يعرض 1 - 10 نتائج من 91 نتيجة بحث عن '"Grailer, Jamison J"', وقت الاستعلام: 1.49s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المؤلفون: Ward, Peter A, Grailer, Jamison J

    المصدر: Translational Respiratory Medicine ; volume 2, issue 1 ; ISSN 2213-0802

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المساهمون: Community Office for Resource Efficiency, U.S. National Institutes of Health, Deutsche Forschungsgemeinschaft, Federal Ministry of Education and Research, Marie Curie Career Integration, European Union, Mainzer Forschungsförderungsprogramm (MAIFOR Program) of the University Medical Center Mainz, Hartwell Foundation, American Lebanese Syrian Associated Charities, Austrian Science Fund

    المصدر: Journal of Leukocyte Biology ; volume 96, issue 1, page 123-131 ; ISSN 0741-5400 1938-3673

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Frontiers in Immunology ; volume 3 ; ISSN 1664-3224

    مصطلحات موضوعية: Immunology, Immunology and Allergy

  8. 8
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    مصطلحات موضوعية: C5a, CLP, ILâ 1β, C5a receptors, Biology, Science

    وصف الملف: application/pdf

    العلاقة: Kalbitz, Miriam; Fattahi, Fatemeh; Grailer, Jamison J.; Jajou, Lawrence; Malan, Elizabeth A.; Zetoune, Firas S.; Huber‐lang, Markus; Russell, Mark W.; Ward, Peter A. (2016). "Complementâ induced activation of the cardiac NLRP3 inflammasome in sepsis." The FASEB Journal 30(12): 3997-4006.; https://hdl.handle.net/2027.42/154362Test; The FASEB Journal; Pelegrin, P., and Surprenant, A. ( 2006 ) Pannexinâ 1 mediates large pore formation and interleukinâ 1βeta release by the ATPâ gated P2à 7 receptor. EMBO J. 25, 5071 â 5082; Höpken, U. E., Lu, B., Gerard, N. P., and Gerard, C. ( 1996 ) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86 â 89; Gerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) Anantiâ inflammatory function for the complement anaphylatoxin C5aâ binding protein, C5L2. J. Biol. Chem. 280, 39677â 39680; Baker, C. C., Chaudry, I. H., Gaines, H. O., and Baue, A. E. ( 1983 ) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331 â 335; Rittirsch, D., Huberâ Lang, M.S., Flierl, M.A., and Ward, P. A. ( 2009 ) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31 â 36; Huberâ Lang, M., Sarma, V. J., Lu, K. T., McGuire, S. R., Padgaonkar, V. A., Guo, R. F., Younkin, E. M., Kunkel, R. G., Ding, J., Erickson, R., Curnutte, J. T., and Ward, P. A. ( 2001 ) Role of C5a in multiorgan failure during sepsis. J. Immunol. 166, 1193 â 1199; Boluyt, M. O., Converso, K., Hwang, H. S., Mikkor, A., and Russell, M. W. ( 2004 ) Echocardiographic assessment of ageâ associated changes in systolic and diastolic function of the female F344 rat heart. J. Appl. Physiol. 96, 822 â 828; Wang, Y., Gao, B., and Xiong, S. ( 2014 ) Involvement of NLRP3 inflammasome in CVB3â induced viral myocarditis. Am. J. Physiol. Heart Circ. Physiol. 307, H1438 â H1447; Boyd, J. H., Mathur, S., Wang, Y., Bateman, R. M., and Walley, K. R. ( 2006 ) Tollâ like receptor stimulation in cardiomyoctes decreases contractility and initiates an NFâ kappaB dependent inflammatory response. Cardiovasc. Res. 72, 384 â 393; Zhang, W., Xu, X., Kao, R., Mele, T., Kvietys, P., Martin, C.M., and Rui, T. ( 2014 ) Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS One 9, e107639; Lacroixâ Lamandé, S., d’Andon, M. F., Michel, E., Ratet, G., Philpott, D. J., Girardin, S. E., Boneca, I. G., Vandewalle, A., and Werts, C. ( 2012 ) Downregulation of the Na/Kâ ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome. J. Immunol. 188, 2805 â 2814; Witzenrath, M., Pache, F., Lorenz, D., Koppe, U., Gutbier, B., Tabeling, C., Reppe, K., Meixenberger, K., Dorhoi, A., Ma, J., Holmes, A., Trendelenburg, G., Heimesaat, M. M., Bereswill, S., van der Linden, M., Tschopp, J., Mitchell, T. J., Suttorp, N., and Opitz, B. ( 2011 ) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol. 187, 434 â 440; Netea, M. G., Noldâ Petry, C. A., Nold, M. F., Joosten, L. A., Opitz, B., van der Meer, J.H., van de Veerdonk, F.L., Ferwerda, G., Heinhuis, B., Devesa, I., Funk, C. J., Mason, R. J., Kullberg, B. J., Rubartelli, A., van der Meer, J.W., and Dinarello, C. A. ( 2009 ) Differentialrequirement for the activation of the inflammasome for processing and release of ILâ 1βeta in monocytes and macrophages. Blood 113, 2324 â 2335; Triantafilou, K., Hughes, T. R., Triantafilou, M., and Morgan, B. P. ( 2013 ) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903 â 