يعرض 1 - 10 نتائج من 69 نتيجة بحث عن '"Comparación de modelos"', وقت الاستعلام: 1.04s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: García Díaz, Vicente

    مرشدي الرسالة: Cueva Lovelle, Juan Manuel, Pelayo García-Bustelo, Begoña Cristina, Universidad de Oviedo. Departamento de Informática

    المصدر: TDR (Tesis Doctorales en Red)

    وصف الملف: application/pdf

    الوصول الحر: http://hdl.handle.net/10803/80298Test

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    رسالة جامعية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: Revista Colombiana de Ciencias Pecuarias; Vol. 35 No. 1 (2022): January - March 2022; 3-13 ; Revista Colombiana de Ciencias Pecuarias; Vol. 35 Núm. 1 (2022): Enero - Marzo 2022; 3-13 ; Revista Colombiana de Ciencias Pecuarias; v. 35 n. 1 (2022): Janeiro - Março 2022; 3-13 ; 2256-2958 ; 0120-0690

    جغرافية الموضوع: Colombia, Côlombia

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    المصدر: TecnoLógicas; Vol. 24 No. 52 (2021); e2144 ; TecnoLógicas; Vol. 24 Núm. 52 (2021); e2144 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    العلاقة: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2236Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2237Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2238Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2259Test; S. Riveros-Angarita, “La Orinoquia Colombiana,” Soc. Geogr. Colomb., vol. 36, no. 118, p. 9, 2010. https://www.sogeocol.edu.co/documentos/la_orinoquia_col.pdfTest; V. Urrea; A. Ochoa; O. Mesa, “Seasonality of Rainfall in Colombia,” Water Resour. Res., vol. 55, no. 5, pp. 4149–4162, May 2019. https://doi.org/10.1029/2018WR023316Test; G. Berry; M. J. Reeder, “Objective identification of the intertropical convergence Zone: and trends from the ERA-Interim,” J. Clim., vol. 27, no. 5, pp. 1894–1909, 2014. https://doi.org/10.1175/JCLI-D-13-00339.1Test; P. A. Arias; J. A. Martínez; J. D. Mejía; M. J. Pazos; J. C. Espinoza; S. Wongchuig-Correa, “Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures,” J. Clim., vol. 33, no. 19, pp. 8537–8559, 2020. https://doi.org/10.1175/JCLI-D-19-0696.1Test; G. Jiménez-Sánchez; P. M. Markowski; V. Jewtoukoff; G. S. Young; D. J. Stensrud, “The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model,” Journal of Geophysical Research: Atmospheres, vol. 124, no. 20. pp. 10696–10711, 2019. https://doi.org/10.1029/2019JD030934Test; G. Jiménez‐Sánchez; P. M. Markowski; G. S. Young; D. J. Stensrud, “The Orinoco Low‐Level Jet: An Investigation of its Mechanisms of Formation Using the WRF Model,” J. Geophys. Res. Atmos., vol. 125, no. 13, pp. 1–23, 2020. https://doi.org/10.1029/2020jd032810Test; F. Giorgi; C. Jones; G. Asrar, “Addressing climate information needs at the regional level: the CORDEX framework,” … Organ. Bull., no. November 2008, 2009. http://www.euro-cordex.net/uploads/media/Download_01.pdfTest; B. E. Oviedo Torres; G. Aristizábal León, “Guía de procedimiento para la generación de escenarios de cambio climático regional y local a partir de los modelos globales,” Inst. Hidrol. , Meterología y Estud. Ambient., p. 89, 2010. http://www.ideam.gov.co/documents/21021/21138/GuTestía+Escenarios+Cambio+Climatico.pdf/72eae24f-04ea-4ce2-9a4b-e551559c48fc; A. Rodríguez, “Evaluación de los modelos globales