يعرض 1 - 10 نتائج من 137 نتيجة بحث عن '"Felicetta, Chiara"', وقت الاستعلام: 0.78s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: Soil Dynamics and Earthquake Engineering; /179 (2024); http://hdl.handle.net/2122/16960Test

  2. 2
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: Rapporti Tecnici INGV; 477 / (2024); http://hdl.handle.net/2122/16907Test

  3. 3
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Università Federico II, Napoli, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

    العلاقة: Tectonophysics; /871 (2024); http://hdl.handle.net/2122/16634Test

  4. 4
    مؤتمر
  5. 5
    تقرير
  6. 6
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

  7. 7
    تقرير
  8. 8
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Irpinia, Grottaminarda, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia

    العلاقة: Accaino, Flavio, et al. "Seismic imaging of the shallow and deep structures in the Ancona landslide area." Italian Journal of Geosciences 139.1 (2020): 118-130. Akazawa T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering. Albarello D., Tiberi P. (2022). La microzonazione sismica delle Marche. 10 anni di attività. Regione Marche. ISBN 978-88-95554-40-2 Bally A.W., Burbi L., Cooper C., Ghelardoni R. (1986). Balanced sections and seismic reflection profiles across the Central Apennines. Memorie della Società Geologica Italiana, 35: 237-310. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J. (May/June 2010), ObsPy: A Python Toolbox for Seismology, Seismological Research Letters, 81 (3), 530-533. Burjanek, J., Stamm, G., Poggi, V., Moore, J.R. & Fäh, D., 2010. Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820– 828. Calza W., Marcellini A., Rampoldi R., Rossi B., Stucchi M., 1981b. Risultati e problematiche aperte dall’indagine di microzonazione di Ancona. Rend. Soc. Geol. It., 4, 659-665. Carta Geologica Regionale, edizione CTR, sezione 282150 Ancona, scala 1:10.000, Coordinatori scientifici Cello G., Tondi E Carta Geologica Regionale, edizione CTR, sezione 293030 Monte dei Corvi, scala 1:10.000, Coordinatore scientifico M. Sarti Castro R.R., L. Colavitti, C.A. Vidales‐Basurto, F. Pacor, S. Sgobba, G. Lanzano (2022). Near‐Source Attenuation and Spatial Variability of the Spectral Decay Parameter Kappa in Central Italy. Seismological Research Letters 2022; 93 (4): 2299–2310. doi: https://doi.org/10.1785/0220210276Test Cello G., Coppola L. (1984) - Assetto geologico-strutturale dell’area anconetana e sua evoluzione Plio-Quaternaria. Bollettino della Società Geologica Italiana, 103: 97-109 Coltorti M., Dramis F., Gentili B., Pambianchi G., Crescenti and Sorriso-Valvo M., 1985: The december 1982 Ancona landslide: a case of deep-seated gravitational slope deformation evolving at unsteady rate. Zeitschrift fur Geomorphologie, N.F., 29(3), 335-345 Console R., Peronaci F., Sonaglia A., 1973. Relazione sui fenomeni sismici dell’Anconetano. Annali di Geofisica, 26 suppl. Contratto tra il comune di Ancona area lavori pubblici U.O Geologia e l’Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. Grande frana di Ancona Indagini Geofisiche e Geognostiche per l’individuazione del piede della frana di Ancona. Coppola L.