يعرض 1 - 10 نتائج من 143 نتيجة بحث عن '"Garces-Ruiz, Alejandro"', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 1
    تقرير
  2. 2
    كتاب

    وصف الملف: application/pdf

    العلاقة: Textos Academicos; Adams, J., Carter, C., and Huang, S.-H. (2012). Ercot experience with sub synchronous control interaction and proposed remediation. In PES T and D 2012, pages 1–5.; Akagi, H., Watanabe, E. H., and Aredes, M. (2007). Instantaneous Power Theory and Applications to Power Conditioning. IEEE Power Engineering Society, NJ, Wiley-Interscience, NY, 1 edition.; Anderson, P. and Fouad, A. (2003). Power system control and stability. Piscataway, NJ, Wiley-Interscience, NY, 2 edition.; Arrillaga, J. andWatson, N. (2003). Power System Harmonics. John Wiley and Sons, NY, 3 edition; Bravo, M., Garces, A., Montoya, O. D., and Baier, C. R. (2018). Nonlinear analysis for the three-phase PLL: A new look for a classical problem. In 2018 IEEE 19thWorkshop on Control and Modeling for Power Electronics (COMPEL). IEEE.; Chang-Chien, L.-R. and Yin, Y.-C. (2009). Strategies for operating wind power in a similar manner of conventional power plant. IEEE Transactions on Energy Conversion, 24(4):926–934; Chen, L., Liu, Y., Arsoy, A., Ribeiro, P., Steurer, M., and Iravani, M. (2006). Detailed modeling of superconducting magnetic energy storage (smes) system. IEEE Transactions on Power Delivery, 21(2):699–710. CIGRE A1/C4 working group (2022). Guide on the Assessment, Specification and Design of Synchronous Condenser for Power System with Predominance of Low or Zero Inertia Generators. CIGRE.; Conejo, A. and Baringo, L. (2018). Power system operations. Springer; Damas, R. N., Son, Y., Yoon, M., Kim, S.-Y., and Choi, S. (2020). Subsynchronous oscillation and advanced analysis: A review. IEEE Access, 8:224020–224032.; D’Arco, S. and Suul, J. A. (2014). Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids. IEEE Transactions on Smart Grid, 5(1):394–395.; Dario Jaramillo, R. and Garces, A. (2015). Wave energy: Modeling and analysis of power grid integration. IEEE Latin America Transactions, 13(12):3863–3872.; Davy, R. and Hiskens, I. (1997). Lyapunov functions for multimachine power systems with dynamic loads. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(9):796–812.; D’Arco, S., Suul, J. A., and Fosso, O. B. (2015). A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electric Power Systems Research, 122:180–197.; ENTSO-E (2022). Stability management in power electronics dominated systems: a prerequisite to the success of the energy transition. European Network of Transmission System Operators for Electricity.; Farrokhabadi, M., Cañizares, C. A., Simpson-Porco, J.W., Nasr, E., Fan, L., Mendoza-Araya, P. A., Tonkoski, R., Tamrakar, U., Hatziargyriou, N., Lagos, D., Wies, R. W., Paolone, M., Liserre, M., Meegahapola, L., Kabalan, M., Hajimiragha, A. H., Peralta, D., Elizondo, M. A., Schneider, K. P., Tuffner, F. K., and Reilly, J. (2020). Microgrid stability de nitions, analysis, and examples. IEEE Transactions on Power Systems, 35(1):13– 29.; Feynman, R., Leighton, R., and Sands, M. (2015). The Feynman Lectures on Physics, Vol. I. Hachette UK, NY, 1 edition.; Garces, A. (2022). Economic dispatch of thermal units, pages 125–144; Garcés, A. and Galvis, J.-C. (2004). Flujo de carga armónico en sistemas de distribucion radiales. Trabajo de grado.; Garces, A. and Gil-Gonzalez, W. (2021). Stability analysis for a grid forming converter with inverse droop connected to an in nite bus. In 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), pages 286–290.; Gil-González, W., Garces, A., and Escobar, A. (2019a). Passivity-based control and stability analysis for hydro-turbine governing systems. Applied Mathematical Modelling, 68:471–486.; Gil-González,W. J., Garces, A., Fosso,O. B., and Escobar-Mejía, A. (2019b). Passivity-based control of power systems considering hydro turbine with surge tank. IEEE Transactions on Power Systems, 35(3):2002– 2011.; Gil-González, W., Montoya, O. D., Garces, A., et al. (2019). Direct power control of electrical energy storage systems: A passivity-based pi approach. Electric Power Systems Research, 175:105885.; Gless, G. E. (1966). Direct method of liapunov applied to transient power system stability. IEEE Transactions on Power Apparatus and Systems, PAS-85(2):159–168.; Haddad, W. and Chellaboina, V. (2008). Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, NY, 2 edition.; Hale, J. K. (1980). Ordinary di erential equations. John Wiley and sons, Malabar, Florida, 2 edition.; Hatziargyriou, N., Milanovic, J., Rahmann, C., Ajjarapu, V., Cañizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., et al. (2020). Stability de nitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies.; He, J., Li, Y., Liang, B., and Wang, C. (2017). Inverse power factor droop control for decentralized power sharing in series-connected microconverters-based islanding microgrids. IEEE Transactions on Industrial Electronics, 64(9):7444–7454.; He ron, W. G. and Phillips, R. A. (1952). E ect of a modern amplidyne voltage regulator on underexcited operation of large turbine generators [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 71(3):692–697; Hill, D. (1993). Nonlinear dynamic load models with recovery for voltage stability studies. IEEE Transactions on Power Systems, 8(1):166–176.; IEEE (1969). Proposed excitation system de nitions for synchronous machines. IEEE Transactions on Power Apparatus and Systems, PAS 88(8):1248–1258.; IEEE (1994). Working group on prime mover and energy supply models for system dynamic performance studies dynamic models for combined cycle plants in power system studies. IEEE Transactions on Power Systems, 9(3):1698–1708.; IEEE-PES (2012). Ieee guide for control of small (100 kva to 5 mva) hydroelectric power plants. IEEE Std 1020-2011 (Revision of IEEE Std 1020-1988), pages 1–56.; IEEE TASK FORCE (1977). First benchmark model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems, 96(5):1565–1572.; Kassakian, J. G., Perreault, D. J., Verghese, G. C., and Schlecht, M. F. (2023). Principles of power electronics. Cambridge University Press.; Khalil, H. (2002). Nonlinear Systems. Prentice Hall, NY, 3 edition.; Koritarov, V., Guzowski, L., Feltes, J., Kazachkov, Y., Gong, B., Trouille, B., Donalek, P., and Gevorgian, V. (2013a). Modeling Ternary Pumped Storage Units. Argonne National Laboratory; Koritarov, V., Guzowski, L., Feltes, J., Kazachkov, Y., Lam, B., Carlos Grande-Moran, G. T., Eng, L., Trouille, B., and Donalek, P. (2013b). Review of Existing Hydroelectric Turbine-Governor Simulation Models. Argonne National Laboratory; Krause, P., Wasynczuk, O., and Sudho , S. (2002). Analysis of electric machinery and drive systems. IEEE Power Engineering Society, NJ, Wiley-Interscience, NY, 2 edition.; Kron, G. (1942). Tensors for circuits. Dover Publications.; Kundur, P. (1994). Power systems stability and control. EPRI: power systems engineering series, NY, 3 edition.; Li, H., Wang, J., and Meng, J. (2021). Nonlinear control. In Learning Control, pages 93–102. Elsevier.; Luo, X., Wang, J., Dooner, M., and Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137:511 – 536.; Machowski, J., Lubosny, Z., Bialek, J. W., and Bumby, J. R. (2020). Power system dynamics: stability and control. John Wiley and Sons, 3 edition.; Montoya, O. D., Garcés, A., and Espinosa-Pérez, G. (2018). A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems. Journal of Energy Storage, 16:259–268; Morison, K. and Glavic, M. (2007). Review of on-line dynamic security assessment tools and techniques. Technical report.; Narasimhamurthi, N. (1984). On the existence of energy function for power systems with transmission losses. IEEE Transactions on Circuits and Systems, 31(2):199–203.; Nikravesh, S. K. Y. (2018). Nonlinear Systems Stability Analysis. CRC Press.; Ortega, A. and Milano, F. (2016). Generalized model of vsc-based energy storage systems for transient stability analysis. IEEE Transactions on Power Systems, 31(5):3369–3380.; Ortega, R., Espinosa-Pérez, G., and Astol , A. (2013). Passivity-based control of ac drives: theory for the user and application examples. International Journal of Control, 86(4):625–635.; Ortega, R. and Garcia-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: A survey. European Journal of Control, 10(5):432–450.; Padiyar, K. (2012). Analysis of Subsynchronous Resonance in Power Systems. Springer Science and Business Media, NY, US, 1 