del clima utilizados para la generación de escenarios de cambio climático con el clima presente en Colombia.,” Ideam-Meteo, 2010; P. Acevedo, “Comparación de series de precipitación con los GCM CCSM3, ECHAM5, HADGEM1 y MIROC 3.2 HIRES, para el siglo XX en Colombia,” 2008; M. Rummukainen, “Added value in regional climate modeling,” Wiley Interdiscip. Rev. Clim. Chang., vol. 7, no. 1, pp. 145–159, 2016. https://doi.org/10.1002/wcc.378Test; K. E. Taylor; R. J. Stouffer; G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Am. Meteorol. Soc., vol. 93, no. 4, pp. 485–498, 2012. https://doi.org/10.1175/BAMS-D-11-00094.1Test; F. Giorgi, “Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?,” J. Geophys. Res. Atmos., vol. 124, no. 11, pp. 5696–5723, 2019. https://doi.org/10.1029/2018JD030094Test; T. Ambrizzi; M. S. Reboita; R. P. da Rocha; M. Llopart, “The state of the art and fundamental aspects of regional climate modeling in South America,” Ann. N. Y. Acad. Sci., vol. 1436, no. 1, pp. 98–120, 2019. https://doi.org/10.1111/nyas.13932Test; A. V. Karmalkar; R. S. Bradley; H. F. Diaz, “Climate change in Central America and Mexico: Regional climate model validation and climate change projections,” Clim. Dyn., vol. 37, no. 3, pp. 605–629, 2011. https://doi.org/10.1007/s00382-011-1099-9Test; CORDEX, “CORDEX CORE Simulation Framework – Cordex,” 2020. https://cordex.org/experiment-guidelines/cordex-core/cordex-core-simulation-frameworkTest/; D. Jacob et al., “A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period,” Meteorol. Atmos. Phys., vol. 77, no. 1–4, pp. 19–43, Sep. 2001. https://doi.org/10.1007/s007030170015Test; F. Giorgi et al., “RegCM4: Model description and preliminary tests over multiple CORDEX domains,” Clim. Res., vol. 52, no. 1, pp. 7–29, 2012. https://doi.org/10.3354/cr01018Test; M. Ashfaq et al., “Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations,” Clim. Dyn., vol. 57, no. 5–6, pp. 1463–1488, Sep. 2021. https://doi.org/10.1007/s00382-020-05306-2Test; M. Llopart et al., “Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains,” Clim. Dyn., vol. 57, no. 5–6, pp. 1615–1628, Sep. 2021. https://doi.org/10.1007/s00382-020-05539-1Test; M. Falco; A. F. Carril; L. Z. X. Li; C. Cabrelli; C. G. Menéndez, “The potential added value of Regional Climate Models in South America using a multiresolution approach,” Clim. Dyn., vol. 54, no. 3–4, pp. 1553–1569, Feb. 2020. https://doi.org/10.1007/s00382-019-05073-9Test; A. Builes-Jaramillo;V. Pántano, “Comparison of spatial and temporal performance of two Regional Climate Models in the Amazon and La Plata river basins,” Atmos. Res., vol. 250, no. November 2020, Mar. 2021. https://doi.org/10.1016/j.atmosres.2020.105413Test; M. G. R. Fahad; A. K. M. Saiful Islam; R. Nazari; M. Alfi Hasan; G. M. Tarekul Islam; S. K. Bala, “Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways,” Int. J. Climatol., vol. 38, no. 4, pp. 1634–1648, Mar. 2018. https://doi.org/10.1002/joc.5284Test; S. A. Solman; J. Blázquez, “Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations,” Clim. Dyn., vol. 53, no. 3–4, pp. 1547–1565, Aug. 2019. https://doi.org/10.1007/s00382-019-04689-1Test; G. Pang; X. Wang; D. Chen; M. Yang; L. Liu, “Evaluation of a climate simulation over the Yellow River Basin based on a regional climate