يعرض 1 - 10 نتائج من 691 نتيجة بحث عن '"ELECTROMAGNETIC SPECTRA"', وقت الاستعلام: 1.94s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: UAM. Departamento de Física Teórica de la Materia Condensada

    وصف الملف: application/pdf

    العلاقة: Physical Review Letters; https://doi.org/10.1103/PhysRevLett.131.013602Test; info:eu-repo/grantAgreement/EC/H2020/714870/ERC//MMUSCLES; Gobierno de España. PID2021-125894NB-I00; Gobierno de España. CEX2018-000805-M; Physical Review Letters 131.1 (2023): 013602; 0031-9007 (print); 1079-7114 (online); http://hdl.handle.net/10486/708616Test; 013602-1; 013602-7; 131

  2. 2
    دورية أكاديمية
  3. 3
    مؤتمر
  4. 4
    مؤتمر
  5. 5
    دورية أكاديمية
  6. 6
  7. 7
    دورية أكاديمية

    المصدر: Astronomy and Astrophysics, 592 (2016)

    العلاقة: urn:issn:0004-6361; urn:issn:1432-0746; https://orbi.uliege.be/handle/2268/218196Test; info:hdl:2268/218196; https://orbi.uliege.be/bitstream/2268/218196/1/Pierre_et_al_2015.pdfTest; scopus-id:2-s2.0-84975260846