2913; Samstad, E. O., Niyonzima, N., Nymo, S., Aune, M. H., Ryan, L., Bakke, S. S., LappegÃ¥rd, K.T., Brekke, O. L., Lambris, J. D., DamÃ¥s., Mollnes, T. E., and Espevik, T. ( 2014 ) Cholesterol crystals induce complementâ dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837 â 2845; Asgari, E., Le Friec, G., Yamamoto, H., Perucha, E., Sacks, S. S., Köhl, J., Cook, H. T., and Kemper, C. ( 2013 ) C3a modulates ILâ 1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122, 3473 â 3481; Sandanger, à ., Ranheim, T., Vinge, L. E., Bliksøen, M., Alfsnes, K., Finsen, A.V., Dahl, C.P., Askevold, E. T., Florholmen, G., Christensen, G., Fitzgerald, K. A., Lien, E., Valen, G., Espevik, T., Aukrust, P., and Yndestad, A. ( 2013 ) The NLRP3 inflammasome is upâ regulated in cardiac fibroblasts and mediates myocardial ischaemiaâ reperfusion injury. Cardiovasc. Res. 99, 164 â 174; Bae, J. Y., and Park, H. H. ( 2011 ) Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J. Biol. Chem. 286, 39528â 39536; Dikalov, S. ( 2011 ) Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289 â 1301; Cave, A., Grieve, D., Johar, S., Zhang, M., and Shah, A. M. ( 2005 ) NADPH oxidaseâ derived reactive oxygen species in cardiac pathophysiology. Philos. Trans. R. Soc. Lond. BBiol. Sci. 360, 2327 â 2334; Hingtgen, S. D., Tian, X., Yang, J., Dunlay, S. M., Peek, A. S., Wu, Y., Sharma, R. V., Engelhardt, J. F., and Davisson, R. L. ( 2006 ) Nox2containing NADPH oxidase and Akt activation play a key role in angiotensin IIâ induced cardiomyocyte hypertrophy. Physiol. Genomics 26, 180 â 191; Bracey, N. A., Gershkovich, B., Chun, J., Vilaysane, A., Meijndert, H. C., Wright, J. R., Jr., Fedak, P. W., Beck, P. L., Muruve, D. A., and Duff, H. J. ( 2014 ) Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem. 289, 19571â 19584; Bulua, A. C., Simon, A., Maddipati, R., Pelletier, M., Park, H., Kim, K. Y., Sack, M. N., Kastner, D. L., and Siegel, R. M. ( 2011 ) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1â associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519 â 533; Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. ( 2011 ) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221 â 225; Sadek, H. A., Szweda, P. A., and Szweda, L. I. ( 2004 ) Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Biochemistry 43, 8494 â 8502; Fato, R., Bergamini, C., Bortolus, M., Maniero, A. L., Leoni, S., Ohnishi, T., and Lenaz, G. ( 2009 ) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 1787, 384 â 392; Khan, S. A., Nanduri, J., Yuan, G., Kinsman, B., Kumar, G. K., Joseph, J., Kalyanaraman, B., and Prabhakar, N. R. ( 2011 ) NADPH oxidase 2 mediates intermittent hypoxiaâ induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid. Redox Signal. 14, 533 â 542; Cruz, C. M., Rinna, A., Forman, H.J., Ventura, A. L., Persechini, P. M., and Ojcius, D. M. ( 2007 ) ATP activates a reactive oxygen speciesâ dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 282, 2871 â 2879; Franchi, L., Eigenbrod, T., Muñozâ Planillo, R., and Nuñez, G. ( 2009 ) The inflammasome: a caspaseâ 1â activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241 â 247; Stutz, A., Golenbock, D. T., and Latz, E. ( 2009 ) Inflammasomes: too big to miss. J. Clin. Invest. 119, 3502 â 3511; Kalbitz, M., Grailer, J. J., Fattahi, F., Jajou, L., Herron, T. J., Campbell, K. F., Zetoune, F.S., Bosmann, M., Sarma, J. V., Huberâ Lang, M., Gebhard, F., Loaiza, R., Valdivia, H. H., Jalife, J., Russell, M. W., and Ward, P. A. ( 2015 ) Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 29, 2185 â 2193; Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. ( 2006 ) Goutâ associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 â 241; Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S., Franchi, L., Nuñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K. A., Rock, K. L., Moore, K.J., Wright, S. D., Hornung, V., and Latz, E. ( 2010 ) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357 â 1361; Xiang, M., Shi, X., Li, Y., Xu, J., Yin, L., Xiao, G., Scott, M.J., Billiar, T. R., Wilson, M. A., and Fan, J. ( 2011 ) Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187, 4809 â 4817; Muñozâ Planillo, R., Franchi, L., Miller, L. S., and Náuñez, G. ( 2009 ) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureusâ induced activation of the Nlrp3 inflammasome. J. Immunol. 