model (REMO) within the CORDEX,” Atmos. Res., vol. 254, p. 105522, Jun. 2021. https://doi.org/10.1016/j.atmosres.2021.105522Test; F. Giorgi; E. Coppola; C. Teichmann; D. Jacob, “Editorial for the CORDEX-CORE Experiment I Special Issue,” Clim. Dyn., vol. 57, no. 5–6, pp. 1265–1268, Sep. 2021. https://doi.org/10.1007/s00382-021-05902-wTest; M. Bentsen et al., “The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,” Geosci. Model Dev., vol. 6, no. 3, pp. 687–720, 2013. https://doi.org/10.5194/gmd-6-687-2013Test; M. A. Giorgetta et al., “Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5,” J. Adv. Model. Earth Syst., vol. 5, no. 3, pp. 572–597, 2013. https://doi.org/10.1002/jame.20038Test; G. M. Martin et al., “The HadGEM2 family of Met Office Unified Model climate configurations,” Geosci. Model Dev., vol. 4, no. 3, pp. 723–757, 2011.https://doi.org/10.5194/gmd-4-723-2011Test; A. Allam; R. Moussa; W. Najem; C. Bocquillon, “Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios,” Hydrol. Earth Syst. Sci., vol. 24, no. 9, pp. 4503–4521, Sep. 2020. https://doi.org/10.5194/hess-24-4503-2020Test; R. Laprise et al., “Challenging some tenets of Regional Climate Modelling,” Meteorol. Atmos. Phys., vol. 100, no. 1–4, pp. 3–22, Aug. 2008. https://doi.org/10.1007/s00703-008-0292-9Test; A. Alexandru; R. de Elia; R. Laprise, “Internal variability in regional climate downscaling at the seasonal scale,” Mon. Weather Rev., vol. 135, no. 9, pp. 3221–3238, Sep. 2007. https://doi.org/10.1175/MWR3456.1Test; C. Teutschbein; J. Seibert, “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,” J. Hydrol., vol. 456–457, pp. 12–29, Aug. 2012. https://doi.org/10.1016/j.jhydrol.2012.05.052Test; F. das N. Roque da Silva; J. L. Drummond Alves; M. Cataldi, “Climate downscaling over South America for 1971–2000: application in SMAP rainfall-runoff model for Grande River Basin,” Clim. Dyn., vol. 52, no. 1–2, pp. 681–696, 2019. https://doi.org/10.1007/s00382-018-4166-7Test; D. Rosbjerg et al., Prediction of floods in ungauged basins. 2013.; M. Sivapalan, “Prediction in ungauged basins: a grand challenge for theoretical hydrology,” Hydrol. Process., vol. 17, no. 15, pp. 3163–3170, Oct. 2003. https://doi.org/10.1002/hyp.5155Test; M. Hrachowitz et al., “A decade of Predictions in Ungauged Basins (PUB)-a review,” Hydrol. Sci. J., vol. 58, no. 6, pp. 1198–1255, Jun. 2013. https://doi.org/10.1080/02626667.2013.803183Test; Z. H. Xie et al., “Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation,” Adv. Clim. Chang. Res., vol. 8, no. 2, pp. 68–79, Jun. 2017. https://doi.org/10.1016/j.accre.2017.05.001Test; C. Teutschbein; J. Seibert, “Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies,” Geogr. Compass, vol. 4, no. 7, pp. 834–860, Jul. 2010. https://doi.org/10.1111/j.1749-8198.2010.00357.xTest; L. P. Graham; S. Hagemann; S. Jaun; M. Beniston, “On interpreting hydrological change from regional climate models,” Clim. Change, vol. 81, no. SUPPL. 