يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Correlated mediators"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Fundación La Caixa, NIH - National Institute of Environmental Health Sciences (NIEHS) (Estados Unidos), Agencia Estatal de Investigación (España), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (España), Unión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF)

    العلاقة: https://doi.org/10.1101/2024.02.16.24302923Test; info:eu-repo/grantAgreement/MINECO//CP12%2F03080/ES/CP12%2F03080/; info:eu-repo/grantAgreement/MINECO//PI15%2F00071/ES/Metales y arteriosclerosis subclínica: papel de la variación genética y epigenética en genes candidatos/; info:eu-repo/grantAgreement/ES/PID2019-108973RB-C21; medRxiv. 2024 Feb 18:2024.02.16.24302923.; http://hdl.handle.net/20.500.12105/19002Test; medRxiv : the preprint server for health sciences

  2. 2
    دورية أكاديمية

    المساهمون: Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Institut National des Sciences Mathématiques et de leurs Interactions - CNRS Mathématiques (INSMI-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions - CNRS Mathématiques (INSMI-CNRS)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 2194-573X.

  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Song, Yanyi; Zhou, Xiang; Kang, Jian; Aung, Max T.; Zhang, Min; Zhao, Wei; Needham, Belinda L.; Kardia, Sharon L. R.; Liu, Yongmei; Meeker, John D.; Smith, Jennifer A.; Mukherjee, Bhramar (2021). "Bayesian hierarchical models for high‐dimensional mediation analysis with coordinated selection of correlated mediators." Statistics in Medicine 40(27): 6038-6056.; https://hdl.handle.net/2027.42/170955Test; Statistics in Medicine; Ferguson KK, Chin HB. Environmental chemicals and preterm birth: biological mechanisms and the state of the science. Current Epidemiol Rep. 2017; 4 ( 1 ): 56 ‐ 71.; Ročková V, George EI. The spike‐and‐slab lasso. J Am Stat Assoc. 2018; 113 ( 521 ): 431 ‐ 444.; Feng D, Tierney L, Magnotta V. MRI tissue classification using high‐resolution Bayesian hidden Markov normal mixture models. J Am Stat Assoc. 2012; 107 ( 497 ): 102 ‐ 119.; Li Q, Wang X, Liang F, et al. A Bayesian hidden Potts mixture model for analyzing lung cancer pathology images. Biostatistics. 2019; 20 ( 4 ): 565 ‐ 581.; Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res. 2005; 14 ( 1 ): 35 ‐ 59.; Yu K, Wacholder S, Wheeler W, et al. A flexible Bayesian model for studying gene–environment interaction. PLoS Genet. 2012; 8 ( 1 ): e1002482.; Liang F. A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants. J Stat Comput Simul. 2010; 80 ( 9 ): 1007 ‐ 1022.; Higdon DM. Auxiliary variable methods for Markov chain Monte Carlo with applications. J Am Stat Assoc. 1998; 93 ( 442 ): 585 ‐ 595.; Xia F, Chen J, Fung WK, Li H. A logistic normal multinomial regression model for microbiome compositional data analysis. Biometrics. 2013; 69 ( 4 ): 1053 ‐ 1063.; Chen J, Zhu J, Wang Z, Zheng X, Zhang B. Scalable inference for logistic‐normal topic models. Paper presented at: a conference: Advances in Neural Information Processing Systems 26 (NIPS 2013); 2013: 2445 ‐ 2453.; Blei DM, Lafferty JD. A correlated topic model of science. Ann Appl Stat. 2007; 1 ( 1 ): 17 ‐ 35.; Polson NG, Scott JG, Windle J. Bayesian inference for logistic models using Pólya–Gamma latent variables. J Am Stat Assoc. 2013; 108 ( 504 ): 1339 ‐ 1349.; Holmes CC, Held L. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 2006; 1 ( 1 ): 145 ‐ 168.; Linderman S, Johnson MJ, Adams RP. Dependent multinomial models made easy: stick‐breaking with the Pólya‐Gamma augmentation; 2015:3456‐3464.; Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992; 7 ( 4 ): 457 ‐ 472.; Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol). 1996; 58 ( 1 ): 267 ‐ 288.; Hoerl A, Kennard R. Ridge regression. Encyclopedia of Statistical Sciences. Vol 8; Hoboken, New Jersey: John Wiley & Sons, Inc; 1988.; Efron B. Size, power and false discovery rates. Ann Stat. 2007; 35 ( 4 ): 1351 ‐ 1377.; Alegbeleye OO, Opeolu BO, Jackson VA. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag. 2017; 60 ( 4 ): 758 ‐ 783.; Padula AM, Noth EM, Hammond SK, et al. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ Res. 2014; 135: 221 ‐ 226.; Sadler NC, Nandhikonda P, Webb‐Robertson B‐J, et al. Hepatic cytochrome P450 activity, abundance, and expression throughout human development. Drug Metab Dispos. 2016; 44 ( 7 ): 984 ‐ 991.; Banerjee BD, Mustafa MD, Sharma T, et al. Assessment of toxicogenomic risk factors in etiology of preterm delivery. Reprod Syst Sex Disord. 2014; 3 ( 2 ): 1 ‐ 10.; Aung MT, Yu Y, Ferguson KK, et al. Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers. Sci Rep. 2019; 9 ( 1 ): 1 ‐ 17.; Neelon BH, O’Malley AJ, Normand SLT. A Bayesian model for repeated measures zero‐inflated count data with application to outpatient psychiatric service use. Stat Model. 2010; 10 ( 4 ): 421 ‐ 439.; Needham BL, Smith JA, Zhao W, et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi‐ethnic study of atherosclerosis. Epigenetics. 2015; 10 ( 10 ): 958 ‐ 969.; Smith JA, Zhao W, Wang X, et al. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: the multi‐ethnic study of atherosclerosis. Epigenetics. 2017; 12 ( 8 ): 662 ‐ 673.; Ross CE, Mirowsky J. Neighborhood disorder, subjective alienation, and distress. J Health Soc Behav. 2009; 50 ( 1 ): 49 ‐ 64.; Kaplan GA, Keil JE. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993; 88 ( 4 ): 1973 ‐ 1998.; Sasso FC, Carbonara O, Nasti R, et al. Glucose metabolism and coronary heart disease in patients with normal glucose tolerance. Jama. 2004; 291 ( 15 ): 1857 ‐ 1863.; Kriebel J, Herder C, Rathmann W, et al. Association between DNA methylation in whole blood and measures of glucose metabolism: KORA F4 study. PloS One. 2016; 11 ( 3 ): e0152314.; Tyrberg B, Anachkov KA, Dib SA, Wang‐Rodriguez J, Yoon K‐H, Levine F. Islet expression of the DNA repair enzyme 8‐oxoguanosine DNA Glycosylase (Ogg1) in human type 2 diabetes. BMC Endocr Disord. 2002; 2 ( 1 ): 1 ‐ 10.; Pan H‐Z, Chang D, Feng LG, Xu F‐J, Kuang H‐Y, Lu M‐J. Oxidative damage to DNA and its relationship with diabetic complications. Biomed Environ Sci BES. 2007; 20 ( 2 ): 160.; Dhandapany PS, Sadayappan S, Xue Y, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genet. 2009; 41 ( 2 ): 187 ‐ 191.; Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Amer Heart Assoc. 2019; 8 ( 12 ): e012673.; Xue A, Wu Y, Zhu Z, et al. Genome‐wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nature Commun. 2018; 9 ( 1 ): 1 ‐ 14.; Djordjilović V, Page CM, Gran JM, et al. Global test for high‐dimensional mediation: testing groups of potential mediators. Stat Med. 2019; 38 ( 18 ): 3346 ‐ 3360.; Bobb JF, Valeri L, Claus HB, et al. Bayesian kernel machine regression for estimating the health effects of multi‐pollutant mixtures. Biostatistics. 2015; 16 ( 3 ): 493 ‐ 508.; MacKinnon DP. Introduction to Statistical Mediation Analysis. London, UK: Routledge; 2008.; Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010; 15 ( 4 ): 309.; Pearl J. The causal mediation formula: a guide to the assessment of pathways and mechanisms. Prev Sci. 2012; 13 ( 4 ): 426 ‐ 436.; Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013; 18 ( 2 ): 137.; VanderWeele TJ. Causal mediation analysis with survival data. Epidemiology. 