يعرض 1 - 10 نتائج من 196 نتيجة بحث عن '"Experimental performance"', وقت الاستعلام: 1.26s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    مؤتمر
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المؤلفون: Ahmed Ghazy, Raid Alrowais

    المصدر: Sustainability; Volume 14; Issue 23; Pages: 15755

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

  5. 5
    رسالة جامعية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    وصف الملف: 10 páginas; application/pdf

    العلاقة: 275; 266; 33; Journal of King Saud University. Engineering sciences; Box, G.E., Wilson, K.B., 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc.: Ser. B (Methodological) 13, 1–38. Cavazzuti, M., 2013. Design of experiments. In: Optimization Methods. Springer, pp. 13–42.; Power output of the turbine at several flow rate values and number of nozzles. 274 E. Gallego et al. / Journal of King Saud University – Engineering Sciences 33 (2021) 266–275; Cobb, B.R., Sharp, K.V., 2013. Impulse (turgo and pelton) turbine performance characteristics and their impact on pico-hydro installations. Renew. Energy 50, 959–964.; Credwson, E., 1922. Design and performance of a new impulse water-turbine. In: Minutes of the Proceedings of the Institution of Civil Engineers. Thomas Telford- ICE Virtual Library, pp. 396–407.; Dhande, D., Pande, D., 2018. Multiphase flow analysis of hydrodynamic journal bearing using cfd coupled fluid structure interaction considering cavitation. J. King Saud Univ.-Eng. Sci. 30, 345–354.; Ezhilsabareesh, K., Rhee, S.H., Samad, A., 2018. Shape optimization of a bidirectional impulse turbine via surrogate models. Eng. Appl. Comput. Fluid Mech. 12, 1–12.; Gaiser, K., Erickson, P., Stroeve, P., Delplanque, J.P., 2016. An experimental investigation of design parameters for pico-hydro turgo turbines using a response surface methodology. Renew. Energy 85, 406–418.; Kaunda, C.S., Kimambo, C.Z., Nielsen, T.K., 2014. A technical discussion on microhydropower technology and its turbines. Renew. Sustain. Energy Rev. 35, 445–459.; Khurana, S., Goel, V., Singh, G., 2017. Effect of silt and jet diameter on performance of turgo impulse hydro turbine. In: ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers Digital Collection.; Khuri, A.I., Mukhopadhyay, S., 2010. Response surface methodology. Wiley Interdiscip. Rev.: Comput. Stat. 2, 128–149.; Koukouvinis, P.K., Anagnostopoulos, J.S., Papantonis, D.E., 2011. Sph method used for flow predictions at a turgo impulse turbine: Comparison with fluent. World Acad. Sci. Eng. Technol. 79, 659–666; Manshadi, M.D., Jamalinasab, M., 2017. Optimizing a two-element wing model with morphing flap by means of the response surface method. Iran. J. Sci. Technol. Trans. Mech. Eng. 41, 343–352.; Mason, R.L., Gunst, R.F., Hess, J.L., 2003. Statistical Design and Analysis of Experiments: with Applications to Engineering and Science, vol. 474. John Wiley & Sons; Mendes, M., Pala, A., 2003. Type i error rate and power of three normality tests. Pakistan J. Inf. Technol. 2, 135–139.; Mishra, S., Singal, S., Khatod, D., 2012. Costing of a small hydropower projects. Int. J. Eng. Technol. 4, 239.; Montgomery, D.C., Peck, E.A., Vining, G.G., 2012. Introduction to Linear Regression Analysis, vol. 821. John Wiley & Sons.; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2016. Response Surface; Methodology: Process and Product Optimization using Designed Experiments. John Wiley & Sons; Owolabi, R.U., Usman, M.A., Kehinde, A.J., 2018. Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J. King Saud Univ.-Eng. Sci. 30, 22–30.; Razali, N.M., Wah, Y.B., et al., 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2, 21–33.; Sari, M.A., Badruzzaman, M., Cherchi, C., Swindle, M., Ajami, N., Jacangelo, J.G., 2018. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. J. Environ. Manage. 228, 416–428.; Tiago Filho, G.L., dos Santos, I.F.S., Barros, R.M., 2017. Cost estimate of small hydroelectric power plants based on the aspect factor. Renew. Sustain. Energy Rev. 77, 229–238.; Trivedi, C., Cervantes, M.J., Gunnar Dahlhaug, O., 2016. Numerical techniques applied to hydraulic turbines: a perspective review. Appl. Mech. Rev. 68.; Wallace, A., Whittington, H., 2008. Performance prediction of standardized impulse turbines for micro-hydro. Sutton. Int. Water Power Dam Constr; Williamson, S., Stark, B., Booker, J., 2012. Experimental optimisation of a low-head pico hydro turgo turbine. In: 2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET). IEEE, pp. 322–327.; Williamson, S., Stark, B., Booker, J., 2013. Performance of a low-head pico-hydro turgo turbine. Appl. Energy 102, 1114–1126.; Yap, B.W., Sim, C.H., 2011. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 81, 2141–2155; Yuce, M.I., Muratoglu, A., 2015. Hydrokinetic energy conversion systems: a technology status review. Renew. Sustain. Energy Rev. 43, 72–82.; Zahraee, S.M., Rohani, J.M., Wong, K.Y., 2018. Application of computer simulation experiment and response surface methodology for productivity improvement in a continuous production line: case study. J. King Saud Univ.-Eng. Sci. 30, 207–217.; Zˇidonis, A., Benzon, D.S., Aggidis, G.A., 2015. Development of hydro impulse turbines and new opportunities. Renew. Sustain. Energy Rev. 51, 1624–1635.; https://dspace.tdea.edu.co/handle/tdea/2677Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    مؤتمر

    المساهمون: Hadfi, Rafik (editor), Ito, Takayuki (editor), Arisaka, Ryuta (editor), Aydoğan, Reyhan (editor)

    العلاقة: http://www.scopus.com/inward/record.url?scp=85151070730&partnerID=8YFLogxKTest; Recent Advances in Agent-Based Negotiation--978-981-99-0560-7; 13th International Workshop on Automated Negotiations, ACAN 2022 held in conjunction with 31st International Joint Conference on Artificial Intelligence, IJCAI 2022--d1fe263d-394d-4d17-9a8d-5795f74d6755; http://resolver.tudelft.nl/uuid:b30d98dc-27e6-42fb-93f0-aa02d4fc617aTest; https://doi.org/10.1007/978-981-99-0561-4_4Test