يعرض 1 - 10 نتائج من 714 نتيجة بحث عن '"Food-borne pathogens"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المساهمون: MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Inalve

    المصدر: ISSN: 0175-7598.

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/38261095; hal-04412571; https://hal.inrae.fr/hal-04412571Test; PUBMED: 38261095

  9. 9
    دورية أكاديمية

    المؤلفون: Malik, T., Sarkar, O., Pant, S.

    المصدر: Grasas y Aceites; Vol. 75 No. 1 (2024); e544 ; Grasas y Aceites; Vol. 75 Núm. 1 (2024); e544 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2024.v75.i1

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2162/3164Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2162/3165Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2162/3166Test; Aćimović M, Kiprovski B, Rat M, Sikora V, Popović V, Koren A, Jokanović MB. 2018. Salvia sclarea: Chemical Composition and Biological Activity. J. Agron. Technol. Engine. Manag. 1, 18–28.; Adley CC, Ryan MP. 2016. The Nature and Extent of Foodborne Disease, in Jorge Barros-Velázquez, Antimicrobial Food Packaging (Eds.), Academic Press, pp.1-10.; Al-Maqtari QA, Rehman A, Mahdi AA, Al-Ansi W, Wei M,Yanyu Z, Phyo HM, Galeboe O, Yao W. 2021. Application of essential oils as preservatives in food systems: Challenges and future Prospectives – A Review. Phytochem. Rev. 21, 1209–1246.; Anwar F, Abbas A, Alkharfy KM, Gilani AH. 2016. Cardamom (Elettaria Cardamomum Maton) oils. Essential Oils Food Preser. Flavor Safet. 295–301.; Bakhtiary F, Sayevand HR, Khaneghah AM, Haslberger AG, Hosseini H. 2018. Antibacterial Efficacy of Essential Oils and Sodium Nitrite in Vacuum processed Beef Fillet. Appl. Food Biotechnol. 5, 1–10.; Barros JC, da Conceição ML, Neto NJG, da Costa ACV, de Souza EL. 2012. Combination of Origanum vulgare L. essential oil and lactic acid to inhibit Staphylococcus aureus in a meat broth and meat model. Brazilian J. Microbiol. 43, 1120–1127.; Callejón RM, Rodríguez-Naranjo MI, Ubeda C, Hornedo-Ortega R, Garcia-Parrilla MC, Troncoso AM. 2015. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Diseas. 12, 32–38.; Catherine AA, Deepika H, Negi PS. 2012. Antibacterial activity of eugenol and peppermint oil in Model Food Systems. J. Essential Oil Resear. 24, 481–486.; Chazelas E, Pierre F, Druesne-Pecollo N, Esseddik Y, Edelenyi FSD, Agaesse C, Sa AD, Lutchia R, Gigandet S, Srour B, Debras C, Huybrechts I, Julia C, Kesse-Guyot E, Alles B, Galan P, Hercberg S, Deschasaux-Tanguy M, Touvier M. 2022. Nitrites and nitrates from food additives and natural sources and cancer risk: Results from the NutriNet-Santé cohort. Internat. Epidemiol. 51, 1106–1119.; Ganjewala D, Gupta AK. 2016. Lemongrass (Cymbopogon flexuosus Steud.) Wats Essential Oil: Overview and Biological Activities. RPMP 37, 233–274.; Gutiérrez J, Barry-Ryan C, Bourke P. 2009. Antimicrobial activity of plant essent ial oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 26,142–150.; Joshi RK. 2014. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Ancient Sci. Life 33,149–156.; Karaca N, Şener G, Demirci B, Demirci F. 2020. “Synergistic antibacterial combinat ion of Lavandula latifolia medik. essential oil with camphor. Z Naturforsch CJ Biosci . 76, 169–173.; Lee H, Yoon Y. 2021. “Et iological agents implicated in Foodborne Illness Worldwide,” Food Sci. Animal Resour. 