يعرض 1 - 10 نتائج من 44 نتيجة بحث عن '"DRY MASS PARTITIONING"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    رسالة جامعية

    المؤلفون: León Burgos, Andrés Felipe

    المساهمون: Balaguera López, Helber Enrique, Rendón Sáenz, José Raúl, Agronomía-Cenicafé

    وصف الملف: xviii, 107 páginas; application/pdf

    العلاقة: Agrosavia; Agrovoc; Ahmed, S., Brinkley, S., Smith, E., Sela, A., Theisen, M., Thibodeau, C., Warne, T., Anderson, E., Van Dusen, N., Giuliano, P., Ionescu, K. E., & Cash, S. B. (2021). Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.708013Test; Almeida, W. L., Ávila, R. T., Pérez-Molina, J. P., Barbosa, M. L., Marçal, D. M. S., de Souza, R. P. B., Martino, P. B., Cardoso, A. A., Martins, S. C. V., & DaMatta, F. M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. Tree Physiology, 41(1), 35-49. https://doi.org/10.1093/treephys/tpaa116Test; Arcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19-27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.xTest; Arcila P, J. (2007). Capítulo 2. Crecimiento y desarrollo de la planta de café. Cap. 21-60 Pp. En Arcila P, J., Farfán V, F., Moreno B, A., Salazar G, L F & Hincapié G, E. (2007). Sistemas de producción de café en Colombia. Centro Nacional de investigaciones del café. Chinchiná, Caldas. 309 p. http://hdl.handle.net/10778/720Test; Avila, R. T., Martins, S. C. V., Sanglard, L. M. V. P., dos Santos, M. S., Menezes-Silva, P. E., Detman, K. C., Sanglard, M. L., Cardoso, A. A., Morais, L. E., Vital, C. E., Araújo, W. L., Nunes-Nesi, A., & DaMatta, F. M. (2020). Starch accumulation does not lead to feedback photosynthetic downregulation in girdled coffee branches under varying source-to-sink ratios. Trees, 34(1), 1-16. https://doi.org/10.1007/s00468-019-01893-8Test; Bastianin, A., Lanza, A., & Manera, M. (2018). Economic impacts of El Niño southern oscillation: Evidence from the Colombian coffee market. Agricultural Economics, 49(5), 623-633. https://doi.org/10.1111/agec.12447Test; Bote, A. D., & Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30(4), 1275-1285. https://doi.org/10.1007/s00468-016-1365-xTest; Bote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39-46. https://doi.org/10.1016/j.njas.2017.09.002Test; Cannell, M. G. (1985). Chapter 5. Physiology of the coffee crop.108-134Pp. In Clifford, M. N. (Ed.).Coffee: Botany, Biochemistry and Production of Beans and Beverage. Springer US. https://doi.org/10.1007/978-1-4615-6657-1Test; Ceballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190, 103126. https://doi.org/10.1016/j.agsy.2021.103126Test; Cunha, R. L. (2007). Crescimento, metabolismo do carbono e partição de assimilados, em resposta à manipulação da razão fonte:dreno, em Coffea arabica L. sob condições de campo. https://locus.ufv.br//handle/123456789/995Test; Chaves, A. R. M., Martins, S. C. V., Batista, K. D., Celin, E. F., & DaMatta, F. M. (2012). Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77, 207-218. https://doi.org/10.1016/j.envexpbot.2011.11.011Test; Chemura, A., Mudereri, B. T., Yalew, A. W., & Gornott, C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-87647-4Test; DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485-510. https://doi.org/10.1590/S1677-04202007000400014Test; DaMatta, F. M., Cunha, R. L., Antunes, W. C., Martins, S. C. V., Araujo, W. L., Fernie, A. R., & Moraes, G. A. B. K. (2008). In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist, 178(2), 348-357. https://doi.org/10.1111/j.1469-8137.2008.02367.xTest; DaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537Test; Federación Nacional de Cafeteros de Colombia. (2020b). Publicaciones en Informe de Gestión. (2022). https://federaciondecafeteros.org/app/uploads/2022/12/Informe-del-Gerente-D.pdfTest (consultado abril, 2023); Filho L, O. F. de, & Malavolta, E. (2003). Studies on mineral nutrition of the coffee plant (Coffea arabica L. cv. Catuaí Vermelho): LXIV. Remobilization and re-utilization of nitrogen and potassium by normal and deficient plants. Brazilian Journal of Biology, 63(3), 481-490. https://doi.org/10.1590/S1519-69842003000300014Test; Franck, N., Vaast, P., Génard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. https://doi.org/10.1093/treephys/26.4.517Test; García L, J. C., Posada-Suárez, H., & Läderach, P. (2014). Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. Plos one, 9(12), e113510. https://doi.org/10.1371/journal.pone.0113510Test; Gómez G., L. F. (2012). Metabolismo de carbono y relación fuente-demanda en el cafeto (Coffea arabica L). Tesis de doctorado. Universidad Nacional de Colombia, Sede Medellín.; González O, Hernán., Sadeghian K, Siavosh & Jaramillo R, Álvaro. (2014). Épocas recomendables para la fertilización de cafetales. Avances Técnicos 442: 1-12 p. http://hdl.handle.net/10778/498Test; Hameed, A., Hussain, S. A., & Suleria, H. A. R. (2020). “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. En J.-M. Mérillon & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp. 641-705). Springer International Publishing. https://doi.org/10.1007/978-3-319-96397-6_21Test; International Coffee Organization. Trade Statistics Table. (2023). Coffee production by exporting countries. https://www.ico.org/trade_statistics.asp?section=StatisticsTest (Consultado Abril, 2023); Jawo, T. O., Kyereh, D., & Lojka, B. (2022). The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Climate and Development, 0(0), 1-17. https://doi.org/10.1080/17565529.2022.2057906Test; Leibovich, J., Sánchez-Céspedes, L. M., Marín, Córdoba, C. C., Y. A., Méndez, J. D., & Izquierdo, J. M. (2022). Proyección de productores y de la población en hogares cafeteros a 2050. Ensayos de Economía Cafetera, 35(1), 9-95. https://doi.org/10.38141/10788/035-1-1Test; Leguizamón C., J. E., & Arcila P., J. (1991). Secamiento de ramas y frutos del cafeto y su relación con la roya. Avances Técnicos Nº 166. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/944Test; Molina, D. M., & Rivera, R. M. (2022). Identifying Coffea genotypes tolerant to water deficit. Coffee Science - ISSN 1984-3909, 17, e171994-e171994. https://doi.org/10.25186/.v17i.1994Test; Unigarro-Muñoz, C. A., Hernández-Arredondo, J. D., Montoya-Restrepo, E. C., Medina-Rivera, R. D., Ibarra-Ruales, L. N., Carmona-González, C. Y., Flórez-Ramos, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412-416. https://doi.org/10.1590/1678-4499.0026Test; Unigarro, C. A. U., Bejarano, L. M. D., & Acuña, J. R. (2022). Effect of fruit load of the first coffee harvests on leaf gas exchange. Pesquisa Agropecuária Tropical, 51, e69865. https://doi.org/10.1590/1983-40632021v5169865Test; Valencia A., G. (1974). El paloteo del cafeto. Avances Técnicos Nº 82. Cenicafé. 2Pp. https://biblioteca.cenicafe.org/handle/10778/873Test; Valencia A., G. (1999). Fisiología, nutrición y fertilización del cafeto. Agroinsumos del café S.A.-Cenicafé. 94 Pp.; Vaast, P., Angrand, J., Franck, N., Dauzat, J., & Génard, M. (2005). Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiology, 25(6), 753-760. https://doi.org/10.1093/treephys/25.6.753Test; Agroclimática cafetera-Agroclima. (2023). Portal web. Disponible en https://agroclima.cenicafe.orgTest/ (Consultado en Mayo, 2023); Amaral, J. a. T., Da Matta, F. M., & Rena, A. B. (2001). Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira de Fisiologia Vegetal, 13(1), 66-74. https://doi.org/10.1590/S0103-31312001000100008Test; Bihmidine, S., Hunter, C. T., Johns, C. E., Koch, K. E., & Braun, D. M. (2013). Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 4, 177. https://doi.org/10.3389/fpls.2013.00177Test; Castro-Tanzi, S., Flores, M., Wanner, N., Dietsch, T. V., Banks, J., Ureña-Retana, N., & Chandler, M. (2014). Evaluation of a non-destructive sampling method and a statistical model for predicting fruit load on individual coffee (Coffea arabica) trees. Scientia Horticulturae, 167, 117-126. https://doi.org/10.1016/j.scienta.2013.12.013Test; Centro Nacional de Investigaciones de Café. (2021). Guía más agronomía, más productividad, más calidad (3a ed.). Cenicafé. https://doi.org/10.38141/cenbook-0014Test; De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18, 175-199. https://doi.org/10.1590/S1677-04202006000100013Test; Dias, E. C., Borém, F. M., Pereira, R. G. F. A., & Guerreiro, M. C. (2012). Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. European Food Research and Technology, 234(1), 25-32. https://doi.org/10.1007/s00217-011-1607-5Test; Duque O, H., Salazar, H. M., Rojas-Sepúlveda, L. A., & Gaitán, Á. (2021). Análisis económico de tecnologías para la producción de café en Colombia. Cenicafé. https://doi.org/10.38141/cenbook-0016Test; Federación Nacional de Cafeteros de Colombia. (2021b). Publicaciones en Informe de Gestión 2020. https://federaciondecafeteros.org/wp/tipos/informesTest/ (Consultado mayo, 2023).; Flórez, C. P., Maldonado, C. E., Cortina, H. A., Moncada, M. del P., Montoya, E. C., Ibarra, L. N., Unigarro, C. A., Rendón, J. R., & Duque Orrego, H. (2016). Cenicafé 1 : Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Avances Técnicos Cenicafé, 469, 1-8. https://doi.org/10.38141/10779/0469Test; Jaramillo, A. (2018). El clima de la caficultura en Colombia. Cenicafé. 206 p. https://doi.org/10.38141/cenbook-0031Test; Laviola, B. G., Martínez, H. E. P., Souza, R. B. de, Salomão, L. C. C., & Cruz, C. D. (2009). Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions. Journal of Plant Nutrition, 32(6), 980-995. https://doi.org/10.1080/01904160902872164Test; León-Rojas, F. R., Valderrama-Palacios, D., Borjas-Ventura, R., Alvarado-Huaman, L., Julca-Otiniano, A., Figueroa, L. T. y, Castro-Cepero, V., Ninahuanca, S. M., & Cardoza-Sánchez, A. (2023). Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature. Agronomía Colombiana, 41(1), Article 1. https://doi.org/10.15446/agron.colomb.v41n1.105778Test; Maldonado, C. E. M., & Giraldo, L. Á. (2020). Resistencia genética a la enfermedad de la cereza del café en variedades cultivadas en Colombia. Revista Cenicafé, 71(1), 69-90. https://doi.org/10.38141/10778/1121Test; Mendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. https://cran.rproject.org/web/packages/agricolae/index.htmlTest; Osorio Pérez, V., Matallana Pérez, L. G., Fernandez-Alduenda, M. R., Alvarez Barreto, C. I., Gallego Agudelo, C. P., & Montoya Restrepo, E. C. (2023). Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020341Test; R Development Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.0.4Test/; Rakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305-316. https://doi.org/10.1007/s10725-020-00607-2Test; Rakocevic, M., dos Santos Scholz, M. B., Pazianotto, R. A. A., Matsunaga, F. T., & Ramalho, J. C. (2023). Variation in Yield, Berry Distribution and Chemical Attributes of Coffea arabica Beans among the Canopy Strata of Four Genotypes Cultivated under Contrasted Water Regimes. Horticulturae, 9(2), Article 2. https://doi.org/10.3390/horticulturae9020215Test; Rendón S., J. R., & Montoya R., E. C. (2015). Cómo registrar las floraciones en los cafetales. Avances Técnico Nº 455,1-8. https://biblioteca.cenicafe.org/handle/10778/598Test; Rendón S., J., Arcila P., J., Montoya-Restrepo, E C. (2008). Estimación de la producción de café con base en los registros de floración. Revista Cenicafé 59 (3): 238-259. https://doi.org/10.38141/rev.cenicafe59-3Test; Rendón S., J. R. (2020). Administración de sistemas de producción de café a libre exposición solar. En Centro Nacional de Investigaciones de Café (Ed.), Manejo Agronómico de los Sistemas de Producción de Café (pp. 34–71). Cenicafé. https://doi.org/10.38141/10791/0002_2Test; Ságio, S. A., Lima, A. A., Barreto, H. G., de Carvalho, C. H. S., Paiva, L. V., & Chalfun-Junior, A. (2013). Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 35(11), 3091-3098. https://doi.org/10.1007/s11738-013-1342-6Test; Sadeghian, S. (2022). Nutrición de café. Consideraciones para el manejo de la fertilidad del suelo. Cenicafé. https://doi.org/10.38141/cenbook-0017Test; Sanz-Uribe, J. R., Oliveros-Tascón, C. E., Duque Orrego, H., Mejía, C. G., Benavides Machado, P., & Medina-Rivera, R. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1-8. https://doi.org/10.38141/10779/0488Test; Somarriba, E., & Quesada, F. (2022). Modeling age and yield dynamics in Coffea arabica pruning systems. Agricultural Systems, 201, 103450. https://doi.org/10.1016/j.agsy.2022.103450Test; Taiz, L., Zeiger, E., Maller, I A., & Murphy, A. (2015). Plant Physiology and Development. Six edition. Massachusetts, USA. Sinauer Associates Inc Publisher. 692 pp.; Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197-204. https://doi.org/10.1002/jsfa.2338Test; Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465Test; Ávila, E. A. da S., Sousa, C. M., Pereira, W., Melo, H. C. de, Almeida, V. G., & Sarti, J. K. (2020). Relationship of gas exchanges in different phenological phases with coffee productivity in the Cerrado. Research, Society and Development, 9(7), Art. 7. https://doi.org/10.33448/rsd-v9i7.4123Test; Cannell, M. G. R. (1971). Production and distribution of dry matter in trees of Coffea arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Annals of Applied Biology, 67(1), 99-120. https://doi.org/10.1111/j.1744-7348.1971.tb02910.xTest; Carrillo, I.F., Mejía, B, Franco, H.F. (1994). Manual de laboratorio análisis foliares. Cenicafé, 1-52p.; de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446-2469. https://doi.org/10.1111/nph.17074Test; Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533Test; Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. https://doi.org/10.1016/j.pbi.2009.05.006Test; Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Rosado, L. D. S. (2007). Acúmulo de nutrientes em frutos de cafeeiro em duas altitudes de cultivo: Micronutrientes. Revista Brasileira de Ciência do Solo, 31, 1439-1449. https://doi.org/10.1590/S0100-06832007000600021Test; León-Burgos, A. F., Unigarro, C., & Balaguera-López, H. E. (2022). Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombian? South African Journal of Botany, 149, 366-375. https://doi.org/10.1016/j.sajb.2022.06.034Test; Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. En Methods in Enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879Test(87)48036-1; Martinez, H. E. P., Menezes, J. F. S., Souza, R. B. de, Alvarez Venegas, V. H., & Guimarães, P. T. G. (2003). Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesquisa Agropecuária Brasileira, 38, 703-713. https://doi.org/10.1590/S0100-204X2003000600006Test; Mohan, M. M., Narayanan, S. L., & Ibrahim, S. M. (2000). Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, 25(2), 38-39.; Ocampo A., D.M.; Riaño H., N.M.; López R., J.C.; López F., Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos del pericarpio durante el desarrollo del fruto del cafeto. Cenicafé, 61(4):327-343. https://doi.org/10.38141/rev.cenicafe61-4Test; Pillitteri, L. J., & Torii, K. U. (2012). Mechanisms of Stomatal Development. Annual Review of Plant Biology, 63(1), 591-614. https://doi.org/10.1146/annurev-arplant-042811-105451Test; Pompelli, M. F., Martins, S. C. V., Antunes, W. C., Chaves, A. R. M., & DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060. https://doi.org/10.1016/j.jplph.2010.03.001Test; Revelle, W. (2020). Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psychTest. R package version 2.0.8.; Roby, J. F., & White, B.J., (1987). Biochemical techniques: Theory and practice. Books/Cole, Publishing Company, Monterey, CA, USA. 267-275 pp.; Sadeghian K., S., Mejia M, B., & González O, H. (2012). Acumulación de nitrogeno, fosforo y potasio en los frutos de café (Coffea arabica L). Revista de Cenicafé, 63(1), 7-18. https://doi.org/10.38141/rev.cenicafe63-1Test; Sadeghian K., S.; Salamanca J., A. (2015). Micronutrientes en frutos y hojas de café. Revista Cenicafé 66 (2): 73-87.; Salamanca, A., & González-Osorio, H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), Article 2. https://doi.org/10.38141/10778/71210Test; Sousa, J. S., Neves, J. C. L., Martinez, H. E. P., & Alvarez, V. H. V. (2018). Relationship between Coffee Leaf Analysis and Soil Chemical Analysis. Revista Brasileira de Ciência Do Solo, 42, e0170109. https://doi.org/10.1590/18069657rbcs20170109Test; Souza, B. P., Martinez, H. E. P., de Carvalho, F. P., Loureiro, M. E., & Sturião, W. P. (2020). Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16), 2455-2465. https://doi.org/10.1080/01904167.2020.1771589Test; Toro-Herrera, M. A., Pennacchi, J. P., Vieira, D. A., Costa, V. E., Honda Filho, C. P., Barbosa, A. C. M. C., & Barbosa, J. P. R. a. D. (2023). Source-sink patterns on coffee trees related to annual climate variability: An approach through stable isotopes analysis. Annals of Applied Biology, 1-13. https://doi.org/10.1111/aab.12872Test; Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37(7), 139. https://doi.org/10.1007/s11738-015-1870-3Test; Valencia A., G. (1986). Niveles adecuados de nutrimentos en suelos y hojas para varios cultivos. Avances Técnicos Cenicafé, 130, 1-4.; Wang, Y., Chen, Y.-F., & Wu, W.-H. (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63(1), 34-52. https://doi.org/10.1111/jipb.13053Test; Araújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. https://doi.org/10.1111/j.1365-3040.2011.02332.xTest; Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239-1248. https://doi.org/10.1093/treephys/26.9.1239Test; Cambou, A., Thaler, P., Clément-Vidal, A., Barthès, B. G., Charbonnier, F., Van den Meersche, K., Aguilar Vega, M. E., Avelino, J., Davrieux, F., Labouisse, J.-P., de Melo Virginio Filho, E., Deleporte, P., Brunet, D., Lehner, P., & Roupsard, O. (2021). Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica). Tree Physiology, 41(12), 2308-2325. https://doi.org/10.1093/treephys/tpab075Test; Clemente, J. M., Martinez, H. E. P., Alves, L. C., Finger, F. L., & Cecon, P. R. (2015). Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy, 37, 297-305. https://doi.org/10.4025/actasciagron.v37i3.19063Test; Crisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127-139. https://doi.org/10.1093/treephys/10.2.127Test; Koutouleas, A., Sarzynski, T., Bordeaux, M., Bosselmann, A. S., Campa, C., Etienne, H., Turreira-García, N., Rigal, C., Vaast, P., Ramalho, J. C., Marraccini, P., & Ræbild, A. (2022). Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.877476Test; Koshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242-250. https://doi.org/10.1016/j.plantsci.2006.03.017Test; Koshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2022, 4, 378–383. Disponible en: http://www.eurchembull.com/./_193Test (Consultado 23 Julio 2023).; Läderach, P., Oberthür, T., Cook, S., Estrada Iza, M., Pohlan, J. A., Fisher, M., & Rosales Lechuga, R. (2011). Systematic agronomic farm management for improved coffee quality. Field Crops Research, 120(3), 321-329. https://doi.org/10.1016/j.fcr.2010.10.006Test; Linne, B. M., Tello, E., Simons, C. T., & Peterson, D. G. (2023). Characterization