(1987) La deformazione mesozoico-quaternaria nel bacino marchigiano esterno. Boll. Soc. Geol. It.,106, 113-140. Crescenti, U., ed. 1986: La grande frana di Ancona del 13 dicembre 1982. Studi Geologici Camerti, vol. spec., 146 p. Favali, P., Frugoni, F., Monna, D., Rainone, L., Signanini, P., Smeriglio, G., 1995. The 1930 earthquake and the town of Senigallia (Central Italy): an approach to seismic risk evaluation. In: Boschi, E., et al. (Eds.), Earthquakes in the Past: Multidisciplinary Approaches, Annali di Geofisica, vol. XXXVIII, pp. 679–689, 5–6. Gallipoli, M. R., and M. Mucciarelli. "Comparison of site classification from VS 30, VS 10, and HVSR in Italy." Bulletin of the Seismological Society of America 99.1 (2009): 340-35 Jurkevics, A. (1988). Polarization analysis of three-component array data, Bulletin of the Seismological Society of America, 78 (5), 1725-1743. Konno, K. & Ohmachi T. Ground-Motion Characteristic Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull Seism Soc Am, 88 (1998), 228-241 Istituto Nazionale di Geofisica e Vulcanologia (INGV). Rete Sismica Nazionale (RSN). Istituto Nazionale di Geofisica e Vulcanologia (INGV). (2005, December 13). https://doi.org/10.13127/SD/X0FXNH7QFYTest Marcellini A., Petrini V., Stucchi M., 1982. Some aspects of the microzonation of Ancona. Proc. Third International Earthquake Microzonation Conference, June 28/July 1 1982, Seattle, pp. 1475-1488 McNamara, D. E. & Buland, R. P. Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Am. 94, 1517–1527, https://doi.org/10.1785/012003001Test (2004). Microzonazione Sismica-Carta delle MOPS, scala 1:10.000, Regione Marche - Comune di Ancona - Annualità 2015, II Livello Morasca, P., D’Amico, M., Sgobba, S., Lanzano, G., Colavitti, L., Pacor, F., and Spallarossa, D., 2022. Empirical correlations between a FAS non-ergodic ground motion model and a GIT derived model for Central Italy, Geophysical Journal International, accepted Mucciarelli, M., D. Albarello, and M. Stucchi. "Sensitivity of seismic hazard estimates to the use of historical site data." Earthquake Hazard and Risk. Springer, Dordrecht, 1996. 141-151 Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000 foglio 282 Ancona (2011), Coordinatori Cello. G., Tondi E., ISPRA Pessina, V., et al. "Seismic risk assessment of Italian seaports: the case of Ancona (Italy)" 14th World Conference on Earthquake Engineering (14 WCEE). 2008 Peterson, J. Observations and modeling of seismic background noise. U.S. Geol. Surv. Open-File Rept. 93–322 (1993) Pinnegar C. R., Polarization analysis and polarization filtering of three-component signals with the time—frequency S transform, Geophysical Journal International, Volume 165, Issue 2, May 2006, Pages 596–606, https://doi.org/10.1111/j.1365-246X.2006.02937.xTest Reasenberg, P. A., and Oppenheimer, D.“FPFIT, FPPLOT and FPPAGE: FORTRAN Computer Programs for Calculating and Displaying Earthquake Fault-Plane Solutions''. US Geological Survey Open-File Report 85-739, USGS, 109, (1985) Stucchi, E., F. Zgur, and L. Baradello. "Seismic land‐marine acquisition survey on the Great Ancona Landslide." Near Surface Geophysics 3.4 (2005): 235-243 Stucchi, Eusebio, and Alfredo Mazzotti. "2D seismic exploration of the Ancona landslide (Adriatic Coast, Italy)." Geophysics 74.5 (2009): B139-B151 Vassallo M., G. Riccio, A. Mercuri, G. Cultrera, G. Di Giulio; HV Noise and Earthquake Automatic Analysis (HVNEA). Seismological Research Letters 2022; doi: https://doi.org/10.1785/0220220115Test Vidale, J. E., Complex polarization analysis of particle motion, Bulletin of the Seismological Society of America, 76, 1986 (5), 1393-1405.; http://hdl.handle.net/2122/16014Test

  9. 9
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

    العلاقة: Bulletin of the Seismological Society of America; http://hdl.handle.net/2122/16961Test

  10. 10
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