  8. 8
    رسالة جامعية
  9. 9
    دورية أكاديمية

    المصدر: Optical and Quantum Electronics

    العلاقة: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094674345&doi=10.1007%2fs11082-020-02573-5&partnerID=40&md5=3b5e6c44417c0de1e919ea914e2e00d7Test; 52; 11; Baskoutas, S., Paspalakis, E., Terzis, A.F., Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field (2007) J. Phys. Condens. Matter, 19, p. 395024; Chen, B., Guo, K.-X., Wang, R.-Z., Zheng, Y.-B., Li, B., Nonlinear optical rectification in asymmetric double triangular quantum wells (2008) Eur. Phys. J. B, 66, pp. 227-233; Chen, T., Xie, W., Liang, S., The nonlinear optical rectification of an ellipsoidal quantum dot with impurity in the presence of an electric field (2012) Physica E, 44, pp. 786-790; Dakhlaoui, H., Nefzi, M., Tuning the linear and nonlinear optical properties in double and triple δ -doped GaAs semiconductor: impact of electric and magnetic fields (2019) Superlattices Microstruct., 136, p. 106292; Ganguly, J., Saha, S., Pal, S., Ghosh, M., Fabricating third-order nonlinear optical susceptibility of impurity doped quantum dots in the presence of Gaussian white noise (2016) Opt. Commun., 363, pp. 47-56; Giraldo-Tobon, E., Ospina, W., Miranda-Pedraza, G.L., Mora-Ramos, M.E., Influence of applied electric fields on the electron-related second and third-order nonlinear optical responses in two dimensional elliptic quantum dots (2015) Superlattices Microstruct., 83, pp. 157-167; Guo, K.-X., Gu, S.-W., Nonlinear optical rectification in parabolic quantum wells with an applied electric field (1993) Phys. Rev. B, 47, pp. 16322-16325; Guo, K.-X., Chen, C.-Y., Das, T.P., Studies on the third-harmonic generation of double-layered quantum wires in magnetic fields (2001) Opt. Quantum Electron., 33, pp. 231-237; Ioriatti, L., Thomas-Fermi theory of 5-doped semiconductor structures: exact analytical results in the high-density limit (1990) Phys. Rev. B, 41, pp. 8340-8344; Karabulut, I., Safak, H., Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field (2005) Physica B, 368, pp. 82-87; Karabulut, I., Mora-Ramos, M.E., Duque, C.A., Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure (2011) J. Lumin., 131, pp. 1502-1509; Karimi, M.J., Keshavarz, A., Second harmonic generation in asymmetric double semi-parabolic quantum wells: effects of electric and magnetic fields, hydrostatic pressure and temperature (2012) Physica E, 44, pp. 1900-1904; Kirak, M., Altinok, Y., The electric field effects on the third-harmonic generation in spherical quantum dots with parabolic confinement (2012) Eur. Phys. J. B, 85, p. 344; Kozuka, Y., Kim, M., Ohta, H., Hikita, Y., Bell, C., Hwang, H.Y., Enhancing the electron mobility via delta-doping in SrTiO3 (2010) App. Phys. Lett., 97, p. 222115; Li, B., Guo, K.-X., Zhang, C.-J., Zheng, Y.-B., The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic fields (2007) Phys. Lett. A, 367, pp. 493-497; Li, B., Guo, K.-X., Liu, Z.-L., Zheng, Y.-B., Nonlinear optical rectification in parabolic quantum dots in the presence of electric and magnetic fields (2008) Phys. Lett. A, 372, pp. 1337-1340; Li, X., Zhang, C., Tang, Y., Wang, B., Nonlinear optical rectification in asymmetric quantum dots with an external static magnetic field (2014) Physica E, 56, pp. 130-133; Liu, X., Zou, L., Liu, C., Zhang, Z.-H., Yuan, J.