of the impact of chlorogenic acids on tactile perception in coffee through an inverse effect on mouthcoating sensation. Food Research International, 172, 113167. https://doi.org/10.1016/j.foodres.2023.113167Test; López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., Chalfun-Junior, A., López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., & Chalfun-Junior, A. (2021). An overview of the endogenous and environmental factors related to the Coffea arabica flowering process. Beverage Plant Research, 1(1), 1-16. https://doi.org/10.48130/BPR-2021-0013Test; Osorio, V., Medina, R., Acuña, J. R., Pabón, J., Álvarez, C. I., Matallana, L. G., & Fernández-Alduenda, M. R. (2023b). Transformation of organic acids and sugars in the mucilage and coffee beans during prolonged fermentation. Journal of Food Composition and Analysis, 105551. https://doi.org/10.1016/j.jfca.2023.105551Test; Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad - Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546Test; Sarmiento-Herrera, N., Ramírez-Carabalí, C., García-López, J. C., Hincapié-Velásquez, K. A., & Orozco-Jaramillo, D. (2022). Aplicativo de balance hídrico para el cultivo de café en Colombia. Avances Técnicos Cenicafé, 539, 1-8. https://doi.org/10.38141/10779/0539Test; Silva, P. C. da, Junior, W. Q. R., Ramos, M. L. G., Rocha, O. C., Veiga, A. D., Silva, N. H., Brasileiro, L. de O., Santana, C. C., Soares, G. F., Malaquias, J. V., & Vinson, C. C. (2022). Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. Plants, 11(17), Art. 17. https://doi.org/10.3390/plants11172198Test; Tognetti, J. A., Horacio, P., & Martinez-Noel, G. (2013). Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 8(3), e23316. https://doi.org/10.4161/psb.23316Test; Vélez A., B. E., Jaramillo R., A., Chaves C., B., & Franco A., M. (2000). Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Nº 272. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/794Test; Vinecky, F., Davrieux, F., Mera, A. C., Alves, G. S. C., Lavagnini, G., Leroy, T., Bonnot, F., Rocha, O. C., Bartholo, G. F., Guerra, A. F., Rodrigues, G. C., Marraccini, P., & Andrade, A. C. (2017). Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. The Journal of Agricultural Science, 155(6), 902-918. https://doi.org/10.1017/S0021859616000988Test; Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry, 71(14), 1610-1614. https://doi.org/10.1016/j.phytochem.2010.07.007Test; https://repositorio.unal.edu.co/handle/unal/85806Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  9. 9
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 32 Núm. 1 (2014); 22-28 ; Agronomía Colombiana; Vol. 32 No. 1 (2014); 22-28 ; Agronomía Colombiana; v. 32 n. 1 (2014); 22-28 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf; application/octet-stream; text/html

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/42060/44730Test; https://revistas.unal.edu.co/index.php/agrocol/article/view/42060/44962Test; https://revistas.unal.edu.co/index.php/agrocol/article/view/42060/47149Test; Asch, F., M. Becker, and D.S. Kpongor. 2005. A quick and efficient screen for resistance to iron toxicity in lowland rice. J. Plant Nutr. Soil Sci. 168, 764-773.; Audebert, A. 2006a. Diagnosis of risk and approaches to iron toxicity management in lowland rice farming. pp. 6-17. In: Audebert, A., L.T. Narteh, P. Kiepe, D. Millar, and B. Beks (eds.). Iron toxicity in rice-based systems in West Africa. Africa Rice Center (WARDA), Cotonou, Benin.; Audebert, A. 2006b. Iron partitioning as a mechanism for iron toxicity tolerance in lowland rice. pp. 34-46. In: Audebert, A., L.T. Narteh, P. Kiepe, D. Millar, and B. Beks (eds.). Iron toxicity in rice-based systems in West Africa. Africa Rice Center (WARDA), Cotonou, Benin.; Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607-1621.; Batty, L.C. and P.L. Younger. 