    العلاقة: Frontiers in Earth Science; /10(2022); Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bull. Earthq. Res. Inst. 35, 415–457. Ameri, G., Oth, A., Pilz, M., Bindi, D., Parolai, S., luzi, L., et al. (2011). Separation of Source and Site Effects by Generalized Inversion Technique Using the Aftershock Recordings of the 2009 L’Aquila Earthquake. Bull. Earthq. Eng. 9, 717–739. doi:10.1007/s10518-011-9248-4 Ansal, A., Tönük, G., and Kurtulucs, A. (2009). “Microzonation for Urban Planning,”. Earthquakes and Tsunamis, Geotechnical, Geological, and Earthquake Engineering. Editor A. T. Tankut (Dordrecht: Springer), Vol 11, 133–152. doi:10.1007/978-90-481-2399-5_9 Ansal, A., Kurtuluş, A., and Tönük, G. (2010). Seismic Microzonation and Earthquake Damage Scenarios for Urban Areas. Soil Dyn. Earthq. Eng. 30, 1319–1328. doi:10.1016/j.soildyn.2010.06.004 Aversa, S., and Crespellani, T. (2016). Seismic Microzonation: an Essential Tool for Urban Planning in Seismic Areas. Upl. J. Urban Plann Landsc. Environ. Des. 1 (1), 121–152. doi:10.6092/2531-9906/5035 Bard, P.-Y. (2008). Foreword. Bull. Earthq. Eng. 6 (1), 1–2. doi:10.1007/s10518- 008-9059-4 Bard, P. Y. (2005). Site Effects Assessment Using Ambient Excitations (SESAME). WP 6: Derivation of Dispersion Curves. Grenoble: Technical report. Beck, J. L., and Hall, J. F. (1986). Factors Contributing to the Catastrophe in Mexico City during the Earthquake of September 19, 1985. Geophys. Res. Lett. 13, 593–596. doi:10.1029/gl013i006p00593 Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., et al. (2001). Analysis of Dense Array Measurements Using the Modified Spatial Auto- Correlation Method (SPAC). Application to Grenoble Area. Bol. Geofis. Teor. Appl. 42 (3-4), 281–304. Bielak, J., Xu, J., and Ghattas, O. (1999). Earthquake Ground Motion and Structural Response in Alluvial Valleys. J. Geotechnical Geoenvironmental Eng. 125 (5), 413–423. doi:10.1061/(asce)1090-0241(1999)125:5(413) Bigi, G., Costantino, D., Parotto, M., Sartori, R., and Scandone, P. (1990). – Structural Model of Italy. Firenze, Società Elaborazioni Cartografiche (S.EL.CA.), Consiglio Nazionale Delle Ricerche Progetto Finalizzato Geodinamica, Scala 1:500.000, 9 Fogli. Bocherdt, R. D. (1970). Effects of Local Geology on Ground Motion Near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29–61. doi:10.1785/BSSA0600010029 Boore, D. M., and Akkar, S. (2003). Effect of Causal and Acausal Filters on Elastic and Inelastic Response Spectra. Earthq. Engng. Struct. Dyn. 32, 1729–1748. doi:10.1002/eqe.299 Capon, J. (1969). High-resolution Frequency-Wavenumber Spectrum Analysis. Proc. IEEE 57, 1408–1418. doi:10.1109/proc.1969.7278 Celikbilek, A., and Sapmaz, G. (2016). Risk Management and Microzonation in Urban Planning: an Analysis for Istanbul. Disaster Sci. Eng. 2 (2), 59–66. Crespellani, T. (2014). Seismic Microzoning in Italy: a Brief History and Recent Experiences. Ing. Sism 31 (2), 3–31.D’Amico, V., Picozzi, M., Baliva, F., Albarello, D., Menichetti, M., Bozzano, F., et al. (2006). “Test Sites in Europe for the Evaluation of GroundMotion Amplification: Site Response of the Gubbio Basin (Central Italy) Using Geological Data and Seismic NoiseMeasurements,” in Proceeding of the 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland (Geneva: Abstract Book), 301. D’Amico, V., Picozzi, M., Baliva, F., and Albarello, D. (2008). Ambient Noise Measurements for Preliminary Site-Effects Characterization in the Urban Area of Florence, Italy. Bull. Seismol. Soc. Am. 98 (3), 1373–1388. doi:10.1785/0120070231 Darendeli, M. B. (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. (PhD thesis). Austin, Texas: University of Texas. Available at: https://repositories.lib.utexas.eduTest/ bitstream/handle/2152/10396/darendelimb016.pdf March, accessed 2022). De Ferrari, R., Ferretti, G., Barani, S., and Spallarossa, D. (2010). Investigating on the 1920 Garfagnana Earthquake (Mw=6.5): Evidences of Site Effects in Villa Collemandina (Tuscany, Italy). Soil Dyn. Earthq. Eng. 30, 1417–1429. doi:10.1016/j.soildyn.2010.07.004 De Franco, R., Biella, G., Caielli, G., Berra, F., Guglielmin, M., Lozej, A., et