يعرض 1 - 10 نتائج من 29 نتيجة بحث عن '"Equihua, Julian"', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
  3. 3
    دورية أكاديمية

    المساهمون: Chialvo, Dante R., CONACyT, Cátedras CONACyT fellowship program, Sistema Nacional de Investigadores, CONACyT Posdoctoral Fellowship, CONACyT scholarship, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (MX), University of Leeds, Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)

    المصدر: PLOS ONE ; volume 13, issue 7, page e0200382 ; ISSN 1932-6203

  4. 4
    دورية أكاديمية

    مصطلحات موضوعية: Ecology and Environment

    وصف الملف: text

    العلاقة: https://nora.nerc.ac.uk/id/eprint/515990/1/N515990PP.pdfTest; van der Sande, Masha T.; Poorter, Lourens; Balvanera, Patricia; Kooistra, Lammert; Thonicke, Kirsten; Boit, Alice; Dutrieux, Loıc P.; Equihua, Julian; Gerard, France; Herold, Martin; Kolb, Melanie; Simoes, Margareth; Pena-Claros, Marielos. 2017 The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability, 26-27. 69-76. https://doi.org/10.1016/j.cosust.2017.01.016Test

  5. 5
  6. 6
  7. 7
    كتاب

    المصدر: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications ; Lecture Notes in Computer Science ; page 253-261 ; ISSN 0302-9743 1611-3349 ; ISBN 9783030134686 9783030134693

  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Guevara, Mario; Arroyo, Carlos; Brunsell, Nathaniel; Cruz, Carlos O.; Domke, Grant; Equihua, Julian; Etchevers, Jorge; Hayes, Daniel; Hengl, Tomislav; Ibelles, Alejandro; Johnson, Kris; Jong, Ben; Libohova, Zamir; Llamas, Ricardo; Nave, Lucas; Ornelas, Jose L.; Paz, Fernando; Ressl, Rainer; Schwartz, Anita; Victoria, Arturo; Wills, Skye; Vargas, Rodrigo (2020). "Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010)." Global Biogeochemical Cycles 34(3): no-no.; https://hdl.handle.net/2027.42/154249Test; Global Biogeochemical Cycles; Paz Pellat, F., Argumedo Espinoza, J., Cruz Gaistardo, C. O., Etchevers, J. D., & de Jong, B. ( 2016 ). Distribución especial y temporal del carbono orgánico del suelo en los ecosistemas terrestres. Terra Latinoamericana, 34 ( 3 ), 289 – 310.; Nelson, D. W., & Sommers, L. E. ( 1982 ). Total carbon, organic carbon, and organic matter. In A. L. Page, et al. (Eds.), Methods of soil Analysis. Part 2, Agron. Monogr., ( 2nd ed., Vol. 9, pp. 539 – 580 ). Madison, WI: ASA and SSSA.; North American Land Cover at 250 m spatial resolution ( 2010 ). Produced by Natural Resources Canada/Canadian Center for Remote Sensing (NRCan/CCRS), United States Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Comisión Nacional Forestal (CONAFOR).; Ogle, S. M., Breidt, F. J., Easter, M., Williams, S., Killian, K., & Paustian, K. ( 2010 ). Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process‐based model. Global Change Biology, 16, 810 – 822.; Oliver, M. A., & Webster, R. ( 2014 ). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56 – 69. https://doi.org/10.1016/j.catena.2013.09.006Test; O’Rourke, S. M., Angers, D. A., Holden, N. M., & McBratney, A. B. ( 2015 ). Soil organic carbon across scales. Global Change Biology, 21 ( 10 ), 3561 – 3574. https://doi.org/10.1111/gcb.12959Test; Padarian, J., Minasny, B., & McBratney, A. B. ( 2015 ). Using Google’s cloud‐based platform for digital soil mapping. Computers & Geosciences, 83, 80 – 88.; Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R. C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W., & Jahn, M. ( 2019 ). Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management, 10 ( 6 ), 567 – 587. https://doi.org/10.1080/17583004.2019.1633231Test; Pike, R. J., Evans, I. S., & Hengl, T. ( 2009 ). Chapter 1 Geomorphometry: A Brief Guide. In Developments in Soil Science (Vol. 33, pp. 3 – 30 ). Elsevier.; Poeplau, C., Vos, C., & Don, A. ( 2017 ). Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. The Soil, 3, 61 – 66.; R Core Team ( 2018 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.rTest‐project.org/; Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., & Thompson, J. ( 2018 ). Soil property and class maps of the conterminous United States at 100‐meter spatial resolution. Soil Science Society of America Journal, 82, 186 – 201. https://doi.org/10.2136/sssaj2017.04.0122Test; Reuter, H. I., & Hengl, T. ( 2012 ). Worldgrids—A public repository of global soil covariates. In B. Miasny, B. P. Malone, & A. B. McBratney (Eds.), Digital property and class maps of the conterminous—Proceedings of the 5th Global Workshop on Digital Soil Mapping, (pp. 287 – 292. Available). Sydney: CRC Press. https://doi.org/10.1201/b12728Test‐57; Saini, G. ( 1966 ). Organic matter as a measure of bulk density of soil. Nature, 210 ( 5042 ), 1295 – 1296.; Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A. B., McKenzie, N. J., de Lourdes Mendonça‐Santos, M., Minasny, B., Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T.‐G., Vanlauwe, B., Walsh, M. G., Winowiecki, L. A., & Zhang, G.‐L. ( 2009 ). Digital soil map of the world. Science, 325 ( 5941 ), 680 – 681. https://doi.org/10.1126/science.1175084Test; Sanderman, J., Hengl, T., & Fiske, G. J. ( 2017 ). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114, 9575 – 9580.; Siebe, C., Jahn, R., & Stahr, K. ( 2006 ). Manual para la descripción y evaluación ecológica de suelos en el campo, ( 2nd ed. ). Sociedad Mexicana de la Ciencia del Suelo A. C.: Publicación Especial.; Singh, B. P., Setia, R., Wiesmeier, M., & Kunhikrishnan, A. ( 2018 ). Agricultural Management Practices and Soil Organic Carbon Storage. Soil Carbon Storage, 207 – 244. https://doi.org/10.1016/b978Test‐0‐12‐812766‐7.00007‐x; Soil Survey Staff ( 1999 ). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, ( 2nd ed. p. 436 ). Washington, DC: Natural Resources Conservation Service. U.S. Department of Agriculture Handbook.; Soil Survey Staff. 2014. Soil carbon assessment: methodology, sampling, and summary. Soil Survey Investigations Report No. 51, Version 2.0. R. Burt and Soil Survey Staff (ed.). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service. 487 pp.; Soil Survey Staff and T. Loecke. 2016. Rapid carbon assessment: methodology, sampling, and summary. S. Wills (ed.). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service.; Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. ( 2013 ). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80 – 99. https://doi.org/10.1016/j.agee.2012.10.001Test; Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J. ( 2015 ). Global soil organic carbon assessment. Global Food Security, 6, 9 – 16. https://doi.org/10.1016/j.gfs.2015.07.001Test; Stoorvogel, J. J., Bakkenes, M., Temme, A. J. A. M., Batjes, N. H., & ten Brink, B. J. E. ( 2016 ). S‐World: A global soil map for environmental modelling. Land Degradation & Development, 28, 22 – 33.; Szatmári, G., Barta, K., & Pásztor, L. ( 2015 ). An application of a spatial simulated annealing sampling optimization algorithm to support digital soil mapping. Hungarian Geographical Bulletin, 64 ( 1 ), 35 – 48. https://doi.org/10.15201/hungeobull.64.1.4Test; Tank, S. E., Fellman, J. B., Hood, E., & Kritzberg, E. S. ( 2018 ). Beyond respiration: Controls on lateral carbon fluxes across the terrestrial‐aquatic interface. Limnology and Oceanography Letters, 3 ( 3 ), 76 – 88.; Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., Ren, W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q., Zhang, B., & Zeng, N. ( 2015 ). Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 29, 775 – 792. https://doi.org/10.1002/2014GB005021Test; Tifafi, M., Guenet, B., & Hatté, C. ( 2017 ). Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France. Global Biogeochemical Cycles, 32, 42 – 56. https://doi.org/10.1002/2017GB005678Test; van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E., Reich, P. B., Schuur, E. A. G., & Hungate, B. A. ( 2018 ). Predicting soil carbon loss with warming. Nature, 554 ( 7693 ), E4 – E5. https://doi.org/10.1038/nature25745Test; Vargas, R., Alcaraz‐Segura, D., Birdsey, R., Brunsell, N. A., Cruz‐Gaistardo, C. O., de Jong, B., Etchevers, J., Guevara, M., Hayes, D. J., Johnson, K., Loescher, H. W., Paz, F., Ryu, Y., Sanchez‐Mejia, Z., & Toledo‐Gutierrez, K. P. ( 2017 ). Enhancing interoperability to facilitate implementation of REDD+: case study of Mexico. Carbon Management, 8 ( 1 ), 57 – 65. https://doi.org/10.1080/17583004.2017.1285177Test; Vaysse, K., & Lagacherie, P. ( 2017 ). Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, 291, 55 – 64.; Vázquez‐Lule, A., Colditz, R., Herrera‐Silveira, J., Guevara, M., Rodríguez‐Zúñiga, M. T., Cruz, I., Ressl, R., & Vargas, R. ( 2019 ). Greenness trends and carbon stocks of mangroves across Mexico. Environmental Research Letters, 14 ( 7 ), p.075010.; Villarreal, S., Guevara, M., Alcaraz‐Segura, D., Brunsell, N., Hayes, D., Loescher, H., & Vargas, R. ( 2018 ). Ecosystem functional diversity and the representativeness of environmental networks across the conterminous United States. Agricultural and Forest Meteorology, 262, 423 – 433. https://doi.org/10.1016/j.agrformet.2018.07.016Test; Viscarra‐Rossel, R. A., Webster, R., Bui, E. N., & Baldock, J. A. ( 2014 ). Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Global Change Biology, 20 ( 9 ), 2953 – 2970. https://doi.org/10.1111/gcb.12569Test; Vitharana, U. W. A., Mishra, U., & Mapa, R. B. ( 2019 ). National soil organic carbon estimates can improve global estimates. Geoderma, 337, 55 – 64. https://doi.org/10.1016/j.geoderma.2018.09.005Test; Walsh, B., Ciais, P., Janssens, I. Peñuelas, J., Riahi, K., Rydzak, F., van Vuuren, D. P., & Obersteiner, M. ( 2017 ). Pathways for balancing CO 2 emissions and sinks. Nature Communications, 8, 14856. https://doi-org.udel.idm.oclc.org/10.1038/ncomms14856Test; Wieder, W. R., Boehnert, J., Bonan, G. B., & Langseth, M. ( 2014 ). Regridded Harmonized World Soil Database v1.2. Data set. Available on‐line [http://daac.ornl.govTest] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1247Test; Wieder, W. R., Cleveland, C. C., Smith, W. K., & Todd‐Brown, K. ( 2015 ). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441 – 444.; Wijewardane, N. K., Ge, Y., Wills, S., & Loecke, T. ( 2016 ). Prediction of soil carbon in the conterminous United States: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project. Soil Science Society of America Journal, 80, 973.; Wilson, J. P. ( 2012 ). Digital terrain modeling. Geomorphology, 137, 107 – 121.; Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (Eds) ( 2018 ). Soil organic carbon mapping cookbook, ( 2nd ed. p. 220 ). Rome, FAO.; Adame, M. F., Santini, N. S., Tovilla, C., Vázquez‐Lule, A., & Castro, L. ( 2015 ). Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands. Biogeosciences Discussions, 12, 1015 – 1045.; Adams, W. ( 1973 ). The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. European Journal of Soil Science, 24 ( 1 ), 10 – 17.; Adhikari, K., & Hartemink, A. E. ( 2017 ). Soil organic carbon increases under intensive agriculture in the Central Sands, Wisconsin, USA. Geoderma Regional, 10, 115 – 125. https://doi.org/10.1016/j.geodrs.2017.07.003Test; Ad‐hoc‐AG‐Boden. ( 2005 ). Bodenkundliche Kartieranleitung – 5. Auflage. Hannover, Germany. 438 pp.; Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Young, Y. S., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca‐Santos, M. D. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. ( 2014 ). Chapter Three—GlobalSoilMap: Toward a fine‐resolution global grid of soil properties. In L. S. Donald (Ed.), Advances in Agronomy [Internet], (pp. 93 – 134 ). Academic Press.; Arrouays, D., Lagacherie, P., & Hartemink, A. E. ( 2017 ). Digital soil mapping across the globe. Geoderma Regional, 9, 1 – 4.; Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Ewers Lewis, C. J., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. ( 2017 ). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7 ( 7 ), 523 – 528. https://doi.org/10.1038/nclimate3326Test; Banwart, S. S., Black, H. B., Cai, Z. Z., Gicheru, P. G., Joosten, H. J., Victoria, R. V., & Eleanor E. Milne, et al. ( 2014 ). Benefits of soil carbon: Report on the outcomes of an International Scientific Committee on Problems of the Environment Rapid Assessment Workshop. Carbon Management, 5 ( 2 ), 185 – 192.; Banwart, S. A., Bernasconi, S. M., Blum, W. E. H., de Souza, D. M., Chabaux, F., Duffy, C., Kercheva, M., Krám, P., Lair, G. J., Lundinm, L., Menon, M., Nikolaidis, N. P., Novak, M., Panagos, P., Ragnarsdottir, K. V., Robinson, D. A., Rousseva, S., de Ruiter, P., van Gaans, P., Weng, L., White, T., Zhang, B. ( 2017 ). Soil Functions in Earth’s Critical Zone. Quantifying and Managing Soil Functions in Earth’s Critical Zone ‐ Combining Experimentation and Mathematical Modelling, 1 – 27. https://doi.org/10.1016/bs.agron.2016.11.001Test; Batjes, N. H. ( 2016 ). Harmonized soil property values for broad‐scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61 – 68.; Batjes, N. H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., & Mendes de Jesus, J. ( 2017 ). WoSIS: providing standardised soil profile data for the world. Earth System Science Data, 9, 1 – 14.; Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. ( 1999 ). Modelling soil attribute depth functions with equal‐area quadratic smoothing splines. Geoderma, 91, 27 – 45.; Biwas, A., & Zhang, Y. ( 2018 ). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28 ( 1 ), 1 – 15. https://doi.org/10.1016/s1002Test‐0160(18)60001‐3; Bliss, N. B., Waltman, S. W., West, L. T., Neale, A., & Mehaffey, M. ( 2014 ). Distribution of soil organic carbon in the conterminous United States. New York, NY: Springer International Publishing.; Bolaños González, Y., Bolaños González, M. A., Paz Pellat, F., & Ponce Pulido, J. I. ( 2017 ). Estimación de carbono almacenado en bosques de oyamel y ciprés en Texcoco, Estado de México. Terra Latinoamericana, 35 ( 1 ), 73 – 86. Retrieved from. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187Test‐57792017000100073, https://doi.org/10.28940/terra.v35i1.243Test; Bond‐Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. ( 2018 ). Globally rising soil heterotrophic respiration over recent decades. Nature, 560 ( 7716 ), 80.; Bonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. ( 2016 ). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204 – 221.; Breiman, L. ( 2001 ). Random Forests. Machine Learning, 45, 5 – 32.; Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F. M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J. D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., & Zehner, C. ( 2014 ). Current systematic carbon‐cycle observations and the need for implementing a policy‐relevant carbon observing system. Biogeosciences, 11 ( 13 ), 3547 – 3602. https://doi.org/10.5194/bgTest‐11‐3547‐2014; Colditz, R. R., Pouliot, D., Llamas, R. M., Homer, C., Latifovic, R., Ressl, R. A., MenesesTovar, C., Victoria Hernández, A., Richardson, K. ( 2014 ). Detection of North American landcover change between 2005 and 2010 with 250m MODIS data. PhotogrammetricEngineering & Remote Sensing, 80 ( 10 ), 918 – 924.; Crowther, T. W., Todd‐Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel‐Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer‐Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., & Bradford, M. A. ( 2016 ). Quantifying global soil carbon losses in response to warming. Nature, 540 ( 7631 ), 104 – 108. https://doi.org/10.1038/nature20150Test; Cruz‐Cárdenas, G., López‐Mata, L., Ortiz‐Solorio, C. A., Villaseñor, J. L., Ortiz, E., Silva, J. T., & Estrada‐Godoy, F. ( 