edition.; Patarroyo-Montenegro, J. F., Vasquez-Plaza, J. D., Andrade, F., and Fan, L. (2020). An Optimal Power Control Strategy for Grid-Following Inverters in a Synchronous Frame. Applied Sciences, 10(19):6730.; Patterson, B. (2012). Dc, come home: Dc microgrids and the birth of the enernet. Power and Energy Magazine, IEEE, 10(6):60–69.; Pearre, N. S. and Ribberink, H. (2019). Review of research on v2x technologies, strategies, and operations. Renewable and Sustainable Energy Reviews, 105:61 – 70.; Perez, M. A., Ceballos, S., Konstantinou, G., Pou, J., and Aguilera, R. P. (2021). Modular multilevel converters: Recent achievements and challenges. IEEE Open Journal of the Industrial Electronics Society, 2:224–239.; Perez Londono, S. M., Rodriguez Garcia, L. F., and Mora Florez, J. J. (2015). Obtencion de modelos de carga compuestos en sistemas de potencia para analisis dinamico: revision y aplicacion. Tecnura, 19:171–189.; Perko, L. (2001). Differential Equations and Dynamical Systems. Springer Verlag, New York, 1 edition.; Perko, L. (2013). Differential equations and dynamical systems, volume 7. Springer Science & Business Media.; Pulgar-Painemal, H. (2019). Enforcement of current limits in d g-based wind turbine dynamic models through capability curve. IEEE Transactions on Sustainable Energy, 10(1):318–320.; Rabie, D., Senjyu, T., Alkhalaf, S., Mohamed, Y. S., and Shehata, E. (2021). Study and analysis of voltage source converter control stability for HVDC system using di erent control techniques. Ain Shams Engineering Journal, 12(3):2763–2779.; Sami, I., Ullah, N., Muyeen, S. M., Techato, K., Chowdhury, M. S., and Ro, J.-S. (2020). Control methods for standalone and grid connected micro-hydro power plants with synthetic inertia frequency support: A comprehensive review. IEEE Access, 8:176313–176329.; Shih, M.-H. and Tan, K.-K. (2023). Covering theorems of convex sets related to xed-point theorems. In Nonlinear and convex analysis, pages 235–244. CRC Press.; Slootweg, J., de Haan, S., Polinder, H., and Kling, W. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on Power Systems, 18(1):144– 151.; Stagg, G. and El-Abiad, A. (1988). Computer methods in power systems analysis. McGraw-Hill.; Teodorescu, R., Liserre, M., and Rodriguez, P. (2011). Grid Converters for Photovoltaic and Wind Power Systems. IEEE Power Engineering Society, NJ, Wiley-Interscience, NY, 1 edition.; Van Der Schaft, A., Jeltsema, D., et al. (2014). Port-hamiltonian systems theory: An introductory overview. Foundations and Trends® in Systems and Control, 1(2-3):173–378.; Vega-Herrera, J., Rahmann, C. A., Valencia, F., and Strunz, K. (2020). Analysis and application of quasi-static and dynamic phasor calculus for stability assessment of integrated power electric and electronic systems. IEEE Transactions on Power Systems.; Venkataramana, A. (2007). Computational Techniques for Voltage Stability Assessment and Control. Springer, NY, 1 edition.; Villegas Pico, H., McCalley, J. D., Angel, A., Leon, R., and Castrillon, N. J. (2012). Analysis of very low frequency oscillations in hydro-dominant power systems using multi-unit modeling. IEEE Transactions on Power Systems, 27(4):1906–1915.; Walker, D., Bowler, C., Jackson, R., and Hodges, D. (1975). Results of subsynchronous resonance test at mohave. IEEE Transactions on Power Apparatus and Systems, 94(5):1878–1889.; Willems, J. L. and Willems, J. C. (1970). The application of lyapunov methods to the computation of transient stability regions for multimachine power systems. IEEE Transactions on Power Apparatus and Systems, PAS-89(5):795–801.; Wu, D., Tang, F., Vasquez, J. C., and Guerrero, J. M. (2014). Control and analysis of droop and reverse droop controllers for distributed generations. In 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), pages 1–5. IEEE.; Zografos, D. and Ghandhari, M. (2016). Estimation of power system inertia. In 2016 IEEE Power and Energy Society General Meeting (PESGM), pages 1–5.; https://doi.org/10.22517/9789587228960Test; Universidad Tecnológica de Pereira; Repositorio Institucional Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/homeTest; https://hdl.handle.net/11059/14905Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Technological University of Pereira