al. (2009). Overview of High Resolution Seismic Prospecting in Pre-Alpine and Alpine Basins. Quat. Int. 204 (1-2), 65–75. doi:10.1016/j.quaint.2009.02.011 Dondi, L., Mostardini, F., and Rizzini, A. (1982). “Evoluzione sedimentaria e paleogeografia nella pianura padana,” in Guida alla geologia del margine appenninico-padano, Guida Geol. Reg. S.G.I. Editors G. Cremonini and F. Ricci Lucchi (Bologna (Italy), 47–58. Eurocode 8, CEN (2004). Eurocode 8: Design of Structures for Earthquake Resistance. P1: General Rules, Seismic Actions and Rules for Buildings. Draft 6, 522. Doc CEN/TC250/SC8/N335. Fäh, D., Kind, F., and Giardini, D. (2001). A Theoretical Investigation of Average H/V Ratios. Geophys. J. Int. 145 (2), 535–549. doi:10.1046/j.0956-540x.2001.01406.x Fäh, D., Kind, F., and Giardini, D. (2003). Inversion of Local S-Wave Velocity Structures from Average H/V Ratios, and Their Use for the Estimation of Site- Effects. J. Seismol. 7 (4), 449–467. doi:10.1023/b:jose.0000005712.86058.42 Ferretti, G., Zunino, A., Scafidi, D., Barani, S., and Spallarossa, D. (2013). On Microseisms Recorded Near the Ligurian Coast (Italy) and Their Relationship with Sea Wave Height. Geophys. J. Int. 194, 524–533. doi:10.1093/gji/ggt114 Furumura, T., and Kennett, B. L. N. (1998). On the Nature of Regional Seismic Phases-III. The Influence of Crustal Heterogeneity on the Wavefield for Subduction Earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico Earthquakes. Geophys. J. Int. 135 (3), 1060–1084. doi:10.1046/j.1365- 246x.1998.00698.x GeoMol Team(2015). in GeoMol – Assessing Subsurface Potentials of the Alpine Foreland Basins for Sustainable Planning and Use of Natural Resources – Project Report. Lf. U. Augsburg, 188. Grazier, V., Shakal, A., Scrivner, C., Hauksson, E., Polet, J., and Jones, L. (2002). TriNet Strong-Motion Data from the M 7.1 Hector Mine, California, Earthquake of 16 October 1999. Bull. Seismol. Soc. Am. 92, 1525–1542. doi:10.1785/0120000925 Hailemikael, S., Amoroso, S., and Gaudiosi, I. (2020). Guest editorial: Seismic Microzonation of Central Italy Following the 2016-2017 Seismic Sequence. Bull. Earth. Eng. 18, 5415–5422. doi:10.1007/s10518-020-00929-6 Hanks, T. C. (1975). Strong Ground Motion of the San Fernando, California, Earthquake: Ground Displacements. Bull. Seismol. Soc. Am. 65 (1), 193–225. doi:10.1785/bssa0650010193 Hatayama, K. (2008). Lessons from the 2003 Tokachi-Oki, Japan, Earthquake for Prediction of Long-Period Strong Ground Motions and Sloshing Damage to Oil Storage Tanks. Journal.of Seismol 12, 255–263. doi:10.1007/s10950-007-9066-y Hisada, Y., Aki, K., and Teng, T. L. (1993). 3-D Simulations of Surface Wave Propagation in the Kanto Sedimentary Basin, Japan Part 2: Application of the SurfaceWave BEM. Bull. Seismol. Soc. Am. 83 (6), 1700–1720. doi:10.1785/BSSA0830061700 Idriss, I.M., and Sun, J. I. (1993). User’sManual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses ofHorizontally Layered Soil Deposits. Davis, CA, USA: Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California. ISPRAGeologico d’Italia, S., and Lombardia, R. (2016). in Carta Geologica d’italia alla scala 1:50.000, Foglio 118 Milano (con note illustrative). Editors V. Acura di Francani,A.Piccin,M.Credali, F.Berra, D.Battaglia, P. Gattinoni, et al. Joyner, W. B. (2000). Strong Motion from Surface Waves in Deep Sedimentary Basins. Bull. Seismol. Soc. Am. 90 (6B), S95–S112. doi:10.1785/0120000505 Kagawa, T., Zhao, B., Miyakoshi, K., and Irikura, K. (2004). Modeling of 3D Basin Structures for Seismic Wave Simulations Based on Available Information on the Target Area: Case Study of the Osaka Basin, Japan. Bull. Seismol. Soc. Am. 94 (4), 1353–1368. doi:10.1785/012003165 Kim, H.-S., Sun, C.-G., and Cho, H.