-H., The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: effects of hydrostatic pressure, temperature and magnetic field (2016) Opt. Mater., 53, pp. 218-223; Liu, G., Guo, K., Zhang, Z., Hassanbadi, H., Lu, L., Electric field effects on nonlinear optical rectification in symmetric coupled AlxGa1-xAs/ GaAs quantum wells (2018) Thin Solid Films, 662, pp. 27-32; Martínez-Orozco, J.C., Rodríguez-Magdaleno, K.A., Suárez-López, J.R., Duque, C.A., Restrepo, R.L., Absorption coefficient and relative refractive index change for a double δ -doped GaAs MIGFET-like structure: electric and magnetic field effects (2016) Superlattices Microstruct., 92, pp. 166-173; Martínez-Orozco, J.C., Rojas-Briseño, J.G., Rodríguez-Magdaleno, K.A., Rodríguez-Vargas, I., Mora-Ramos, M.E., Restrepo, R.L., Ungan, F., Duque, C.A., Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ -doped GaAs quantum wells (2017) Physica B, 525, pp. 30-35; Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sokmen, I., Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: effects of applied electromagnetic fields (2012) J. Lumin., 132, pp. 901-913; Ozturk, E., Optical intersubband transitions in double Si δ -doped GaAs under an applied magnetic field (2009) Superlattices Microstruct., 46, pp. 752-759; Panda, S., Das, T., Panda, B.K., Nonlinear optical susceptibilities in InxGa1-xN/ GaN hexagonal single quantum well under applied electric field (2019) Superlattices Microstruct., 135, p. 106238; Restrepo, R.L., Kasapoglu, E., Sakiroglu, S., Ungan, F., Morales, A.L., Duque, C.A., Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields (2017) Infrared Phys. Technol., 85, pp. 147-153; Rezaei, G., Karimi, M.J., Third harmonic generation in a coaxial cylindrical quantum well wire: magnetic field and geometrical size effects (2012) Opt. Commun., 285, pp. 5467-5471; Rodíguez-Magdaleno, K.A., Martínez-Orozco, J.C., Rodríguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., Asymmetric GaAs n-type double δ -doped quantum wells as a source of intersubband-related nonlinear optical response: effects of an applied electric field (2014) J. Lumin., 147, pp. 77-84; Rosencher, E., Bois, P., Model system for optical nonlinearities: asymmetric quantum wells (1991) Phys. Rev. B, 44, pp. 11315-11327; Rosencher, E., Bois, P., Nagle, J., Costard, E., Delaitre, S., Observation of nonlinear optical rectification at 10.6 μ m in compositionally asymmetrical AlGaAs multiquantum wells (1989) Phys. Lett., 55, pp. 1597-1599; Shao, S., Gou, K.X., Zhang, Z.H., Li, N., Peng, C., Third-harmonic generation in cylindrical quantum dots in a static magnetic field (2011) Solid State Commun., 151, pp. 289-292; Tsang, L., Ahn, D., Chuang, S.L., Electric field control of optical second harmonic generation in a quantum well (1988) Appl. Phys. Lett., 52, pp. 697-699; Vaseghi, B., Sadri, M., Rezaei, G., Gharaati, A., Optical rectification and third harmonic generation of spherical quantum dots: controlling via external factors (2015) Physica B, 457, pp. 212-217; Wang, G., Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field (2005) Phys. Rev. B, 72, p. 155329; Xia, J.-B., Fan, W.-J., Electronic structures of superlattices under in-plane magnetic field (1989) Phys. Rev. B, 40, pp. 8508-8515; Yıldırım, H., Tomak, M., Nonlinear intersubband optical absorption of Si δ -doped GaAs under an electric field (2006) Phys. Stat. Sol. (b), 243, pp. 2874-2881; Yu, Y.B., Wang, H.J., Third-harmonic generation in two-dimensional pseudodot system with applied magnetic field (2011) Superlattice Microstruct., 50, pp. 252-260; Zhang, L., Xie, H.-J., Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells (2003) Phys. Rev. B, 68, p. 235315; Zhang, L., Xie, H.-J., Bound states and third-harmonic generation in a semi-parabolic quantum well with an applied electric field (2004) Physica E, 22, pp. 791-796; Zhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W., Nonlinear optical rectification in cubical quantum dots (2009) Phys. B Condens. Matter, 404, pp. 2332-2335; Zhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W., Third-harmonic generation in cubical quantum dots (2009) Superlattices Microstruct., 46, pp. 672-678; 3068919; http://hdl.handle.net/11407/6006Test