41,1–7.; Malik T. 2017. Perspective uses of essent ial oils in functional foods and antimicrobial packaging material. in Examining the Development, Regulation, and Consumpt ion of Functional Foods (Ed.) Benjamin S. IGI 396 Global. pp: 230-270.; Malik T, Rawat S. 2021. Biotechnological Interventions for Production of Flavour and Fragrance Compounds, in V. Venkatramanan, Shachi Shah, Ram Prasad, Sustainable Bioeconomy Pathways to Sustainable Development Goals (Eds.) Springer Nature Singapore Pte Ltd, pp.131–170.; Malik T, Singh P. 2015. Antimicrobial activity of aroma chemicals against uropathogens. J. Environmen. App. Bioresear. 3, 86–91. https://www.researchgate.net/publication/280096255_Antimicrobial_activity_of_aroma_chemicals_against_uropathogensTest.; Malik T, Singh P. 2010. Antimicrobial effects of essential oils against uropathogens with varying sensitivity to antibiotics. Asian J. Biol. Sci. 3, 92–98.; Malik T, Singh P, Pant S, Chauhan N, Lohani H. 2011. Potentiation of antimicrobial activity of ciprofloxacin by Pelargonium graveolens essential oil against selected uropathogens. Phytother. Resear. 25, 1225–1228.; Malik T, Singh P, Pant S, Chauhan N, Lohani H, Kumar V, Swarup S.2015. Inhibition of swarming behaviour in Proteus mirabilis by Pelargonium graveolens essential oil. Bangladesh J. Medic. Sci. 14, 384–388.; Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM. 2014. Trachyspermum ammi (L.) Sprague: Chemical Composition of Essential Oil and Antimicrobial Activities of Respective Fractions. J. Evidence-Based Complement. Alternat. Medic. 20, 50–56.; Navarra M, Mannucci C, Delbò M, Calapai G. 2015. Citrus bergamia essent ial oil: From basic research to clinical application. Frontiers Pharmacol. 6, 1–7.; Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement. Alternat. Medic. 6, 1–8.; Rao PV, Gan SH. 2014. Cinnamon: A multifaceted medicinal plant. Evidence-Based Complement.Alternat. Medic. 2014, 1–12.; Rathore S, Mukhia S, Kumar R, Kumar R.2023. Essential oil composition and antimicrobial potential of aromatic plants grown in the mid-hill conditions of the western Himalayas. Scientific Report. 13, 1–13.; Saleh-e-In MM, Sultan N, Rahim MM, Ahsan MA, Bhuiyan HMN, Hossain MN, Rahman MR, Roy SK, Islam MR. 2017. Chemical composition and pharmacological significance of Anethum Sowa L. Root. BMC Complement. Alternat. Medic. 17, 1–17.; Sambu S, Hemaram U, Murugan R , Alsofi AA. 2022. Toxicological and teratogenic effect of various food additives: An updated review. BioMedb Res. Internat. 2022, 1–11.; Thawkar BS, Jawarkar AG, Kalamkar PV, Pawar KP, Kale MK. 2016. Phytochemical and pharmacological Review of Mentha Arvensis. Internat. J. Green Pharm. 10, 71-76.; Vitali LA, Beghelli D, Nya PCB, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D. 2016. Diverse biological effects of the essential oil from Iranian Trachyspermum Ammi. Arabian J. Chem. 9, 775–786.; Wickramanayake MVKS, Kumarage P, Majeed S, Heo GJ. 2022. An overview of the antimicrobial activity of some essent ial oils against fish 450 pathogenic bacteria. Veter. Integrat. Sci. 21, 99–119.; Witkowska AM, Hickey DK, Wilkinson MG. 2014. Effect of variation in food components and composition on the antimicrobial activity of oregano and clove essential oils in broth and in a reformulated reduced salt vegetable soup product. J. Food Reser. 3 (6), 92; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2162Test

  10. 10
    دورية أكاديمية