يعرض 1 - 10 نتائج من 44 نتيجة بحث عن '"Density functional theory studies"', وقت الاستعلام: 1.12s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: UAM. Departamento de Física Teórica de la Materia Condensada

    وصف الملف: application/pdf

    العلاقة: Physical Review E - Statistical, nonlinear, biological, and soft matter physics; https://doi.org/10.1103/PhysRevE.102.052128Test; Gobierno de España. FIS2017-86007-C3-1-P; Gobierno de España. PGC2018-096606-B-I00; Physical Review E 102.5 (2020): 052128; 2470-0045 (print); 2470-0053 (online); http://hdl.handle.net/10486/703879Test; 052128-1; 052128-15; 102

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
  5. 5
  6. 6
  7. 7
    دورية أكاديمية
  8. 8
  9. 9
    دورية أكاديمية

    المؤلفون: Acelas N.Y., Flórez E.

    المصدر: Journal of Physics: Conference Series

    العلاقة: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b8Test; 1247; Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149; Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160; Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USA; Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157; Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409; Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11; Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464; Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712; Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210; Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936; Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360; Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105; Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51; Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63; Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9; Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13; Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858; Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679; Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA); Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C Gaussian; Guesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001; Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442; Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746; Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320; Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400; Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62; http://hdl.handle.net/11407/5795Test

  10. 10