    المصدر: Electrical Engineering ; ISSN 0948-7921 1432-0487

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: Agencia Nacional de Investigación y Desarrollo, Millennium Institute on Green Ammonia as Energy Vector MIGA, Centre for Multidisciplinary Research on Smart and Sustainable Energy Technologies for Sub-Antarctic Regions, SERC Chile

    المصدر: IEEE Transactions on Industrial Electronics ; volume 71, issue 5, page 5157-5165 ; ISSN 0278-0046 1557-9948

  7. 7
    دورية أكاديمية

    المؤلفون: Garcés-Ruiz, Alejandro

    المصدر: Ingeniería; Vol. 27 No. 3 (2022): September-December; e19252 ; Ingeniería; Vol. 27 Núm. 3 (2022): Septiembre-diciembre; e19252 ; 2344-8393 ; 0121-750X

    وصف الملف: application/pdf; text/xml

    العلاقة: https://revistas.udistrital.edu.co/index.php/reving/article/view/19252/18446Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/19252/18732Test; F. Milano, Power system modelling and scripting. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.; G. W. Stagg and A. H. El-Abiad, Computer methods in power systems analysis, vol. 4. Deli, India: McGraw Hill, 1988.; B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, pp. 859–869, May 1974.; R. K. Portelinha, C. C. Durce, O. L. Tortelli, and E. M. Lourenc ̧o, “Fast-decoupled power flow method for inte- grated analysis of transmission and distribution systems,” Electric Power Systems Research, vol. 196, p. 107215, 2021.; https://revistas.udistrital.edu.co/index.php/reving/article/view/19252Test