1, pp. 97–122, Mar. 2007. https://doi.org/10.1007/s10584-006-9217-0Test; M. Velásquez Restrepo; G. Poveda Jaramillo, “Estimación del balance hídrico de la región Pacífica Colombiana,” Dyna, vol. 86, no. 208, pp. 297–306, 2019. https://doi.org/10.15446/dyna.v86n208.73587Test; D. Mena Rentería; E. M. Espinosa; P. C. Soler; M. Cañón Ramos; F. S. Duarte; J. R. Palacios González, “Water supply failure probability under influence of climate change—Balsillas river basin case study,” Rev. Fac. Ing. Univ. Antioquia, no. 103, Oct. 2020. https://doi.org/10.17533/udea.redin.20201008Test; D. Mena; A. Solera; L. Restrepo; M. Pimiento; M. Cañón; F. Duarte, “An analysis of unmet water demand under climate change scenarios in the Gualí River Basin, Colombia, through the implementation of Hydro-BID and WEAP hydrological modeling tools,” J. Water Clim. Chang., pp. 1–12, Feb. 2021. https://doi.org/10.2166/wcc.2019.118Test; J. P. Pietikäinen et al., “The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes,” Geosci. Model Dev., vol. 11, no. 4, pp. 1321–1342, Aug. 2018. https://doi.org/10.5194/gmd-11-1321-2018Test; J. H. Jungclaus et al., “Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model,” J. Adv. Model. Earth Syst., vol. 5, no. 2, pp. 422–446, Jun. 2013. https://doi.org/10.1002/jame.20023Test; D. Machiwal; M. K. Jha, “Time series analysis of hydrologic data for water resources planning and management: a review,” J. Hydrol. Hydromechanics, vol. 54, no. 3, p. 237, 2006. http://www.uh.sav.sk/Portals/16/vc_articles/2006_54_3_Machiwal_237.pdfTest; A. Aieb; K. Madani; M. Scarpa; B. Bonaccorso; K. Lefsih, “A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria,” Heliyon, vol. 5, no. 2, p. e01247, Feb. 2019. https://doi.org/10.1016/j.heliyon.2019.e01247Test; S. M. Shaharudin et al., “Imputation methods for addressing missing data of monthly rainfall in Yogyakarta, Indonesia,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1.4, pp. 646–651, Sep. 2020. https://doi.org/10.30534/ijatcse/2020/9091.42020Test; C. Funk et al., “The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes,” Sci. Data, vol. 2, pp. 1–21, Dec. 2015. https://doi.org/10.1038/sdata.2015.66Test; H. Hersbach et al., “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049, Jul. 2020. https://doi.org/10.1002/qj.3803Test; U. Schneider; A. Becker; P. Finger; A. Meyer-Christoffer; M. Ziese; B. Rudolf, “GPCC’s new land s urface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle,” Theor. Appl. Climatol., vol. 115, no. 1–2, pp. 15–40, Mar. 2014. https://doi.org/10.1007/s00704-013-0860-xTest; B. Martens et al., “GLEAM v3: Satellite-based land evaporation and root-zone soil moisture,” Geosci. Model Dev., vol. 10, no. 5, pp. 1903–1925, 2017. https://doi.org/10.5194/gmd-10-1903-2017Test; R. Hagedorn; F. J. Doblas-Reyes; T. N. Palmer, “The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept,” Tellus, Series A: Dynamic Meteorology and Oceanography, vol. 57, no. 3. pp. 219–233, 2005. https://doi.org/10.1111/j.1600-0870.2005.00103.xTest; A. C. Palladino, “Gráfico de caja,” Atención primaria salud, Epidemiol. e Inform. II, pp. 7–10, 2011. https://med.unne.edu.ar/sitio/multimedia/imagenes/ckfinder/files/files/aps/GR%C3%81FICO%20DE%20CAJA.pdfTest; D. N. Moriasi; J. G. Arnold; M. W. Van Liew; R. L. Bingner; R. D. Harmel; T. L. Veith, “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Trans. ASABE, vol. 50, no. 3, pp. 885–900, 2007. https://doi.org/10.13031/2013.23153Test; J. Peixoto; A. Oort, Physics of Climate. AIP-Press, 1993.; WRCP, “CORDEX CORE Simulation Framework,” 