2014 ). Interpolation of Mexican soil properties at a scale of 1:1,000,000. Geoderma, 213, 29 – 35.; Cruz‐Gaistardo, C., & Paz‐Pellat, F. ( 2014 ). Mapa de carbono orgánico de los suelos de la República Mexicana. In F. Paz‐Pellat, J. Wong‐González, M. Bazan, & V. Saynes (Eds.), EstadoActual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2013, (p. 187 – 191 ). Texcoco, Estado de México, México, ISBN 978‐607‐96490‐1‐2: Programa Mexicano del Carbono.; de Gruijter, J. J., McBratney, A. B., Minasny, B., Wheeler, I., Malone, B. P., & Stockmann, U. ( 2016 ). Farm‐scale soil carbon auditing. Geoderma, 265, 120 – 130.; Delgado‐Baquerizo, M., Eldridge, D. J., Maestre, F. T., Karunaratne, S. B., Trivedi, P., Reich, P. B., & Singh, B. K. ( 2017 ). Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances, 3, e1602008.; Ding, J., Chen, L., Ji, C., Hugelius, G., Li, Y., Liu, L., Qin, S., Zhang, B., Yang, G., Li, F., Fang, K., Chen, Y., Peng, Y., Zhao, X., He, H., Smith, P., Fang, J., & Yang, Y. ( 2017 ). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10 ( 6 ), 420 – 424. https://doi.org/10.1038/ngeo2945Test; Domke, G. M., Perry, C. H., Walters, B. F., Nave, L. E., Woodall, C. W., & Swanston, C. W. ( 2017 ). Toward inventory‐based estimates of soil organic carbon in forests of the United States. Ecological Applications, 27, 1223 – 1235.; Drew, L. A. ( 1973 ). Bulk Density Estimation Based on Organic Matter Content of Some Minnesota Soils, St. Paul, Minn., School of Forestry, University of Minnesota, Digital Conservancy, available at: http://hdl.handle.net/11299/58293Test (last access: 16 July 2018); Evans, S. E., Burke, I. C., & Lauenroth, W. K. ( 2011 ). Controls on soil organic carbon and nitrogen in Inner Mongolia, China: A cross‐continental comparison of temperate grasslands. Global Biogeochemical Cycles, 25, GB3006. https://doi.org/10.1029/2010GB003945Test; FAO ( 2017 ). Soil Organic Carbon: the hidden potential. Rome, Italy: Food and Agriculture Organization of the United Nations.; FAO and ITPS. ( 2018 ). Global Soil Organic Carbon Map (GSOCmap) Technical report. Rome. 162pp.; FAO Guidelines for soil description Fourth edition, ( 2006 ). Rome, 109 pp. FAO and ITPS. 2018. Global Soil Organic Carbon Map (GSOCmap) Technical Report. Rome. 162 pp.; Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., & van der Velde, M. ( 2016 ). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications, 7, 11872.; Grigal, D., Brovold, S., Nord, W., & Ohmann, L. ( 1989 ). Bulk density of surface soils and peat in the north central united states. Canadian Journal of Soil Science, 69 ( 4 ), 895 – 900.; Grunwald, S. ( 2009 ). Multi‐criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152, 195 – 207.; Guerrero, E., Pérez, A., Arroyo, C., Equihua, J., & Guevara, M. ( 2014 ). Building a national framework for pedometric mapping: Soil depth as an example from Mexico. In D. Arrouays, N. McKenzie, J. Hempel, A. de Forges, & A. McBratney (Eds.), GlobalSoilMap, (pp. 103 – 108 ). Boca Raton FL: CRC Press.; Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo‐Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz‐Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez‐Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., & Vargas, R. ( 2018 ). No silver bullet for digital soil mapping: Country‐specific soil organic carbon estimates across Latin America. Soil, 4, 173 – 193. https://doi.org/10.5194/soilTest‐4‐173‐2018; Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., & Linderman, M. ( 2019 ). Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 337, 32 – 41. https://doi.org/10.1016/j.geoderma.2018.09.003Test; Guo, Z., Adhikari, K., Chellasamy, M., Greve, M. B., Owens, P. R., & Greve, M. H. ( 2019 ). Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma, 340, 303 – 312. https://doi.org/10.1016/j.geoderma.2019.01.023Test; Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C., Bond‐Lamberty, B., Lawrence, C., Loisel, J., Malhotra, A., Jackson, R. B., Ogle, S. M., Phillips, C., Ryals, R., Todd‐Brown, K., Vargas, R., Vergara, S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K., Crow, S. E., Silver, W. L., DeLonge, M., & Nave, L. E. ( 2017 ). Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology, 24, e705 – e718.; Hengl, T., & MacMillan, R. A. ( 2019 ). Predictive Soil Mapping with R ( 370 pp.). Wageningen, Netherlands: OpenGeoHub foundation. www.soilmapper.org, ISBN: 978‐0‐359‐30635‐0.; Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel‐Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., & Gonzalez, M. R. ( 2014 ). SoilGrids1km—Global soil information based on automated mapping. PLoS ONE, 9 ( 8 ), e105992. https://doi.org/10.1371/journal.pone.0105992Test; Hengl, T., Heuvelink, G. B. M., & Stein, A. ( 2004 ). A generic framework for spatial prediction of soil variables based on regression‐kriging. Geoderma, 120 ( 1 ), 75 – 93. https://doi.org/10.1016/j.geoderma.2003.08.018Test; Hengl, T., Mendes, J., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer‐Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. ( 2017 ). SoilGrids250m: Global gridded soil information based on Machine Learning. PLoS ONE, 12 ( 2 ), e0169748. https://doi.org/10.1371/journal.pone.0169748Test; Heuvelink, G. B. M. ( 2014 ). Uncertainty Quantification of GlobalSoilMap Products. In D. Arrouays, N. J. McKenzie, J. W. Hempel, A. C. R. de Forges, & A. B. McBratney (Eds.), GlobalSoilMap. Basis of the Global Soil Information System, (pp. 335 – 340 ). Oxon: Taylor & Francis, CRC press.; Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. ( 2009 ). Real‐time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35 ( 8 ), 1711 – 1721. https://doi.org/10.1016/j.cageo.2008.10.011Test; Hobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. ( 2015 ). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390 ( 1‐2 ), 111 – 127. https://doi.org/10.1007/s11104Test‐015‐2380‐1; Honeysett, J., & Ratkowsky, D. ( 1989 ). The use of ignition loss to estimate bulk density of forest soils. European Journal of Soil Science, 40 ( 2 ), 299 – 308.; INEGI‐Instituto Nagional de Geografia y Estadistica ( 2014 ). Diccionario de Datos Edafológicos escala 1:250000 (version 3) 55pp. http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/doc/dd_edafologicos_v3_250k.pdfTest; Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. ( 2017 ). The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48.; Jeffrey, D. ( 1970 ). A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. The Journal of Ecology, 297 – 299.; Jenny, H. ( 1941 ). Factors of soil formation: A system of quantitative pedology, (p. 304 ). New York: McGraw‐Hill.; Jones, C., & Falloon, P. ( 2009 ). Sources of uncertainty in global modelling of future soil organic carbon storage. In P. C. Baveye, M. Laba, & J. Mysiak (Eds.), Uncertainties in Environmental Modelling and Consequences for Policy Making, (pp. 283 – 315 ). Dordrecht: Springer Netherlands.; Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., & Powlson, D. ( 2005 ). Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 154 – 166.; Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi, M., Spetz, P., Kitunen, V., & Liski, J. ( 2010 ). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91 ( 2 ), 370 – 376. https://doi.org/10.1890/09Test‐0478.1; Köchy, M., Hiederer, R., & Freibauer, A. ( 2015 ). Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. The Soil, 1, 351 – 365.; Krasilnikov, P., Gutiérrez‐Castorena, M. d. C., Ahrens, R. J., Cruz‐Gaistardo, C. O., Sedov, S., & Solleiro‐Rebolledo, E. ( 2013 ). The Soils of Mexico. Dordrecht: Springer Netherlands.; Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. ( 1983 ). Optimization by simulated annealing. Science (New York, N.Y.), 220 ( 4598 ), 671 – 80. https://doi.org/10.1126/science.220.4598.671Test; Kuhn, M. ( 2008 ). Building predictive models in R using the caret Package. Journal of Statistical Software, 28, 1 – 26. https://doi.org/10.18637/jss.v028.i05Test; Lagacherie, P., Arrouays, D., Bourennane, H., Gomez, C., Martin, M., & Saby, N. P. A. ( 2019 ). How far can the uncertainty on a Digital Soil Map be known?: A numerical experiment using pseudo values of clay content obtained from Vis‐SWIR hyperspectral imagery. Geoderma, 337, 1320 – 1328. https://doi.org/10.1016/j.geoderma.2018.08.024Test; Lagacherie, P., & McBratney, A. B. ( 2006 ). Chapter 1 Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. In Developments in Soil Science, (Vol. 31, pp. 3 – 22 ). Amsterdam: Elsevier.; Lajtha, K., Bailey, V. L., McFarlane, K., Paustian, K., Bachelet, D., Abramoff, R., Angers, D., Billings, S. A., Cerkowniak, D., Dialynas, Y. G., Finzi, A., French, N. H. F., Frey, S., Gurwick, N. P., Harden, J., Johnson, J. M. F., Johnson, K., Lehmann, J., Liu, S., McConkey, B., Mishra, U., Ollinger, S., Paré, D., Pellat, F. P., Richter, D. d B., Schaeffer, S. M., Schimel, J., Shaw, C., Tang, J., Todd‐Brown, K., Trettin, C., Waldrop, M., Whitman, T., & Wickland, K. ( 2018 ). Chapter 12: Soils. In N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero‐Lankao, & Z. Zhu (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report, (pp. 469 – 506 ). Washington, DC, USA: U.S. Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch12Test; Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. ( 2009 ). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154, 138 – 152.; Malone, B. P., Styc, Q., Minasny, B., & McBratney, A. B. ( 2017 ). Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 290, 91 – 99.; McBratney, A., Mendonça, S. M., & Minasny, B. ( 2003 ). On digital soil mapping. Geoderma, 117, 3 – 52.; Meinshausen, N. ( 2006 ). Quantile Regression Forests. Journal of Machine Learning Research, 7, 983 – 999.; Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.‐S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer‐de‐Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.‐C., Vågen, T.‐G., van Wesemael, B., & Winowiecki, L. ( 2017 ). Soil carbon 4 per mille. Geoderma, 292, 59 – 86. https://doi.org/10.1016/j.geoderma.2017.01.002Test; Minasny, B., & McBratney, A. B. ( 2006 ). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32 ( 9 ), 1378 – 1388. https://doi.org/10.1016/j.cageo.2005.12.009Test; Minasny, B., McBratney, A. B., & Lark, R. M. ( 2008 ). Digital soil mapping technologies for countries with sparse data infrastructures. In A. E. Hartemink, A. McBratney, & M. d. L. Mendonça‐Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 15 – 30 ). Dordrecht: Springer Netherlands.; Minasny, B., McBratney, A. B., Malone, B. P., & Wheeler, I. ( 2013 ). Digital mapping of soil carbon. In Advances in agronomy (Vol. 118, pp. 1 – 47 ). Elsevier.; Murray‐Tortarolo, G., Friedlingstein, P., Sitch, S., Jaramillo, V. J., Murguía‐Flores, F., Anav, A., Liu, Y., Arneth, A., Arvanitis, A., Harper, A., Jain, A., Kato, E., Koven, C., Poulter, B., Stocker, B. D., Wiltshire, A., Zaehle, S., & Zeng, N. ( 2016 ). The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 13 ( 1 ), 223 – 238. https://doi.org/10.5194/bgTest‐13‐223‐2016; Naipal, V., Ciais, P., Wang, Y., Lauerwald, R., Guenet, B., & Van Oost, K. ( 2018 ). Global soil organic carbon removal by water erosion under climate change and land use change during AD1980–2005. Biogeosciences, 15, 4459 – 4480. https://doi.org/10.5194/bgTest; Nave, L. E., Domke, G. M., Hofmeister, K. L., Mishra, U., Perry, C. H., Walters, B. F., & Swanston, C. W. ( 2018 ). Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proceedings of the National Academy of Sciences, 115 ( 11 ), 2776 – 2781. https://doi.org/10.1073/pnas.1719685115Test

  9. 9
    دورية أكاديمية
  10. 10
    مؤتمر