  8. 8
    دورية أكاديمية

    المصدر: TecnoLógicas; Vol. 25 No. 55 (2022); e2355 ; TecnoLógicas; Vol. 25 Núm. 55 (2022); e2355 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    العلاقة: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2355/2572Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2355/2580Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2355/2581Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2355/2588Test; W. Y. Atmaja, M. P. Lesnanto, and E. Y. Pramono, “Hosting Capacity Improvement Using Reactive Power Control Strategy of Rooftop PV Inverters,” In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, Canada: SEGE, Aug. 2019, pp. 213-217. IEEE, https://doi.org/10.1109/SEGE.2019.8859888Test; M. Rabiul-Islam, A. M. Mahfuz-Ur-Rahman, K. M. Muttaqi, and D. Sutanto, “State-of-The-Art of the Medium-Voltage Power Converter Technologies for Grid Integration of Solar Photovoltaic Power Plants,” IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 372–384, Mar. 2019, https://doi.org/10.1109/TEC.2018.2878885Test; S. Amara and H. Abdallah-Hsan, "Power system stability improvement by FACTS devices: A comparison between STATCOM, SSSC and UPFC," in 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia: March 2012, pp. 360-365, https://doi.org/10.1109/REVET.2012.6195297Test; C. Ángeles-Camacho, and F. Bañuelos-Ruedas, "FACTS: Its Role in the Connection of Wind Power to Power Networks", in Wind Farm - Impact in Power System and Alternatives to Improve the Integration. London, United Kingdom: IntechOpen, 2011, pp. 93-108. https://doi.org/10.5772/21200Test; W. Lu, S. Lang, L. Zhou, H. H. C. Iu, and T. Fernando, “Improvement of stability and power factor in PCM controlled boost PFC converter with hybrid dynamic compensation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 320–328, Jan. 2015, https://doi.org/10.1109/TCSI.2014.2346111Test; N. Hatziargyriou, S. Papathanassiou, S. Papathanassiou, N. Hatziargyriou, and K. Strunz, “A benchmark low voltage microgrid network.” in Proceedings of the CIGRE symposium: power systems with dispersed generation, Athens, 01 2005, pp. 1-8. https://www.researchgate.net/profile/NikosHatziargyriou/publication/237305036_A_Benchmark_Low_Voltage_Microgrid_Network/links/00b7d5269306c54780000000/A-Benchmark-Low-Voltage-Microgrid-Network.pdfTest; A. Garcés, W. Gil-González, O. D. Montoya, H. R. Chamorro, and L. Alvarado-Barrios, “A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids,” Applied Sciences, vol. 11, no. 5, pp. 1972, Feb. 2021, https://doi.org/10.3390/app11051972Test; M. Hamzeh, H. Mokhtari, and H. Karimi, “A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid,” Canadian Journal of Electrical and Computer Engineering, vol. 36, no. 1, pp. 18–25, 2013, https://doi.org/10.1109/CJECE.2013.6544468Test; S. Bolognani and S. Zampieri, “A distributed control strategy for reactive power compensation in smart microgrids,” IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2818–2833, 2013, https://doi.org/10.1109/TAC.2013.2270317Test; Y. Zhu, F. Zhuo, F. Wang, B. Liu, R. Gou, and Y. Zhao, “A virtual impedance optimization method for reactive power sharing in networked microgrid,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2890–2904, Apr. 2016, https://doi.org/10.1109/TPEL.2015.2450360Test; M. A. Arif, M. Ndoye, G. V. Murphy, and K. Aganah, “A stochastic game framework for reactive power reserve optimization and voltage profile improvement,” in 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), San Antonio TX, Sep. 2017, pp. 1–6. https://doi.org/10.1109/ISAP.2017.8071372Test; Y. Wang, X. Wang, Z. Chen, and F. Blaabjerg, “Distributed optimal control of reactive power and voltage in islanded microgrids,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, May 2016, vol. 2016-May, pp. 3431–3438. https://doi.org/10.1109/APEC.2016.7468360Test; Y. Han, H. Li, P. Shen, E. A. A. Coelho, and J. M. Guerrero, “Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2427–2451, Mar. 01, 2017. https://doi.org/10.1109/TPEL.2016.2569597Test; H. Morais, T. Sousa, P. Faria and Z. Vale, "Reactive power management strategies in future smart grids," in 2013 IEEE Power & Energy Society General Meeting, 2013, pp. 1-5. https://doi.org/10.1109/PESMG.2013.6672332Test; A. Águila-Téllez, G. L. Opez, I. Isaac, and J. W. Gonz Alez, “Optimal reactive power compensation in electrical distribution systems with distributed resources. Review,” Heliyon, 2018, vol. 4, p. 746. https://doi.org/10.1016/j.heliyon.2018.e00746Test; V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, “Stochastic Reactive Power Management in Microgrids with Renewables,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3386–3395, Nov. 2015, https://doi.org/10.1109/TPWRS.2014.2369452Test; S. M. Mohseni‐Bonab and A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi‐objective model at the presence of uncertain wind power generation”. IET Generation, Transmission & Distribution, vol. 11, no. 4, pp. 815-829, March 2017. https://doi.org/10.1049/iet-gtd.2016.1545Test; M. Ghaljehei, Z. Soltani, J. Lin, G. B. Gharehpetian, and M. A. Golkar, “Stochastic multi-objective optimal energy and reactive power dispatch considering cost, loading margin and coordinated reactive power reserve management,” Electric Power Systems Research, vol. 166, pp. 163–177, Jan. 2019, https://doi.org/10.1016/J.EPSR.2018.10.009Test; M. Nazmul, I. Sarkar, G. Meegahapola, M. Datta, and L. G. Meegahapola, “Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms,” IEEE Access, vol. 6, pp. 41458-41489, Aug. 2018, https://doi.org/10.1109/ACCESS.2018.2838563Test; J. F. Gómez-González et al., “Reactive power management in photovoltaic installations connected to low-voltage grids to avoid active power curtailment,” Renewable Energy and Power Quality Journal, vol. 1, no. 16, pp. 5–11, Apr. 2018, https://doi.org/10.24084/repqj16.003Test; A. Shaker, A. Safari, and M. Shahidehpour, “Reactive Power Management for Networked Microgrid Resilience in Extreme Conditions,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 3940–3953, Sept. 2021, https://doi.org/10.1109/TSG.2021.3068049Test; T. Abreu, T. Soares, L. Carvalho, H. Morais, T. Simão, and M. Louro, “Reactive Power Management Considering Stochastic Optimization under the Portuguese Reactive Power Policy Applied to DER in Distribution Networks,” Energies, vol. 12, no. 21, p. 4028, Oct. 2019, https://doi.org/10.3390/en12214028Test; S. Souri, H. M. Shourkaei, S. Soleymani, and B. Mozafari, “Flexible reactive power management using PV inverter overrating capabilities and fixed capacitor,” Electric Power Systems Research, vol. 209, p. 107927, Aug. 2022, http://doi.org/10.1016/J.EPSR.2022.107927Test; A. Mehbodniya, A. Paeizi, M. Rezaie, M. Azimian, H. Masrur, and T. Senjyu, “Active and Reactive Power Management in the Smart Distribution Network Enriched with Wind Turbines and Photovoltaic Systems,” Sustainability, vol. 14, no. 7, p. 4273, April 2022, https://doi.org/10.3390/su14074273Test; D. A. Ramírez, A. Garcés, and J. Mora-Florez, "A Wirtinger Linearization for the Power Flow in Microgrids," in 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, 2019, pp. 1-5, https://doi.org/10.1109/PESGM40551.2019.8973647Test; S. P. Boyd and L. Vandenberghe, Convex optimization. 1st ed., Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441Test; S. Bolognani and S. Zampieri, “On the existence and linear approximation of the power flow solution in power distribution networks,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 163–172, Jan. 2016, https://doi.org/10.1109/TPWRS.2015.2395452Test; J. R. Martí, H. Ahmadi, and L. Bashualdo, “Linear power-flow formulation based on a voltage-dependent load model,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1682–1690, 2013, https://doi.org/10.1109/TPWRD.2013.2247068Test; Y. Wang, N. Zhang, H. Li, J. Yang, and C. Kang, “Linear three-phase power flow for unbalanced active distribution networks with PV nodes”. CSEE Journal of Power and Energy Systems, vol. 3, no. 3, pp. 321-324, Sept. 2017, https://doi.org/10.17775/CSEEJPES.2017.00240Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2355Test

