 May; 47 (5): 591−600. https://doi.org/10.3109/00365521.2012.661761Test.; De Falco L., Silvestri L., Kannengiesser C., et al. Functional and clinical impact of novel TMPRSS6 variants in iron-refractory iron-deficiency anemia patients and genotype-phenotype studies. Hum Mutat. 2014; 35 (11): 1321−1329. https://doi.org/10.1002/humu.22632Test.; Niederkofler V., Salie R., Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest. 2005; 115 (8): 2180−2186. https://doi.org/10.1172/JCI25683Test.; Zhang A.S. Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr. 2010; 1 (1): 38-45. https://doi.org/10.3945/an.110.1009Test.; Core A.B., Canali S., Babitt J.L. Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol. 2014; 5: 104. Published 2014 May 13. https://doi.org/10.3389/fphar.2014.00104Test.; Kuninger D., Kuns-Hashimoto R., Nili M., Rotwein P. Pro-protein convertases control the maturation and processing of the ironregulatory protein, RGMc/hemojuvelin. BMC Biochem. 2008; 9: 9. https://doi.org/10.1186/1471-2091-9-9Test.; Silvestri L., Pagani A., Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111 (2): 924−931. https://doi.org/10.1182/blood-2007-07-100677Test.; Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008; 8 (6): 502−511. https://doi.org/10.1016/j.cmet.2008.09.012Test.; Colucci S., Pagani A., Pettinato M., Artuso I., Nai A., Camaschella C., Silvestri L. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I . receptor ALK2 in hepatocytes. Blood. 2017 Nov 9; 130 (19): 2111−-2120. https://doi.org/10.1182/blood-2017-04-780692Test.; Chen Y.G., Liu F., Massague J. Mechanism of TGF-beta receptor inhibition by FKBP12. EMBO J. 1997 Jul 1; 16 (13): 3866−76. https://doi.org/10.1093/emboj/16.13.3866Test.; Vashisht A.A., Zumbrennen K.B., Huang X., Powers D.N., Durazo A., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., Spruck C., Leibold E.A., Wohlschlegel J.A. Control of iron homeostasis by an ironregulated ubiquitin ligase. Science. 2009 Oct 30; 326 (5953): 718−21. https://doi.org/10.1126/science.1176333Test.; D’Angiolella V., Donato V., Vijayakumar S., Saraf A., Florens L., Washburn M.P., Dynlacht B., Pagano M. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010 Jul 1; 466 (7302): 138−42. https://doi.org/10.1038/nature09140Test.; Rachez C., Gamble M., Chang C.P., Atkins G.B., Lazar M.A., Freedman L.P. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol. 2000 Apr; 20 (8): 2718-26. https://doi.org/10.1128/mcb.20.8.2718-2726.2000Test.; Burakov D., Wong C.W., Rachez C., Cheskis B.J., Freedman L.P. Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem. 2000 Jul 7; 275 (27): 20928-34. https://doi.org/10.1074/jbc.M002013200Test.; Gorla-Bajszczak A., Juge-Aubry C., Pernin A., Burger A.G., Meier C.A. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999 Jan 25; 147 (1−2): 37-47. https://doi.org/10.1016/s0303-7207Test(98)00217-2.; Tsuchiya H. Retinoids as promising treatment for non-alcoholic fatty liver disease. Yakugaku Zasshi. 2012; 132 (8): 903−9. https://doi.org/10.1248/yakushi.132.903Test.; Citelli M., Bittencourt L.L., da Silva S.V., Pierucci A.P., Pedrosa C. Vitamin A modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012 Oct; 149 (1): 64−70. https://doi.org/10.1007/s12011-012-9397-6Test.; Jiang S., Wang C.X., Lan L., Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012 Mar; 28 (3): 281−7 https://doi.org/10.1016/j.nut.2011.08.015Test.; Li X., Liu Y., Zheng Q., Yao G., Cheng P., Bu G., Xu H., Zhang Y.W. Ferritin light chain interacts with PEN-2 and affects γ-secretase activity. Neurosci Lett. 2013 Aug 26; 548: 90−4. https://doi.org/10.1016/j.neulet.2013.05.018Test.; Назаренко О.