-I. (2017). Geospatial Big Data-Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area. Int. J. Geo-Information 6 (6), 174. doi:10.3390/ijgi6060174 Klin, P., Laurenzano, G., Romano, M. A., Priolo, E., and Martelli, L. (2019). ER3D: a Structural and Geophysical 3-D Model of Central Emilia-Romagna (Northern Italy) for Numerical Simulation of Earthquake Ground Motion. Solid earth. 10 (3), 931–949. doi:10.5194/se-10-931-2019 Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y., and Akiyama, S. (2005). Damaging Long-Period Ground Motions from the 2003 Mw 8.3 Tokachi-Oki, Japan Earthquake. Seismol. Res. Lett. 76, 67–73. doi:10.1785/gssrl.76.1.67 Koketsu, K., and Miyake, H. (2008). A Seismological Overview of Long-Period Ground Motion. J. Seismol. 12 (2), 133–143. doi:10.1007/s10950-007-9080-0 Konno, K., and Ohmachi, T. (1998). Ground-motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seismol. Soc. Am. 88, 228–241. doi:10.1785/bssa0880010228 Lacoss, R. T., Kelly, E. J., and Toksöz, M. N. (1969). Estimation of Seismic Noise Structure Using Arrays. Geophysics 34, 21–38. doi:10.1190/1.1439995 Lai, C. G., Poggi, V., Famà, A., Zuccolo, E., Bozzoni, F.,Meisina, C., et al. (2020). An Inter-disciplinary and Multi-Scale Approach to Assess the Spatial Variability of GroundMotion for SeismicMicrozonation: the Case Study of CavezzoMunicipality in Northern Italy. Eng. Geol. 274, 105722. doi:10.1016/j.enggeo.2020.105722 Laurenzano, G., Priolo, E., Mucciarelli, M., Martelli, L., and Romanelli, M. (2017). Site Response Estimation at Mirandola by Virtual Reference Station. Bull. Earthq. Eng. 15 (6), 2393–2409. doi:10.1007/s10518-016-0037-y Lermo, J., and Chávez-García, F. J. (1993). Site Effect Evaluation Using Spectral Ratios with Only One Station. Bull. Seism. Soc. Am. 83 (5), 1574–1594. doi:10. 1785/bssa0830051574 Liang, J. Z., Hao, H., Wang, Y., and Bi, K. M. (2009). Design Earthquake Ground Motion Prediction for Perth Metropolitan Area with Microtremor Measurements for Site Characterization. J. Earthq. Eng. 13 (7), 997–1028. doi:10.1080/13632460802687710 Liu, L., Chen, Q.-f., Wang, W., and Rohrbach, E. (2014). Ambient Noise as the New Source for Urban Engineering Seismology and Earthquake Engineering: a Case Study from Beijing Metropolitan Area. Earthq. Sci. 27 (1), 89–100. doi:10.1007/ s11589-013-0052-x Luzi, L., Pacor, F., Ameri, G., Puglia, R., Burrato, P., Massa, M., et al. (2013). Overview on the Strong-Motion Data Recorded during the May-June 2012 Emilia Seismic Sequence. Seismol. Res. Lett. 84 (4), 629–644. doi:10.1785/ 0220120154 Maddalena Michele, M., Raffaele Di Stefano, R., Lauro Chiaraluce, L., Marco Cattaneo,M., Pasquale De Gori, P.,Giancarlo Monachesi, G., et al. (2016). The Amatrice 2016 Seismic Sequence: a Preliminary Look at the Mainshock and Aftershocks Distribution. Ann. Geophys. Fast track 59, 59. doi:10.4401/ag-7227 Marcucci, S., Milana, G., Hailemikael, S., Carlucci, G., Cara, F., Di Giulio, G., et al. (2019). The Deep Bedrock in Rome, Italy: a New Constraint Based on Passive Seismic Data Analysis. Pure Appl. Geophys. 176 (6), 2395–2410. doi:10.1007/ s00024-019-02130-6 Martelli, L., and Romani, M. (2013). Microzonazione Sismica e analisi della condizione limite per l’emergenza delle aree epicentrali dei terremoti della pianura emiliana di maggio-giugno 2012, relazione illustrativa, Servizio geologico, sismico e dei suoli Regione Emilia Romagna (in Italian). Marzorati, S., and Bindi, D. (2006). Ambient Noise Levels in North Central Italy. G-Cube 7 (9), 1–14. doi:10.1029/2006gc001256 Mascandola, C., Massa, M., Barani, S., Lovati, S., and Santulin, M. (2017). Long- Period Amplification in Deep Alluvial Basins and Consequences for Site- Specific Probabilistic Seismic-Hazard Analysis: An Example from the Po Plain (Northern Italy). Bull. Seismol. Soc. Am. 107 (2), 770–786. doi:10. 