  9. 9
    دورية أكاديمية

    المصدر: Ingeniería; Vol. 28 No. 3 (2023): September-December; e21419 ; Ingeniería; Vol. 28 Núm. 3 (2023): Septiembre-diciembre; e21419 ; 2344-8393 ; 0121-750X

    مصطلحات موضوعية: Electrical Engineering, students

    وصف الملف: application/pdf; text/xml

    العلاقة: https://revistas.udistrital.edu.co/index.php/reving/article/view/21419/19597Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/21419/19846Test; C. Yang, Y. Sun, Y. Zou, F. Zheng, S. Liu, B. Zhao, M. Wu, and H. Cui, "Optimal power flow in distribution network: A review on problem formulation and optimization methods," Energies, vol. 16, no. 16, p. 5974, Aug. 2023. https://doi.org/10.3390/en16165974Test; A. Garcés, "A linear three-phase load flow for power distribution systems," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 827-828, Jan. 2016. https://doi.org/10.1109/TPWRS.2015.2394296Test; B. Cortés-Caicedo, L. S. Avellaneda-Gómez, O. D. Montoya, L. Alvarado-Barrios, and H. R. Chamorro, "Application of the vortex search algorithm to the phase-balancing problem in distribution systems," Energies, vol. 14, no. 5, p. 1282, Feb. 2021. https://doi.org/10.3390/en14051282Test; O. D. Montoya, J. S. Giraldo, L. F. Grisales-Noreña, H. R. Chamorro, and L. Alvarado-Barrios, "Accurate and efficient derivative-free three-phase power flow method for unbalanced distribution networks," Computation, vol. 9, no. 6, p. 61, May 2021. https://doi.org/10.3390/computation9060061Test; J. M. Perkel, "Julia: Come for the syntax, stay for the speed," Nature, vol. 572, no. 7767, pp. 141-142, Jul. 2019. https://doi.org/10.1038/d41586-019-02310-3Test; https://revistas.udistrital.edu.co/index.php/reving/article/view/21419Test

  10. 10
    دورية أكاديمية