А., Громова О.А., Гришина Т.Р., Торшин И.Ю., Демидов В.И., Томилова И.К., Алексахина Е.Л., Гоголева И.В. Коррекция Лаеннеком хронической перегрузки железом печени,почек и головного мозга. Фармакокинетика и фармакодинамика. 2017; 2: 39–44.; Временные методические рекомендации МЗ РФ «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)», 5-я версия от 08.04.2020.; Громова О.А., Торшин И.Ю., Хаджидис А.К. Нежелательные эффекты сульфата железа в акушерской, педиатрической и терапевтической практике. Земский врач. 2010; 2: 1−8.; Хизроева Д.Х., Макацария А.Д., Бицадзе В.О., Третьякова М.В., Слуханчук Е.В., Элалами И., Гри Ж., Радецкая Л.С., Макацария Н.А., Сулина Я.Ю., Цибизова В.И., Шкода А.С., Блинов Д.В. Лабораторный мониторинг COVID-19 и значение определения маркеров коагулопатии. Акушерство, Гинекология и Репродукция. 2020; 14 (2): 132−147. https://doi.org/10.17749/2313-7347.141Test.; https://www.pharmacoeconomics.ru/jour/article/view/446Test

  10. 10
    دورية أكاديمية

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 2 (2021); 191–211 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 2 (2021); 191–211 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/527/374Test; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020.; Riva L., Yuan S., Yin X., et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020; 586 (7827): 113–9. https://doi.org/10.1038/s41586-020-2577-1Test.; Шендеров Б.А. Медицинская микробная экология и функциональное питание. Т. 3. Пробиотики и функциональное питание. М.: ГРАНТЪ; 2001.; Scarpellini E., Fagoonee S., Rinninella E., et al. Gut microbiota and liver interaction through immune system cross-talk: a comprehensive review at the time of the SARS-CoV-2 pandemic. J Clin Med. 2020; 9 (8): 2488. https://doi.org/10.3390/jcm9082488Test.; Громова О.А., Торшин И.Ю., Наумов А.В., Максимов В.А. Хемомикробиомный анализ глюкозамина сульфата, пребиотиков и нестероидных противовоспалительных препаратов. ФАРМАКО- ЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (3): 270–82. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.049Test.; Kumata R., Ito J., Takahashi K., et al. A tissue level atlas of the healthy human virome. BMC Biol. 2020; 18 (1): 55. https://doi.org/10.1186/s12915-020-00785-5Test.; Xiang J., Wünschmann S., Diekema D.J., et al. Effect of coinfection with GB virus C on survival among patients with HIV infection. N Engl J Med. 2001; 345 (10): 707–14. https://doi.org/10.1056/NEJMoa003364Test.; Barton E.S., White D.W., Cathelyn J.S., et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007; 447 (7142): 326–9. https://doi.org/10.1038/nature05762Test.; Wang L., Candia J., Ma L., et al. Serological responses to human virome define clinical outcomes of italian patients infected with SARSCoV- 2.medRxiv. Version 1. medRxiv. Preprint. 2020 Sep 7. https://doi.org/10.1101/2020.09.04.20187088Test.; Torshin I.Yu., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014; 24: 11–23. https://doi.org/10.1134/S1054661814010209Test.; Torshin I.Yu., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognit Image Anal. 2014; 24: 196–208. https://doi.org/10.1134/S1054661814020151Test.; Bolton E., Wang Y., Thiessen P.A., Bryant S.H. PubChem: Integrated platform of small molecules and biological activities. Chapter 12. Ann Rep Comput Chem. 2008; 4: 217–41. https://doi.org/10.1016/S1574-1400Test(08)00012-1.; Wishart D.S., Tzur D., Knox C., et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007; 35 (Database issue): D521–6. https://doi.org/10.1093/nar/gkl923Test.; Mering C., Jensen L., Snel B., et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005; 33 (Database issue): D433–7. https://doi.org/10.1093/nar/gki005Test.; Torshin I.Yu, Rudakov K.V. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit Image Anal. 2019; 29 (4): 654–67. https://doi.org/10.1134/S1054661819040175Test.; Kuhn M., Letunic I., Jensen L.J., Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016; 44 (D1): D1075–9. https://doi.org/10.1093/nar/gkv1075Test.; Balakrishnan V., Lakshminarayanan K. Screening of FDA approved drugs against SARS-CoV-2 main protease: coronavirus disease. Int J Pept Res Thers. 2020; Sep 28: 1–8. https://doi.org/10.1007/s10989-020-10115-6Test.; Kneller D.W., Galanie S., Phillips G., et al. Malleability of the SARSCoV- 2 3CL Mpro active-site cavity facilitates binding of clinical antivirals. Structure. 2020; 28 (12): 1313–20e3. https://doi.org/10.1016/j.str.2020.10.007Test.; Bollo L., Guerra T., Bavaro D.F., et al. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J Neurol Sci. 2020; 416: 117011. https://doi.org/10.1016/j.jns.2020.117011Test.; Mallucci G., Zito A., Fabbro B.D., Bergamaschi R. Asymptomatic SARS-CoV-2 infection in two patients with multiple sclerosis treated with fingolimod. Mult Scler Relat Disord. 2020; 45: 102414. https://doi.org/10.1016/j.msard.2020.102414Test.; Gomez-Mayordomo V., Montero-Escribano P., Matías-Guiu J.A., et al. Clinical exacerbation of SARS-CoV2 infection after fingolimod withdrawal. J Med Virol. 2021: 93 (1): 546–9. https://doi.org/10.1002/jmv.26279Test.; Ciardi M.R., Zingaropoli M.A., Pasculli P., et al. The peripheral blood immune cell profile in a teriflunomide-treated multiple sclerosis patient with COVID-19 pneumonia. J Neuroimmunol. 2020; 346: 577323. https://doi.org/10.1016/j.jneuroim.2020.577323Test.; Ortega J.T., Serrano M.L., Jastrzebska B. Class A G protein-coupled receptor antagonist famotidine as a therapeutic alternative against SARS-CoV2: an in silico analysis. Biomolecules. 2020; 10 (6): 954. https://doi.org/10.3390/biom10060954Test.; Hogan Ii RB, Hogan Iii RB, Cannon T, et al. Dual-histamine receptor blockade with cetirizine – famotidine reduces pulmonary symptoms in COVID-19 patients. Pulm Pharmacol Ther. 2020; 63: 101942. https://doi.org/10.1016/j.pupt.2020.101942Test.; Freedberg D.E., Conigliaro J., Wang T.C., et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology. 2020; 159 (3): 1129–31.e3. https://doi.org/10.1053/j.gastro.2020.05.053Test.; Patel M., Dominguez E., Sacher D., et al. Etoposide as salvage therapy for cytokine storm due to coronavirus disease 2019. Chest. 2021; 159 (1): e7–11. https://doi.org/10.1016/j.chest.2020.09.077Test.; Takami A. Possible role of low-dose etoposide therapy for hemophagocytic lymphohistiocytosis by COVID-19. Int J Hematol. 2020; 112 (1): 122–4. https://doi.org/10.1007/s12185-020-02888-9Test.; Smetana K. Jr., Rosel D., BrÁbek J. Raloxifene and Bazedoxifene could be promising candidates for preventing the COVID-19 related cytokine storm, ARDS and mortality. In Vivo. 2020; 34 (5): 3027–8. https://doi.org/10.21873/invivo.12135Test.; Olagnier D., Farahani E., Thyrsted J., et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and antiinflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020; 11 (1): 4938. https://doi.org/10.1038/s41467-020-18764-3Test.; Fatima S.A., Asif M., Khan K.A., et al. Comparison of efficacy of dexamethasone and methylprednisolone in moderate to severe covid 19 disease. Ann Med Surg (Lond). 