2011; 22 ( 4 ): 582.; McElrath TF, Lim K‐H, Pare E, et al. Longitudinal evaluation of predictive value for preeclampsia of circulating angiogenic factors through pregnancy. Am J Obstet Gynecol. 2012; 207 ( 5 ): 407 ‐ e1.; Aung MT, Song Y, Ferguson KK, et al. Application of a novel analytical pipeline for high‐dimensional multivariate mediation analysis of environmental data. medRxiv. 2020. https://doi.org/10.1101/2020.05.30.20117655Test.; Bild DE, Bluemke DA, Burke GL, et al. Multi‐ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002; 156 ( 9 ): 871 ‐ 881.; Zhang H, Zheng Y, Zhang Z, et al. Estimating and testing high‐dimensional mediation effects in epigenetic studies. Bioinformatics. 2016; 32 ( 20 ): 3150 ‐ 3154.; Zhao Y, Luo X. Pathway lasso: estimate and select sparse mediation pathways with high dimensional mediators. arXiv preprint arXiv:1603.07749; 2016.; Song Y, Zhou X, Zhang M, et al. Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies. Biometrics. 2020; 76 ( 3 ): 700 ‐ 710.; Song Y, Zhou X, Kang J, et al. Bayesian sparse mediation analysis with targeted penalization of natural indirect effects; 2020. arXiv preprint arXiv:2008.06366.; Potts RB. Some generalized order‐disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge, MA: Cambridge University Press; 1952: 106 ‐ 109.; Atchison J, Shen SM. Logistic‐normal distributions: some properties and uses. Biometrika. 1980; 67 ( 2 ): 261 ‐ 272.; Raman S, Fuchs TJ, Wild PJ, Dahl E, Roth V. The Bayesian group‐lasso for analyzing contingency tables. Paper presented at: Proceedings of the 26th Annual International Conference on Machine Learning; 2009:881‐888; Montreal, Canada.; Chen R‐B, Chu C‐H, Yuan S, Wu YN. Bayesian sparse group selection. J Comput Graph Stat. 2016; 25 ( 3 ): 665 ‐ 683.; Yuan M, Lin Y. Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc. 2005; 100 ( 472 ): 1215 ‐ 1225.; Cai Q, Kang J, Yu T. Bayesian network marker selection via the thresholded graph Laplacian Gaussian prior. Bayesian Anal. 2018; 15 ( 1 ): 79 ‐ 102.; Stingo FC, Chen YA, Tadesse MG, Vannucci M. Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes. Ann Appl Stat. 2011; 5 ( 3 ): 1978 ‐ 2002.; Mitchell TJ, Beauchamp JJ. Bayesian variable selection in linear regression. J Am Stat Assoc. 1988; 83 ( 404 ): 1023 ‐ 1032.; Li F, Zhang NR. Bayesian variable selection in structured high‐dimensional covariate spaces with applications in genomics. J Am Stat Assoc. 2010; 105 ( 491 ): 1202 ‐ 1214.; Chekouo T, Stingo FC, Guindani M, Do K‐A. A Bayesian predictive model for imaging genetics with application to schizophrenia. Ann Appl Stat. 2016; 10 ( 3 ): 1547 ‐ 1571.; Li F, Zhang T, Wang Q, et al. Spatial Bayesian variable selection and grouping for high‐dimensional scalar‐on‐image regression. Ann Appl Stat. 2015; 9 ( 2 ): 687 ‐ 713.; Zhang L, Baladandayuthapani V, Mallick BK, et al. Bayesian hierarchical structured variable selection methods with application to molecular inversion probe studies in breast cancer. J Royal Stat Soc Ser C (Appl Stat). 2014; 63 ( 4 ): 595 ‐ 620.; VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016; 37: 17 ‐ 32.; Huang Y‐T. Genome‐wide analyses of sparse mediation effects under composite null hypotheses. Ann Appl Stat. 2019; 13 ( 1 ): 60 ‐ 84.; Huang Y‐T. Variance component tests of multivariate mediation effects under composite null hypotheses. Biometrics. 2019; 75 ( 4 ): 119 ‐ 1204.

  4. 4