183, 3942 â 3948; Kim, S., Bauernfeind, F., Ablasser, A., Hartmann, G., Fitzgerald, K. A., Latz, E., and Hornung, V. ( 2010 ) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 40, 1545 â 1551; Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Rooseâ Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., and Dixit, V. M. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228 â 232; Mezzaroma, E., Toldo, S., Farkas, D., Seropian, I. M., Van Tassell, B. W., Salloum, F.N., Kannan, H. R., Menna, A.C., Voelkel, N. F., and Abbate, A. ( 2011 ) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA 108, 19725â 19730; Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., Izawa, A., Takahashi, Y., Masumoto, J., Koyama, J., Hongo, M., Noda, T., Nakayama, J., Sagara, J., Taniguchi, S., and Ikeda, U. ( 2011 ) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594 â 604; Pomerantz, B.J., Reznikov, L.L., Harken, A.H., and Dinarello, C.A. ( 2001 ) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of ILâ 18 and ILâ 1βeta. Proc. Natl. Acad. Sci. USA 98, 2871 â 2876; Bracey, N. A., Beck, P. L., Muruve, D. A., Hirota, S. A., Guo, J., Jabagi, H., Wright, J. R., Jr., Macdonald, J. A., Leesâ Miller, J. P., Roach, D., Semeniuk, L. M., and Duff, H. J. ( 2013 ) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukinâ 1β. Exp. Physiol. 98, 462 â 472; Hwang, M.W., Matsumori, A., Furukawa, Y., Ono, K., Okada, M., Iwasaki, A., Hara, M., Miyamoto, T., Touma, M., and Sasayama, S. ( 2001 ) Neutralization of interleukinâ 1βeta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 38, 1546 â 1553; Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., and Yacoub, M. H. ( 2001 ) Overexpression of interleukinâ 1 receptor antagonist provides cardioprotection against ischemiareperfusion injury associated with reduction in apoptosis. Circulation 104 ( Suppl. 1 ), I308 â I313; Abbate, A., Van Tassell, B. W., Seropian, I. M., Toldo, S., Robati, R., Varma, A., Salloum, F.N., Smithson, L., and Dinarello, C.A. ( 2010 ) Interleukinâ 1βeta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur. J. Heart Fail. 12, 319 â 322; Maass, D. L., White, J., and Horton, J. W. ( 2002 ) ILâ 1βeta and ILâ 6 act synergistically with TNFâ alpha to alter cardiac contractile function after burn trauma. Shock 18, 360 â 366; Atefi, G., Zetoune, F. S., Herron, T. J., Jalife, J., Bosmann, M., Alâ Aref, R., Sarma, J. V., and Ward, P. A. ( 2011 ) Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. 25, 2500 â 2508; Laudisi, F., Spreafico, R., Evrard, M., Hughes, T. R., Mandriani, B., Kandasamy, M., Morgan, B. P., Sivasankar, B., and Mortellaro, A. ( 2013 ) Cutting edge: the NLRP3 inflammasome links complementâ mediated inflammation and ILâ 1β release. J. Immunol. 191, 1006 â 1010; Brandstetter, C., Holz, F. G., and Krohne, T. U. ( 2015 ) Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscinâ mediated photooxidative damage. J. Biol. Chem. 290, 31189â 31198; Ward, P. A., Guo, R. F., and Riedemann, N. C. ( 2012 ) Manipulation of the complement system for benefit in sepsis. Crit. Care Res. Pract. 2012, 427607; Goldhaber, J. I., Kim, K. H., Natterson, P. D., Lawrence, T., Yang, P., and Weiss, J. N. ( 1996 ) Effects of TNFâ alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am. J. Physiol. 271, H1449 â H1455; Niederbichler, A.D., Hoesel, L.M., Westfall, M.V., Gao, H., Ipaktchi, K. R., Sun, L., Zetoune, F. S., Su, G. L., Arbabi, S., Sarma, J. V., Wang, S. C., Hemmila, M. R., and Ward, P. A. ( 2006 ) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203, 53 â 61; Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huberâ Lang, M., Mackay, C.R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Köhl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 â 557; Hoesel, L. M., Niederbichler, A.D., Schaefer, J., Ipaktchi, K.R., Gao, H., Rittirsch, D., Pianko, M. J., Vogt, P. M., Sarma, J. V., Su, G. L., Arbabi, S., Westfall, M. V., Wang, S. C., Hemmila, M. R., and Ward, P. A. ( 2007 ) C5aâ blockade improves burnâ induced cardiac dysfunction. J. Immunol. 178, 7902 â 7910; Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huberâ Lang, M., Russell, M. W., and Ward, P. A. ( 2016 ) Complement destabilizes cardiomyocyte function in vivo after polymicrobial sepsis and in vitro. [Eâ pub ahead of print] J. Immunol. doi:10.4049/jimmunol.1600091; Kaestner, L., Scholz, A., Hammer, K., Vecerdea, A., Ruppenthal, S., and Lipp, P. ( 2009 ) Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J. Vis. Exp. 31, 1433; Louch, W. E., Sheehan, K. A., and Wolska, B. M. ( 2011 ) Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 51, 288 â 298