2020; 60: 413–6. https://doi.org/10.1016/j.amsu.2020.11.027Test.; Rana M.A., Hashmi M., Qayyum A., et al. Comparison of efficacy of dexamethasone and methylprednisolone in improving PaO2/FiO2 ratio among COVID-19 patients. Cureus. 2020; 12 (10): e10918. https://doi.org/10.7759/cureus.10918Test.; Badawy A.A. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: starting with nicotinamide. Biosci Rep. 2020; 40 (10): BSR20202856. https://doi.org/10.1042/BSR20202856Test.; Kim J., Ochoa M.T., Krutzik S.R., et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002; 169 (3): 1535–41. https://doi.org/10.4049/jimmunol.169.3.1535Test.; Ten Hove A.S., Brinkman D.J., Li Yim A.Y., et al. The role of nicotinic receptors in SARS-CoV-2 receptor ACE2 expression in intestinal epithelia. Bioelectron Med. 2020; 6: 20. https://doi.org/10.1186/s42234-020-00057-1Test.; Oliveira A.S., Ibarra A.A., Bermudez I., et al. Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors. Version 3. bioRxiv. Preprint. NaN NaN [revised 2020 Sep 14]. https://doi.org/10.1101/2020.07.16.206680Test.; Blasco H., Bessy C., Plantier L., et al. The specific metabolome profiling of patients infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide pathway and cytosine metabolism. Sci Rep. 2020; 10 (1): 16824. https://doi.org/10.1038/s41598-020-73966-5Test.; Farsalinos K., Eliopoulos E., Leonidas D.D., et al. Nicotinic cholinergic system and COVID-19: in silico identification of an interaction between SARS-CoV-2 and nicotinic receptors with potential therapeutic targeting implications. Int J Mol Sci. 2020; 21 (16): 5807. https://doi.org/10.3390/ijms21165807Test.; Ghiasvand F., Ghadimi M., Sadr S., et al. COVID-19 treatment success after repeat courses of azithromycin: a report of three cases. Infect Disord Drug Targets. 2020; Nov 26. https://doi.org/10.2174/1871526520999201126203510Test.; Du X., Zuo X., Meng F., et al. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin. Cell Prolif. 2021; 54 (1): e12953. https://doi.org/10.1111/cpr.12953Test.; Renteria A.E., Mfuna Endam L., Adam D., et al. Azithromycin downregulates gene expression of IL-1β and pathways involving TMPRSS2 and TMPRSS11D required by SARS-CoV-2. Am J Respir Cell Mol Biol. 2020; 63 (5): 707–9. https://doi.org/10.1165/rcmb.2020-0285LETest.; Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020; 16 (3): 434–40. https://doi.org/10.1007/s12015-020-09976-7Test.; Scherrmann J.M. Possible role of ABCB1 in lysosomal accumulation of azithromycin in COVID-19 therapy. Clin Pharmacol Ther. 2020; 108: 201–11. https://doi.org/10.1002/cpt.2020Test.; Maggio R., Corsini G.U. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol Res. 2020; 157: 104837. https://doi.org/10.1016/j.phrs.2020.104837Test.; Ansarin K., Tolouian R., Ardalan M., et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: a randomized clinical trial. Bioimpacts. 2020; 10 (4): 209–15. https://doi.org/10.34172/bi.2020.27Test.; Bradfute S.B., Ye C., Clarke E.C., et al. Ambroxol and ciprofloxacin show activity against SARS-CoV2 in Vero E6 cells at clinically-relevant concentrations. Version 1. bioRxiv. Preprint. 2020 Aug 11. https://doi.org/10.1101/2020.08.11.245100Test.; Olaleye O.A., Kaur M., Onyenaka C.C. Ambroxol hydrochloride inhibits the interaction between severe acute respiratory syndrome coronavirus 2 spike protein's receptor binding domain and recombinant human ACE2. bioRxiv. Preprint. 2020 Sep 14:2020.09.13.295691. https://doi.org/10.1101/2020.09.13.295691Test.; Kumar P. Co-aerosolized pulmonary surfactant and ambroxol for COVID-19 ARDS intervention: what are we waiting for? Front Bioeng Biotechnol. 2020; 8: 577172. https://doi.org/10.3389/fbioe.2020.577172Test.; Brenner S.R. The potential of memantine and related adamantanes such as amantadine, to reduce the neurotoxic effects of COVID-19, including ARDS and to reduce viral replication through lysosomal effects. J Med Virol. 2020; 92 (1): 2341–2. https://doi.org/10.1002/jmv.26030Test.; Jiménez-Jiménez F.J., Alonso-Navarro H., García-Martín E., Agúndez J.A. Anti-inflammatory effects of amantadine and memantine: possible therapeutics for the treatment of COVID-19? J Pers Med. 2020; 10 (4): 217. https://doi.org/10.3390/jpm10040217Test.; Aranda-Abreu G.E., Aranda-Martínez J.D., Araújo R., et al. Observational study of people infected with SARS-Cov-2, treated with amantadine. Pharmacol Rep. 2020; 72 (6): 1538–41. https://doi.org/10.1007/s43440-020-00168-1Test.; Singh Tomar P.P., Arkin I.T. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun. 2020; 530 (1): 10–4. https://doi.org/10.1016/j.bbrc.2020.05.206Test.; Hasanagic S., Serdarevic F. Potential role of memantine in the prevention and treatment of COVID-19: its antagonism of nicotinic acetylcholine receptors and beyond. Eur Respir J. 2020; 56 (2): 2001610. https://doi.org/10.1183/13993003.01610-2020Test.; Risner K.H., Tieu K.V., Wang Y., et al. Maraviroc inhibits SARSCoV- 2 multiplication and s-protein mediated cell fusion in cell culture. bioRxiv. Preprint. 2020 Aug 13:2020.08.12.246389. https://doi.org/10.1101/2020.08.12.246389Test.; Shamsi A., Mohammad T., Anwar S., et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep. 2020; 40 (6): BSR20201256. https://doi.org/10.1042/BSR20201256Test.; Tariq A., Mateen R.M., Afzal M.S., Saleem M. Paromomycin: a potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. Int J Infect Dis. 2020; 98: 166–75. https://doi.org/10.1016/j.ijid.2020.06.063Test.; Bolelli K., Ertan-Bolelli T., Unsalan O., Altunayar-Unsalan C. Fenoterol and dobutamine as COVID-19 main protease inhibitors: a virtual screening study. J Mol Struct. 2021; 1228: 129449. https://doi.org/10.1016/j.molstruc.2020.129449Test.; Bagheri M., Niavarani A. Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike proteinhACE2 binding. J Biomol Struct Dyn. 2020; Oct 8: 1–10. https://doi.org/10.1080/07391102.2020.1830854Test.; Scalise M, Indiveri C. Repurposing nimesulide, a potent inhibitor of the B0AT1 subunit of the SARS-CoV-2 receptor, as a therapeutic adjuvant of COVID-19. SLAS Discov. 2020; 25 (10): 1171–3. https://doi.org/10.1177/2472555220934421Test.; Peng H., Chen Z., Wang Y., et al. Systematic review and pharmacological considerations for chloroquine and its analogs in the treatment for COVID-19. Front Pharmacol. 2020; 11: 554172. https://doi.org/10.3389/fphar.2020.554172Test.; Li G., Yuan M., Li H., et al. Safety and efficacy of artemisininpiperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. Int J Antimicrob Agents. 2021; 57 (1): 106216. https://doi.org/10.1016/j.ijantimicag.2020.106216Test.; Fragoso-Saavedra S., Iruegas-Nunez D.A., Quintero-Villegas A., et al. A parallel-group, multicenter randomized, double-blinded, placebo-controlled, phase 2/3, clinical trial to test the efficacy of pyridostigmine bromide at low doses to reduce mortality or invasive mechanical ventilation in adults with severe SARS-CoV-2 infection: the pyridostigmine in severe COVID-19 (PISCO) trial protocol. BMC Infect Dis. 2020; 20 (1): 765. https://doi.org/10.1186/s12879-020-05485-7Test.; Aliter K.F., Al-Horani R.A. Thrombin inhibition by argatroban: potential therapeutic benefits in COVID-19. Cardiovasc Drugs Ther. 2021; 35: 195–203. https://doi.org/10.1007/s10557-020-07066-xTest.; Habibzadeh P., Mofatteh M., Ghavami S., Roozbeh J. The potential effectiveness of acetazolamide in the prevention of acute kidney injury in COVID-19: a hypothesis. Eur J Pharmacol. 2020; 888: 173487. https://doi.org/10.1016/j.ejphar.2020.173487Test.; Unal G., Turan B., Balcioglu Y.H. Immunopharmacological management of COVID-19: potential therapeutic role of valproic acid. Med Hypotheses. 2020; 143: 109891. https://doi.org/10.1016/j.mehy.2020.109891Test.; Revannasiddaiah S., Kumar Devadas S., Palassery R., et al. A potential role for cyclophosphamide in the mitigation of acute respiratory distress syndrome among patients with SARS-CoV-2. Med Hypotheses. 2020; 144: 109850. https://doi.org/10.1016/j.mehy.2020.109850Test.; Cure E., Cumhur Cure M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr. 2020; 14 (4): 405–6. https://doi.org/10.1016/j.dsx.2020.04.024Test.; Lee D.Y., Lin T.E., Lee C.I., et al. MicroRNA-10a is crucial for endothelial response to different flow patterns via interaction of retinoid acid receptors and histone deacetylases. Proc Natl Acad Sci USA. 2017; 114 (8): 2072–7. https://doi.org/10.1073/pnas.1621425114Test.; Uzzan M., Soudan D., Peoc'h K., et al. Patients with COVID-19 present with low plasma citrulline concentrations that associate with systemic inflammation and gastrointestinal symptoms. Dig Liver Dis. 2020; 52 (10): 1104–5. https://doi.org/10.1016/j.dld.2020.06.042Test.; Торшин И.Ю., Громова О.А., Федотова Л.Э., и др. Хемореактомный анализ молекул цитруллина и малата. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (2): 30–5. https://doi.org/10.14412/2074-2711-2017-2-30-35Test.; Legendre F., Bauge C., Roche R., et al. Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1betastimulated chondrocytes-study in hypoxic alginate bead cultures. Osteoarthritis Cartilage. 2008; 16: 105–14. https://doi.org/10.1016/j.joca.2007.05.020Test.; Campo G., Avenoso A., Campo S., et al. Glycosaminoglycans reduced inflammatory response by modulating toll-like receptor-4 in LPS-stimulated chondrocytes. Arch Biochem Biophys. 2009; 491: 7–15. https://doi.org/10.1016/j.abb.2009.09.017Test.; Kwon P.S., Oh H., Kwon SJ., et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020; 6: 50. https://doi.org/10.1038/s41421-020-00192-8Test.; Ferreira A.O., Polonini H.C., Dijkers E.C. Postulated adjuvant therapeutic strategies for COVID-19. J Pers Med. 2020; 10 (3): 80. https://doi.org/10.3390/jpm10030080Test.; DiNicolantonio J., Barroso-Aranda J., McCarty M. Azithromycin and glucosamine may amplify the type 1 interferon response to RNA viruses in a complementary fashion. Immunology Letters. 2020; 228: 83–5. https://doi.org/10.1016/j.imlet.2020.09.008Test.; Громова О.А., Торшин И.Ю., Федотова Л.Э. Геронтоинформационный анализ свойств молекулы мексидола. Неврология, нейропсихиатрия, психосоматика. 2017; 9 (4): 46–54. http://doi.org/10.14412/2074-2711-2017-4-46-54Test.; Торшин И.Ю., Лила А.М., Лиманова О.А., Громова О.А. Перспективы применения хондроитина сульфата и глюкозамина сульфата при остеоартрите в сочетании с патологией почек и мочевыделительной системы. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (1): 23–34. https://doi.org/10.17749/2070-4909.2020.13.1.23-34Test.; https://www.pharmacoeconomics.ru/jour/article/view/527Test