1785/0120160166 Mascandola, C., Massa, M., Barani, S., Albarello, D., Lovati, S., Martelli, L., et al. (2019). Mapping the Seismic Bedrock of the Po Plain (Italy) through Ambient- Vibration Monitoring. Bull. Seismol. Soc. Am. 109 (1), 164–177. doi:10.1785/ 0120180193 Mascandola, C., Barani, S., Massa, M., and Albarello, D. (2021). New Insights on Long-Period (>1s) Seismic Amplification Effects in Deep Sedimentary Basins: the Case of the Po Plain (Northern Italy). Bull. Seism. Soc. Am. 111 (4), 2071–2086. doi:10.1785/0120200315 Massa, M., and Augliera, P. (2013). Teleseisms as Estimators of Experimental Long-Period Site Amplification: Application to the Po Plain (Italy) for the 2011 Mw 9.0 Tohoku-Oki (Japan) Earthquake. Bull. Seismol. Soc. Am. 103 (5), 2541–2556. doi:10.1785/0120120164 Milana, G., Bordoni, P., Cara, F., Di Giulio, G., Hailemikael, S., and Rovelli, A. (2013). 1D Velocity Structure of the Po River Plain (Northern Italy) Assessed by Combining Strong Motion and Ambient Noise Data. Bull. Earthq. Eng. 12 (5), 2195–2209. doi:10.1007/s10518-013-9483-y NTC (2018). Aggiornamento delle Norme Tecniche per le Costruzioni. Part 3.2.2: Categorie di sottosuolo e condizioni topografiche, 42. Rome: Gazzetta Ufficiale n. del 20 febbraio 2018 (in Italian). Miyazaki, S. I., Segall, P., Fukuda, J., and Kato, T. (2004). Space Time Distribution of Afterslip Following the 2003 Tokachi-oki Earthquake: Implications for Variations in Fault Zone Frictional Properties. Geophys. Res. Lett. 31 (6), 410. doi:10.1029/2003gl019410 Molnar, S., Assaf, J., Sirohey, A., and Adhikari, S. R. (2020). Overview of Local Site Effects and Seismic Microzonation Mapping in Metropolitan Vancouver, British Columbia, Canada. Eng. Geol. 270, 105568. doi:10.1016/j.enggeo. 2020.105568 Molnar, S., Sirohey, A., Assaf, J., Bard, P. Y., Castellaro, S., Cornou, C., et al. (2022). A Review of the Microtremor Horizontal-To-Vertical Spectral Ratio (MHVSR) Method. J. Seismol 16, 1–33. doi:10.1007/s10950-021-10062-9 Moya, A., Schmidt, V., Segura, C., Boschini, I., and Atakan, K. (2000). Empirical Evaluation of Site Effects in the Metropolitan Area of San José, Costa Rica. Soil Dyn. Earthq. Eng. 20 (1-4), 177–185. doi:10.1016/s0267-7261(00)00049-x MPSWorking Group (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM del 20marzo 2003Rapporto Conclusivo per il Dipartimento della Protezione Civile. Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., and Nino, E. (2005). The Influence of Wind on Measurements of Seismic Noise. Geophys. J. Int. 161 (2), 303–308. doi:10.1111/j.1365-246x.2004.02561.x Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., et al. (2003). Onset of Major Pleistocene Glaciations in the Alps. Geol 31 (11), 989–992. doi:10.1130/g19445.1 Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor or the Ground Surface. QR Railw. Tech. Res. Inst. 30 (1), 25–33. Ohori, M., Nobata, A., and Wakamatsu, K. (2002). A Comparison of ESAC and FK Methods of Estimating Phase Velocity Using Arbitrarily Shaped Microtremor Arrays. Bull. Seismol. Soc. Am. 92, 2323–2332. doi:10.1785/0119980109 Okada, H. (2003). The Microtremor Survey Method. Houston, TX, United States: SEG library. Paolucci, E., Albarello, D., D’Amico, S., Lunedei, E., Martelli, L., Mucciarelli, M., et al. (2015). A Large Scale Ambient Vibration Survey in the Area Damaged by May-June 2012 Seismic Sequence in Emilia Romagna, Italy. Bull. Earthq. Eng. 13 (11), 3187–3206. doi:10. 