2003. Effects of external iron concentration upon seedling growth and uptake of Fe+2 and phosphate by the common reed, Phragmites australis (Cav.) Trin ex. Steudel. Ann. Bot. 92, 801-806.; Becker, M. and F. Asch. 2005. Iron toxicity in rice - conditions and management concepts. J. Plant Nutr. Soil Sci. 168, 558-573.; Casierra-Posada, F., J.F. Cárdenas-Hernández, and H.A. Roa. 2008. Efecto del aluminio sobre la germinación de semillas de trigo (Triticum aestivum L.) y de maíz (Zea mayz L.). Rev. Orinoquia 12(1), 45-56.; De Oliveira-Jucoski, G., J. Cambraia, C. Riveiro, J. Alves-De Oliveira, S. Oliveira-De Paula, and M.A. Oliva. 2013. Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L. plants. Acta Physiol. Plant 35(5), 1645-1657.; Dorlodot, S., S. Lutts, and P. Bertin. 2005. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J. Plant Nutr. 28(1), 1-20.s; Gajewska, E. and M. Sklodowska. 2007. Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J. Plant Physiol. 164(3), 364-366.; Hanke, F. 2008. La nutrición de la planta y su problemática en la agricultura. Editorial Juan de Castellanos, Tunja, Colombia.; Kampfenkel, K., M. Van Montagu, and D. Inzé. 1995. Effects of iron excess on Nicotiana plumbagnifolia plants, implications to oxidative stress. Plant Physiol. 107, 725-735.; Kirk, G.J.D. 2004. The biogeochemistry of submerged soils. John Wiley & Sons, Chichester, UK.; Majerus, V., P. Bertin, and S. Lutts. 2007. Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci. 173, 96-105.; Mehraban, P., A.A. Zadeh, and H.R. Sadeghipour. 2008. Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Asian J. Plant Sci. 7, 251-259.; Nenova, V. 2006. Effect of iron supply on growth and photosystem II efficiency of pea plants. Gen. Appl. Plant Physiol. (Special Issue) 32, 81-90.; Neuhaus, H.E., A.L. Kruckeberg, R. Feil, and M. Stitt. 1989. Reduced activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Planta 178, 110-122.; Neuhaus, H.E. and M. Stitt. 1991. Inhibition of photosynthetic sucrose synthesis by imidodiphosphate, an analog of inorganic pyrophosphate. Plant Sci. 76, 49-55.; Peña-Olmos, J.E. and F. Casierra-Posada. 2013. The photochemical efficiency of photosystem II (PSII) in broccoli plants (Brassica oleracea var Italica) affected by excess of iron. Rev. Orinoquia 17(1), 15-22.; Pinheiro, C., M.M. Chaves, and C.P. Ricardo. 2001. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. J. Exp. Bot. 52, 1063-1070.; Snowden, R.E.D. and B.D. Wheeler. 1993. Iron toxicity to fen plant species. J. Ecol. 81, 35-46.; Vieira, D.A.P., T.A. Portes, E. Stacciarini-Seraphin, and J.B. Teixeira. 2010. Fluorescência e teores de clorofilas emabacaxizeiro cv. pérolasubmetido a diferentes concentrações de sulfato de amônio. Rev. Bras. Frutic. 32(2), 360-368.; https://revistas.unal.edu.co/index.php/agrocol/article/view/42060Test

  10. 10
    دورية أكاديمية

    وصف الملف: application/pdf; application/epub+zip; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

    العلاقة: http://revistas.unal.edu.co/index.php/agrocol/article/view/42060Test; Universidad Nacional de Colombia Revistas electrónicas UN Agronomía Colombiana; Agronomía Colombiana; Agronomía Colombiana; Vol. 32, núm. 1 (2014); 22-28 Agronomía Colombiana; Vol. 32, núm. 1 (2014); 22-28 2357-3732 0120-9965; Peña-Olmos, Jaime E. and Casierra Posada, Fánor and Olmos-Cubides, Misael A. (2014) The effect of high iron doses (fe2+) on the growth of broccoli plants (brassica oleracea var. italica). Agronomía Colombiana; Vol. 32, núm. 1 (2014); 22-28 Agronomía Colombiana; Vol. 32, núm. 1 (2014); 22-28 2357-3732 0120-9965 .; https://repositorio.unal.edu.co/handle/unal/74305Test; http://bdigital.unal.edu.co/38782Test/