  10. 10
    دورية أكاديمية

    المصدر: Materials Science in Semiconductor Processing

    العلاقة: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077330152&doi=10.1016%2fj.mssp.2019.104906&partnerID=40&md5=578787255333f5f7bed14d0c24068be8Test; 108; Beattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomi?, S., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells (2017) ACS Photonics, 4, p. 2745; Luque, A., Marti, A., Stanley, C., Understanding intermediate-band solar cells (2012) Nature Photon., 6, p. 146; Kim, Y., Cho, I.-W., Ryu, M.-Y., Kim, J.O., Lee, S.J., Ban, K.-Y., Honsberg, C.B., Stranski Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells (2017) Appl. Phys. Lett., 111, p. 073103; Dhomkar, S., Ji, H., Roy, B., Deligiannakis, V., Wang, A., Tamargo, M.C., Kuskovsky, I.L., Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy (2015) J. Cryst. Growth, 422, p. 8; Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Building devices from colloidal quantum dots (2016) Science, 353, p. 6302; Tronco-Jurado, U., Saucedo-Flores, E., Ruelas, R., López, R., Alvarez-Ramos, M.E., Ayón, A.A., Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance (2017) Microsyst. Technol., 23, p. 3945; Leontiadou, M.A., Tyrrell, E.J., Smith, C.T., Espinobarro-Velazquez, D., Page, R., O'Brien, P., Miloszewski, J., Tomi?, S., Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells (2017) Sol. Energy Mater. Sol. Cells, 159, p. 657; Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Pernas-Salomón, R., Multi-shell spherical quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels (2017) Physica E, 88, p. 142; Zhukova, E.S., Gorshunov, B.P., Yuryev, V.A., Arapkina, L.V., Chizh, K.V., Chapnin, V.A., Kalinushkin, V.P., Mikhailova, G.N., Absorption of terahertz radiation in Ge/Si(001) heterostructures with quantum dots (2010) JETP Lett., 92, p. 793; Presto, J.M.M., Prieto, E.A.P., Omambac, K.M., Afalla, J.P.C., Lumantas, D.A.O., Salvador, A.A., Somintac, A.S., Tani, M., Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy (2015) Opt. Express, 23, p. 14532; Stephan, D., Bhattacharyya, J., Huo, Y.H., Schmidt, O.G., Rastelli, A., Helm, M., Schneider, H., Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation (2016) Appl. Phys. Lett., 108, p. 082107; Sabaeian, M., Riyahi, M., Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption (2017) Physica E, 89, p. 105; Liu, W.H., Qu, Y., Ban, S.L., Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots (2017) Superlattices Microstruct., 102, p. 373; Ghazi, H.E., Jorio, A., Zorkani, I., Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure (2014) Opt. Commun., 331, pp. 73-76; Aouami, A.E., Feddi, E., Talbi, A., Dujardin, F., Duque, C.A., Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure (2018) Appl. Phys. A, 124, p. 442; M'zerd, S., Haouari, M.E., Talbi, A., Feddi, E., Mora-Ramos, M.E., Impact of electron-LO-phonon correction and donor impurity localization on the linear and nonlinear optical properties in spherical core/shell semiconductor quantum dots (2018) J. Alloys Compd., 753, p. 68; Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Intra-miniband absorption coefficient in GaAs/AlxGa1?xAs core/shell spherical quantum dot (2018) J. Alloys Compd., 736, p. 211; Pavlovi?, V., u njar, M., Petrovi?, K., Stevanovi?, L., Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity (2018) Opt. Mater., 78, p. 191; Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field (2015) Superlattices Microstruct., 85, p. 581; Feddi, E., Talbi, A., Mora-Ramos, M.E., Haouari, M.E., Dujardin, F., Duque, C.A., Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot (2017) Physica B., 524, p. 64; Imran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Shah, Z.H., Optical properties of InAs/GaAs quantum dot superlattice structures (2018) Results. Phys., 9, p. 297; Surrente, A., Felici, M., Gallo, P., Rudra, A., Dwir, B., Kapon, E., Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties (2017) Appl. Phys. Lett., 111, p. 221102; Wolford, D.J., Kuech, T.F., Bradley, J.A., Gell, M.A., Ninno, D., Jaros, M., Pressure dependence of GaAs/AlxGa1?xAs quantum-well bound states: The determination of valence-band offsets (1986) J. Vac. Sci. Technol. B, 4, p. 1043; Leburton, J.P., Kahen, K., GaAs-AlGaAs superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation (1985) Superlattices Microstruct., 1, p. 49; Elabsy, A.M., Band mixing dependence of the lowest energy states in uncoupled quantum wells (1993) Superlattices Microstruct., 14, p. 65; Elabsy, A.M., Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures (1993) Phys. Scr., 48, p. 376; Elabsy, A.M., Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1?xAs quantum-well microstructures (1994) J. Phys.: Condens. Matter., 6, p. 10025; Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., ??X mixing in AlxGa1?xAs coupled double quantum wells under hydrostatic pressure (1993) Phys. Rev. B, 47, p. 1991; Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1?xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration (2014) J. Lumin., 145, p. 676; Bouzaiene, L., Alamri, H., Sfaxi, L., Maaref, H., Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot (2016) J. Alloys Compd., 655, p. 172; Ortakaya, S., Kirak, M., Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement (2016) Chin. Phys. B, 25, p. 127302; Karimi, M.J., Rezaei, G., Nazari, M., Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature (2014) J. Lumin., 145, p. 55; BenDaniel, D.J., Duke, C.B., Space-charge effects on electron tunneling (1966) Phys. Rev., 152, p. 683; Ospina, D.A., Mora-Ramos, M.E., Duque, C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well (2017) J. Nanosci. Nanotechno., 17, p. 1247; Samara, G.A., Temperature and pressure dependences of the dielectric constants of semiconductors (1983) Phys. Rev. B, 27, p. 3494; Reyes-Gómez, E., Raigoza, N., Oliveira, L.E., Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields (2008) Phys. Rev. B, 77, p. 115308; Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), ninth Dover printing, tenth GPO printing Dover New York; Chuang, S.L., Physics of Optoelectronic Devices (2005), first ed. Wiley; Hosseini, M., Tailoring the terahertz absorption in the quantum wells (2016) Optik, 127, p. 4554; Williams, B.S., Terahertz quantum-cascade lasers (2007) Nat. Photonics, 1, p. 517; http://hdl.handle.net/11407/5802Test