1007/s10518-015-9767-5 Park, C. B., Miller, R. D., and Xia, J. (1998). “Imaging Dispersion Curves of Surface Waves on Multi-Channel Record,” in SEG Technical Program Expanded Abstracts 1998 (Houston, TX, United States: Society of Exploration Geophysicists), 1377–1380. Park, C. B., Miller, R. D., and Xia, J. (1999). Multichannel Analysis of Surface Waves. Geophysics 64, 800–808. doi:10.1190/1.1444590 Parolai, S., Bindi, D., and Augliera, P. (2000). Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques. Bull. Seismol. Soc. Am. 90 (2), 286–297. doi:10.1785/0119990041 Parolai, S., Picozzi, M., Richwalski, S. M., and Milkereit, C. (2005). Joint Inversion of Phase Velocity Dispersion and H/V Ratio Curves from Seismic Noise Recordings Using a Genetic Algorithm, Considering Higher Modes. Geophys. Res. Lett. 32, L01303. doi:10.1029/2004GL021115 Parolai, S., Richwalski, S. M., Milkereit, C., and Fäh, D. (2006). S-wave Velocity Profiles for Earthquake Engineering Purposes for the Cologne Area (Germany). Bull. Earthq. Eng. 4, 65–94. doi:10.1007/s10518-005-5758-2 Picozzi, M., Strollo, A., Parolai, S., Durukal, E., Özel, O., Karabulut, S., et al. (2009). Site Characterization by Seismic Noise in Istanbul, Turkey. Soil Dyn. Earthq. Eng. 29 (3), 469–482. doi:10.1016/j.soildyn.2008.05.007 Pieri, M., and Groppi, G. (1981). “Subsurface Geological Structure of the Po Plain, Italy,” in Progetto Finalizzato Geodinamica/Sottoprogetto “Modello Strutturale” (Rome: Consiglio Nazionale delle Ricerche Publ. N°), 414. Poggi, V., and Fäh, D. (2010). Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophys. J. Int. 180 (Issue 1), 251–267. doi:10.1111/j.1365-246x.2009.04402.x Puglia, R., Tokeshi, K., Picozzi, M., D’Alema, E., Parolai, S., and Foti, S. (2011). Interpretation of Microtremor 2D Array Data Using Rayleigh and Love Waves: the Case Study of Bevagna (Central Italy). Near Surf. Geophys. 9 (6), 529–540. doi:10.3997/1873-0604.2011031 Priolo, E., Romanelli, M., Barnaba, C., Mucciarelli, M., Laurenzano, G., Dall’Olio, L., et al. (2012). The Ferrara Thrust Earthquakes of May-June 2012: Preliminary Site Response Analysis at the Sites of the OGS Temporary Network. Ann. Geophy. 55 (4), 591–597. doi:10.4401/ag-6172 Ratchkovski, N. A., Hansen, R. A., Stachnik, J. C., Cox, T., Fox, O., Rao, L., et al. (2003). Aftershock Sequence of the Mw 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002 from Regional Seismic Network Data. Seismol. Res. Lett. 74 (6), 743–752. doi:10.1785/gssrl.74.6.743 Regione Lombardia, Eni Divisione Agip (2002). Geologia degli acquiferi Padani della Regione Lombardia, a cura di Cipriano Carcano e Andrea Piccin. Firenze: S.EL.CA. (in Italian). Ritter, J. R. R., Balan, S. F., Bonjer, K.-P., Diehl, T., Forbriger, T., Marmureanu, G., et al. (2005). Broadband Urban Seismology in the Bucharest Metropolitan Area. Seismol. Res. Lett. 76 (5), 574–580. doi:10.1785/gssrl.76.5.574 Rizzini, A., and Dondi, L. (1978). Erosional Surface of Messinian Age in the Subsurface of the Lombardian Plain (Italy). Mar. Geol. 27, 303–325. doi:10. 1016/0025-3227(78)90037-3 Ronald Abraham, J., Lai, C. G., and Papageorgiou, A. (2015). Basin-effects Observed during the 2012 Emilia Earthquake Sequence in Northern Italy. Soil Dyn. Earthq. Eng. 78, 230–242. doi:10.1016/j.soildyn.2015.08.007 Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P. (2020). The Italian Earthquake Catalogue CPTI15. Bull. Earthq. Eng. 18 (7), 2953–2984. doi:10. 