2018. https://cordex.org/experiment-guidelines/cordex-core/cordex-core-simulation-frameworkTest/; A. Builes‐Jaramillo; G. Poveda, “Conjoint Analysis of Surface and Atmospheric Water Balances in the Andes‐Amazon System,” Water Resour. Res., vol. 54, no. 5, pp. 3472–3489, May 2018. https://doi.org/10.1029/2017WR021338Test; L. Zhang; N. Potter; K. Hickel; Y. Zhang; Q. Shao, “Water balance modeling over variable time scales based on the Budyko framework – Model development and testing,” J. Hydrol., vol. 360, no. 1–4, pp. 117–131, Oct. 2008. https://doi.org/10.1016/j.jhydrol.2008.07.021Test; J. A. Marengo, “Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget,” Clim. Dyn., vol. 24, no. 1, pp. 11–22, Jan. 2005. https://doi.org/10.1007/s00382-004-0461-6Test; M. Llopart; M. Simões Reboita; R. Porfírio da Rocha, “Assessment of multi-model climate projections of water resources over South America CORDEX domain,” Clim. Dyn., vol. 54, no. 1–2, pp. 99–116, 2020. https://doi.org/10.1007/s00382-019-04990-zTest; A. M. Foley, “Uncertainty in regional climate modelling: A review,” Prog. Phys. Geogr. Earth Environ., vol. 34, no. 5, pp. 647–670, Oct. 2010. https://doi.org/10.1177/0309133310375654Test; E. Hawkins; R. Sutton, “The Potential to Narrow Uncertainty in Regional Climate Predictions,” Bull. Am. Meteorol. Soc., vol. 90, no. 8, pp. 1095–1108, Aug. 2009. https://doi.org/10.1175/2009BAMS2607.1Test; J. Gutiérrez; M. Pons, “Modelización numérica del cambio climático: bases científicas, incertidumbres y proyecciones para la Península Ibérica,” Cuaternario y Geomorfol., vol. 20, no. 3, pp. 15–28, 2006. https://dialnet.unirioja.es/servlet/articulo?codigo=2200478Test; Y. Shi; M. Yu; A. Erfanian; G. Wang, “Modeling the Dynamic Vegetation–Climate System over China Using a Coupled Regional Model,” J. Clim., vol. 31, no. 15, pp. 6027–6049, Aug. 2018. https://doi.org/10.1175/JCLI-D-17-0191.1Test; A. M. Bryan; A. L. Steiner; D. J. Posselt, “Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate,” J. Geophys. Res. Atmos., vol. 120, no. 3, pp. 1044–1064, Feb. 2015. https://doi.org/10.1002/2014JD022316Test; J. C. A. Baker et al., “Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models,” Hydrol. Earth Syst. Sci., vol. 25, no. 4, pp. 2279–2300, Apr. 2021. https://doi.org/10.5194/hess-25-2279-2021Test; J. Cuxart; A. Verhoef; T. Marthews; J. Evans, “Current Challenges in Evapotranspiration Determination, GEWEX News,” 2021. https://hal.archives-ouvertes.fr/hal-02901795Test; A. A. Sörensson; R. C. Ruscica, “Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America,” Water Resour. Res., vol. 54, no. 4, pp. 2891–2908, Apr. 2018. https://doi.org/10.1002/2017WR021682Test; P. C. D. Milly; K. A. Dunne, “On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration,” Earth Interact., vol. 15, no. 1, pp. 1–14, Jan. 2011. https://doi.org/10.1175/2010EI363.1Test; A. F. Carril et al., “Performance of a multi-RCM ensemble for South Eastern South America,” Clim. Dyn., vol. 39, no. 12, pp. 2747–2768, Dec. 2012. https://doi.org/10.1007/s00382-012-1573-zTest; M. Llopart; R. P. da Rocha; M. Reboita; S. Cuadra, “Sensitivity of simulated South America climate to the land surface schemes in RegCM4,” Clim. Dyn., vol. 49, no. 11–12, pp. 3975–3987, Feb. 2017. https://doi.org/10.1007/s00382-017-3557-5Test; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية