يعرض 1 - 10 نتائج من 289 نتيجة بحث عن '"FISSION-TRACK ANALYSIS"', وقت الاستعلام: 0.92s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: The study was carried out as part of the Grant of the President of the Russian Federation МК-3510.2022.1.5 and that of the state assignment of the IGM SB RAS 122041400214-9, Исследование выполнено при финансовой поддержке гранта Президента Российской Федерации МК-3510.2022.1.5 и в рамках государственного задания ИГМ СО РАН (№ 122041400214-9)

    المصدر: Geodynamics & Tectonophysics; Том 14, № 6 (2023); 0729 ; Геодинамика и тектонофизика; Том 14, № 6 (2023); 0729 ; 2078-502X

    وصف الملف: application/pdf

    العلاقة: https://www.gt-crust.ru/jour/article/view/1759/786Test; https://www.gt-crust.ru/jour/article/view/1759/788Test; Arzhannikova A.V., Jolivet M., Arzhannikov S.G., Vassallo R., Chauvet A., 2013. The Time of the Formation and Destruction of the Meso-Cenozoic Peneplanation Surface in East Sayan. Russian Geology and Geophysics 54 (7), 685–694. https://doi.org/10.1016/j.rgg.2013.06.004Test.; Берзин Н.А., Кунгурцев Л.В. Геодинамическая интерпретация геологических комплексов Алтае-Саянской области // Геология и геофизика. 1996. Т. 37. № 1. С. 63–81.; Buslov M.M., 2011. Tectonics and Geodynamics of the Central Asian Fold Belt: The Role of Late Paleozoic Large-Amplitude Strike-Slip Faults. Russian Geology and Geophysics 52 (1), 52–71. https://doi.org/10.1016/j.rgg.2010.12.005Test.; Буслов М.М. Террейновая тектоника Центрально-Азиатского складчатого пояса // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 641–665. https://doi.org/10.5800/GT-2014-5-3-0147Test.; Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Chen M., Stijn G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A., 2013. Tectonics and Geodynamics of Gorny Altai and Adjacent Structures of the Altai-Sayan Folded Area. Russian Geology and Geophysics 54 (10), 1250–1271. https://doi.org/10.1016/j.rgg.2013.09.009Test.; Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Yu., Semakov N.N., Kiryanova A.P., 2004. Late Paleozoic Faults of the Altai Region, Central Asia: Tectonic Pattern and Model of Formation. Journal of the Asian Earth Science 23 (5), 655–671. https://doi.org/10.1016/S1367-9120Test(03)00131-7.; De Grave J., Buslov M.M., Van den Haute P., Metcalf J., Dehandschutter B., McWilliams M.O., 2009. Multi-Method Chronometry of the Teletskoye Graben and Its Basement, Siberian Altai Mountains: New Insights on Its Thermo-Tectonic Evolution. Geological Society of London Special Publications 324, 237–259. https://doi.org/10.1144/SP324.17Test.; De Grave J., De Pelsmaeker E., Zhimulev F.I., Glorie S., Buslov M.M., Van den Haute P., 2014. Meso-Cenozoic Building of the Northern Central Asian Orogenic Belt: Thermotectonic History of the Tuva Region. Tectonophysics 621, 44–59. https://doi.org/10.1016/j.tecto.2014.01.039Test.; De Grave J., Glorie S., Zhimulev F.I., Buslov M.M., Elburg M., Vanhaecke F., Van den Haute P., 2011. Emplacement and Exhumation of the Kuznetsk–Alatau Basement (Siberia): Implications for the Tectonic Evolution of the Central Asian Orogenic Belt and Sediment Supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 23 (4), 248–256. https://doi.org/10.1111/j.1365-3121.2011.01006.xTest.; Didenko А.N., Mossakovsky А.А., Pechersky D.M., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1994. Geodynamics of Paleozoic Oceans of Central Asia. Russian Geology and Geophysics 35 (7–8), 59–75.; Dobretsov N.L., 2003. Mantle Plumes and Their Role in the Formation of Anorogenic Granitoids. Russian Geology and Geophysics 44 (12), 1243–1261.; Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician Tectonics and Geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71–82. https://doi.org/10.1016/j.rgg.2006.12.006Test.; Dobretsov N.L., Buslov M.M., Delvaux D., Berzin N.A., Ermikov V.D., 1996. Mesoand Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes. International Geology Review 38 (5), 430–466. https://doi.org/10.1080/00206819709465345Test.; Dobretsov N.L., Buslov M.M., Vernikovsky V.A., 2003. Neoproterosoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Breakup of Rodinia. Gondwana Research 6 (2), 143–159. https://doi.org/10.1016/S1342-937XTest(05)70966-7.; Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., 2013. Late Paleozoic – Mesozoic Subduction-Related Magmatism at the Southern Margin of the Siberian Continent and the 150 Million-Year History of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences 62, 79–97. https://doi.org/10.1016/j.jseaes.2012.07.023Test.; Gallagher K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth 117 (В2), B02408. https://doi.org/10.1029/2011JB008825Test.; Gallagher K., Brown R.W., 1999. Denudation and Uplift at Passive Margins: The Record on the Atlantic Margin of Southern Africa. Philosophical Transactions of the Royal Society A. Mathematical Physical and Engineering Sciences 357 (1753), 835–859. https://doi.org/10.1098/rsta.1999.0354Test.; Gordienko I.V., 2004. Volcanism in Various Geodynamic Settings of the Central Asian Orogenic Belt. Lithosphere (3), 4–16 (in Russian) [Гордиенко И.В. Вулканизм различных геодинамических обстановок Центрально-Азиатского складчатого пояса // Литосфера. 2004. № 3. С. 4–16].; Гордиенко И.В. Связь субдукционного и плюмового магатизма на активных границах литосферных плит в зоне взаимодействия Сибирского континента и Палеоазиатского океана в неопротерозое и палеозое // Геодинамика и тектонофизика. 2019. Т. 10. № 2. С. 405–457. https://doi.org/10.5800/GT-2019-10-2-0420Test.; Green O.R., Searle M.P., Corfield R.I., Corfield R.M., 2008. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). The Journal of Geology 116 (4), 331–353. https://doi.org/10.1086/588831Test.; Haq B.U., Hardenbol J., Vail P.R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science 235 (4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156Test.; Jolivet M., Arzhannikova N., Frolov A.O., Arzhannikov S., Kulagina N., Akulova V., Vassallo R., 2017. Late Jurassic – Early Cretaceous Paleoenvironment Evolution of the Transbaikal Basins (SE Siberia): Implications for the Mongol-Okhotsk Orogeny. Bulletin Societe Geologique de France 188 (1–2), 9. https://doi.org/10.1051/bsgf/2017010Test.; Kapp P., DeCelles P.G., Gehrels G.E., Heizler M., Ding L., 2007. Geological Records of the Lhasa–Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of American Bulletin 119 (7–8), 917–932. https://doi.org/10.1130/B26033.1Test.; Ketcham R.A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry 58 (1), 275–314. https://doi.org/10.2138/rmg.2005.58.11Test.; Ketcham R.A., Carter A., Donelick R.A., Barbarand J., Hurford A.J., 2007. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist 92 (5–6), 799–810. https://doi.org/10.2138/am.2007.2281Test.; Kohn B.P., Gleadow A.J.W., Brown R.W., Gallagher K., Lorencak M., Noble W.P., 2005. Visualizing Thermotectonic and Denudation Histories Using Apatite Fission-Track Thermochronology. Reviews in Mineralogy and Geochemistry 58 (1), 527–565. https://doi.org/10.2138/rmg.2005.58.20Test.; Kohn B.P., Gleadow A.J.W., Brown R.W., Gallagher K., O’Sullivan P.B., Foster D.A., 2002. Shaping the Australian Crust over the Last 300 Million Years: Insights from Fission Track Thermotectonic and Denudation Studies of Key Terranes. Australian Journal of Earth Science 49 (4), 697–717. https://doi.org/10.1046/j.1440-0952.2002.00942.xTest.; Kominz M.A., 1984. Oceanic Ridge Volume and Sea-Level Change an Error Analysis. In: J.S. Schlee (Ed.), Interregional Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geologists, p. 109–127. https://doi.org/10.1306/M36440C9Test.; Лебедев В.И., Черезов А.М., Кужугет К.С., Лебедева М.Ф., Лебедева С.В., Черезова О.С., Чупикова С.А. Геологические формации, глубинная геодинамика и сейсмичность террейнов Внутренней Азии (Тува и Северо-Западная Монголия) // Состояние и освоение природных ресурсов Тувы и сопредельных регионов Центральной Азии. Геоэкология природной среды и общества. Кызыл: ТувИКОПР СО РАН, 2001. С. 34–45.; Лебедев В.И., Дучков А.Д., Каменский И.Л., Рычкова К.М., Чупикова С.А. Сейсмогеология и геотермика территории Тувы // Вестник Тувинского государственного университета. Естественные и сельскохозяйственные науки. 2016. Т. 2. С. 112–126.; Molnar P., Tapponnier P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419Test.; Müller R.D., Sdrolias M., Gaina C., Roest W.R., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World’s Ocean Crust. Geochemistry, Geophysics, Geosystems 9 (4), Q04006. https://doi.org/10.1029/2007GC001743Test.; Novikov I.S., Zhimulev F.I., Vetrov E.V., Savelieva P.Yu., 2019. Mesozoic and Cenozoic Geologic History and Surface Topography of the Northwestern Altai-Sayan Area. Russian Geology and Geophysics 60 (7), 781–792. https://doi.org/10.15372/RGG2019054Test.; Овсюченко А.Н., Бутанаев Ю.В. Сейсмическая история Алтае-Саянского региона и место в ней тувинских землетрясений 2011–2012 гг. // Новые исследования Тувы. 2017. Т. 1. С. 162–180. https://doi.org/10.25178/nit.2017.1.11Test.; Pitman W.C., 1978. Relationship between Eustacy and Stratigraphic Sequences of Passive Margins. GSA Bulletin 89 (9), 1389–1403. https://doi.org/10.1130/0016-7606Test(1978)892.0.CO;2.; Schwab M., Ratschbacher L., Siebel W., McWilliams M., Minaev V., Lutkov V., Chen F., Stanek K., Nelson B., Frisch F., 2004. Assembly of the Pamirs: Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics 23 (4), TC4002. https://doi.org/10.1029/2003TC001583Test.; Sengör A.M.C., Natal’in B.A., Burtman V.S., 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature 364, 299–307. https://doi.org/10.1038/364299a0Test.; Скляров Е.В., Мазукабзов А.М., Мельников А.И. Комплексы метаморфических ядер кордильерского типа. Новосибирск: Изд-во СО РАН, 1997. 182 с.; Sorokin A.A., Zaika V.A., Kovach V.P., Kotov A.B., Xu W., Yang H., 2020. Timing of Closure of the Eastern Mongol – Okhotsk Ocean: Constraints from U-Pb and Hf Isotopic Data of Detrital Zircons from Metasediments along the Dzhagdy Transect. Gondwana Research 81, 58–78. https://doi.org/10.1016/j.gr.2019.11.009Test.; Величко А.А. Общие особенности изменений ландшафтов и климата Северной Евразии в кайнозое. Изменение климата и ландшафтов за последние 65 миллионов лет (кайнозой: от палеоцена до голоцена). М.: ГЕОС, 1999. С. 219–233.; Ветров Е.В. Эволюция термотектонических событий Юго-Восточного Алтая в позднем мезозое и кайнозое по данным трековой термохронологии апатита: Дис. . канд. геол.-мин. наук. 2016. М., 200 с.; Vetrov E.V., Buslov M.M., De Grave J., 2016. Evolution of Tectonic Events and Topography in Southeastern Gorny Altai in the Late Mesozoic – Cenozoic (Data from Apatite Fission Track Thermochronology). Russian Geology and Geophysics 57 (1), 95–110. https://doi.org/10.1016/j.rgg.2016.01.007Test.; Vetrov E.V., Chernykh A.I., Babin G.A., 2019. Early Paleozoic Granitoid Magmatism in the East Tannu-Ola Sector of the Tuvinian Magmatic Belt: Geodynamic Setting, Age, and Metallogeny. Russian Geology and Geophysics 60 (5), 492–513, https://doi.org/10.15372/RGG2019047Test.; Vetrov E.V., De Grave J., Kotler P.D., Kruk N.N., Zhigalov S.V., Babin G.A., Fedoseev G.S., Vetrova N.I., 2021a. Evolution of the Kolyvan-Tomsk Granitoid Magmatism (Central Siberia): Insights into the Tectonic Transition from Post-Collision to Intraplate Settings in the Northwestern Part of the Central Asian Orogenic Belt. Gondwana Research 93, 26–47. https://doi.org/10.1016/j.gr.2021.01.008Test.; Vetrov E.V., De Grave J., Vetrova N.I., 2022. The Tectonic Evolution Paleozoic Tannuola Terrane of Tuva in the Mesozoic and Cenozoic: Data of Fission-Track Thermochronology of Apatite. Geotectonics 56, 471–485 https://doi.org/10.1134/S0016852122040094Test.; Vetrov E.V., De Grave J., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Van Ranst G., Mikhailova P.I., 2020. Tectonic History of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from Multi-Method Geochronology. Minerals 10 (1), 56. https://doi.org/10.3390/min10010056Test.; Vetrov E.V., De Grave J., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Van Ranst G., Mikhailova P.I., 2021b. Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement. Minerals 11 (6), 604. https://doi.org/10.3390/min11060604Test.; Vladimirov V.G., Vladimirov A.G., Gibsher A.S., Travin A.V., Rudnev S.N., Shemelina I.V., Barabash N.V., Savinykh Ya.V., 2005. Model of the Tectonometamorphic Evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a Reflection of the Early Caledonian Accretion-Collision Tectogenesis. Doklady Earth Sciences 405, 1159–1165.; Wagner G.A., Van den Haute P., 1992. Fission Track-Dating. Springer, Dordrecht, 285 p. https://doi.org/10.1007/978-94-011-2478-2Test.; Wang B., Cluzel D., Shu L., Faure M., Charvet J., Chen Y., Meffre S., de Jong K., 2009. Evolution of Calc-Alkaline to Alkaline Magmatism through Carboniferous Convergence to Permian Transcurrent Tectonics, Western Chinese Tianshan. International Journal of Earth Sciences 98, 1275–1298. https://doi.org/10.1007/s00531-008-0408-yTest.; Wilhem C., Windley B.F., Stampfli G.M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews 113 (3–4), 303–341. https://doi.org/10.1016/j.earscirev.2012.04.001Test.; Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for the Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. https://doi.org/10.1144/0016-76492006-022Test.; Xiao W., Windley F., Allen B., Han C., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research 23 (4), 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012Test.; Yang Y.-T., Song C.-C., He S., 2015. Jurassic Tectonostratigraphic Evolution of the Junggar Basin, NW China: A Record of Mesozoic Intraplate Deformation in Central Asia. Tectonics 34 (1), 86–115. https://doi.org/10.1002/2014TC003640Test.; Ярмолюк В.В., Лебедев В.И., Сугоракова А.М. Восточно-Тувинский ареал новейшего вулканизма Центральной Азии: этапы, продукты и характер вулканической активности // Вулканология и сейсмология. 2001. Т. 3. С. 3–32.; Yin A., Harrison T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Earth and Planetary Sciences Annual Review 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211Test.; Zhimulev F.I., Vetrov E.V., Novikov I.S., Van Ranst G., Nachtergaele S., Dokashenko S.A., De Grave J., 2021. Mesozoic Intracontinental Orogeny in the Tectonic History of the Kolyvan’–Tomsk Folded Zone (Southern Siberia): A Synthesis of Geological Data and Results of Apatite Fission Track Analysis. Russian Geology and Geophysics 62 (9), 1006–1020. https://doi.org/10.2113/RGG20204172Test.; Zhu D.-C., Li S.-M., Cawood P.A., Wang Q., Zhao Z.-D., Liu S.-A., Wang L.-Q., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023Test.; Zhu D.-C., Zhao Z.D., Niu Y., Dilek Y., Hou Z.Q., Mo X.X., 2013. The Origin and Precenozoic Evolution of the Tibetan Plateau. Gondwana Research 23 (4), 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002Test.; Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Кн. 1. 328 с.; Zorin Y., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951Test(99)00042-6.; https://www.gt-crust.ru/jour/article/view/1759Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Institut des Sciences de la Terre de Paris (iSTeP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), CNRS INSU Syster program, BRGM RGF program

    المصدر: ISSN: 0040-1951.

  5. 5
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1999 Apr . 357(1753), 835-859.

  9. 9
    دورية أكاديمية

    المؤلفون: Goutis, Constantinos

    المصدر: Journal of the American Statistical Association, 1997 Dec 01. 92(440), 1445-1450.

  10. 10
    دورية أكاديمية

    المصدر: The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 1996 Dec 01. 24(4), 569-581.