1007/s10518-020-00818-y Sambridge, M. (1999). Geophysical Inversion with a Neighbourhood Algorithm-I. Searching a Parameter Space. Geophys. J. Int. 138, 479–494. doi:10.1046/j.1365- 246x.1999.00876.x Sato, T., Graves, R. W., and Somerville, P. G. (1999). Three-dimensional Finite- Difference Simulations of Long-Period Strong Motions in the Tokyo Metropolitan Area during the 1990 Odawara Earthquake (MJ 5.1) and the Great 1923 Kanto Earthquake (MS 8.2) in Japan. Bull. Seismol. Soc. Am. 89 (3), 579–607. doi:10.1785/bssa0890030579 Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., et al. (2012). Stratigraphic Evidence of a Middle Pleistocene Climate-driven Flexural Uplift in the Alps. Tectonics 31 (6), 3108. doi:10.1029/2012tc003108 Schnabel, P. B., Lysmer, J., and Seed, H. B. (1993). SHAKE-91: Equivalent Linear Seismic Response Analysis of Horizontally Layered Soil Deposits. Berkeley, CA, USA: The Earthquake Engineering Online Archive NISEE E-Library. Schnabel, P. B. (1972). SHAKE a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites. Berkeley, CA, USA: EERC Report; University of California. Schneider, J. A., Mayne, P. W., and Rix, G. J. (2001). Geotechnical Site Characterization in the Greater Memphis Area Using Cone Penetration Tests. Eng. Geol. 62 (1-3), 169–184. doi:10.1016/s0013-7952(01)00060-6 SESAME (2004). Guidelines for the Implementation of H/V Spectral Ratio Technique on Ambient Vibration Measurements, Processing and Interpretation. Available at: http://sesame-fp5.obs.ujf-grenoble.fr/DelivrablesTest/ Del-D23-HV_User_Guidelines.pdf Last accessed March, 2022). Somerville, P. G., Collins, N. F., Graves, R. W., and Pitarka, A. (2004). “An Engineering Ground Motion Model for Basin Generated Surface Waves,” in Proc. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 2004. Stephenson, W. J., Hartzell, S., Frankel, A. D., Asten,M., Carver, D. L., and Kim, W. Y. (2009). Site Characterization for Urban Seismic Hazards in Lower Manhattan, New York City, from Microtremor Array Analysis. Geophys. Res. Lett. 36 (3), 444. doi:10.1029/2008gl036444 Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., and Boschi, E. (2011). Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 101, 1885–1911. doi:10.1785/0120100130 Sun, C.-G., Kim, H.-S., Chung, C.-K., and Chi, H.-C. (2014). Spatial Zonations for Regional Assessment of Seismic Site Effects in the Seoul Metropolitan Area. Soil Dyn. Earthq. Eng. 56, 44–56. doi:10.1016/j.soildyn.2013.10.003 Tarabusi, G., and Caputo, R. (2017). The Use of HVSR Measurements for Investigating Buried Tectonic Structures: the Mirandola Anticline, Northern Italy, as a Case Study. Int. J. Earth Sci. Geol. Rundsch) 106 (1), 341–353. doi:10. 1007/s00531-016-1322-3 Tragni, N., Calamita, G., Lastilla, L., Belloni, V., Ravanelli, R., Lupo, M., Salvia, V., and Gallipoli, M. R. (2021). Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy). Appl. Sci. 11 (9), 4254. doi:10.3390/app11094254 ViDEPI project (2009). Visibilità dei dati afferenti all’attività di esplorazione petrolifera in Italia Ministero dello sviluppo economico DGRME - Società Geologica Italiana, Assomineraria. Available at: https://www.videpi.comTest. Vuan, A., Klin, P., Laurenzano, G., and Priolo, E. (2011). Far-Source Long-Period Displacement Response Spectra in the Po and Venetian Plains (Italy) from 3D Wavefield Simulations. Bull. Seismol. Soc. Am. 101 (3), 1055–1072. doi:10.1785/ 0120090371 Wang, J. H. (2008). Urban Seismology in the Taipei Metropolitan Area: Review and Prospective. TAO Terr. Atmos. Ocean. Sci. 19 (3), 2. doi:10.3319/tao.2008.19.3.213(t) Wathelet,M.,Chatelain, J.-L.,Cornou, C.,Giulio, G. D.,Guillier, B.,Ohrnberger,M., et al. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seism. Soc. Lett. 91 (3), 1878–1889. doi:10.1785/0220190360 Wathelet, M., Jongmans, D., Ohrnberger, M., and Bonnefoy-Claudet, S. (2008). Array Performances for Ambient Vibrations on a Shallow Structure and Consequences over V S Inversion. J. Seismol. 12, 1–19. doi:10.1007/s10950-007-9067-x Wessel, P., and Smith, W. H. F. (1995). New Version of the Generic Mapping Tools. EOS Trans. AGU 76, 329. doi:10.1029/95eo00198; http://hdl.handle.net/2122/16218Test; https://www.frontiersin.org/articles/10.3389/feart.2022.915083/fullTest