يعرض 1 - 10 نتائج من 1,198 نتيجة بحث عن '"Cobalt ions"', وقت الاستعلام: 0.83s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: Universidad de Alicante. Departamento de Química Inorgánica, Materiales Carbonosos y Medio Ambiente

    العلاقة: https://doi.org/10.1016/j.jelechem.2024.118440Test; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/RED2022-134552-T; Journal of Electroanalytical Chemistry. 2024. https://doi.org/10.1016/j.jelechem.2024.118440Test; 1572-6657 (Print); 1873-2569 (Online); http://hdl.handle.net/10045/143944Test

  4. 4
    دورية أكاديمية
  5. 5
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المصدر: C; Volume 9; Issue 3; Pages: 71

    وصف الملف: application/pdf

    العلاقة: Carbon Materials and Carbon Allotropes; https://dx.doi.org/10.3390/c9030071Test

  8. 8
    دورية أكاديمية

    المؤلفون: Khaled Bin Bandar, Saad Aljlil

    المصدر: Polymers; Volume 15; Issue 9; Pages: 2143

    مصطلحات موضوعية: adsorption, cobalt ions, wastewater, batch adsorber, nanocellulose

    وصف الملف: application/pdf

    العلاقة: Biomacromolecules, Biobased and Biodegradable Polymers; https://dx.doi.org/10.3390/polym15092143Test

  9. 9
    دورية أكاديمية

    المساهمون: This work was supported by the Russian Science Foundation (project No. 23-23-00383, https://rscf.ru/project/23-23-00383Test/)., Данная работа поддержана Российским Научным Фондом (проект № 23-23-00383, https://rscf.ru/project/23-23-00383Test/).

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023) ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023) ; 2413-6387 ; 1609-3577

    العلاقة: Brixner L.H., Flournoy P.A. Calcium orthovanadate Ca3(VO4)2 - A new laser host crystal. Journal of the Electrochemical Society. 1965; 112(3): 303–308. https://doi.org/10.1149/1.2423528Test; Wu H.-F., Yuan F., Sun Sh., Huang Y., Zhang L., Lin Zh., Wang G. Growth and spectral characteristics of a new promising stoichiometric laser crystal: Ca9Yb(VO4)7. Journal of Rare Earths. 2015; 33(3): 239–243. https://doi.org/10.1016/S1002-0721Test(14)60409-9; Kosmyna M.B., Nazarenko B.P., Puzikov V.M., Shekhovtsov A.N., Paszkowicz W., Behrooz A., Romanowski P., Yasukevich A.S., Kuleshov N.V., Demesh M.P., Wierzchowski W., Wieteska K., Paulmann C. Ca10Li(VO4)7:Nd3+, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal. Journal of Crystal Growth. 2016; 445: 101–107. https://doi.org/10.1016/j.jcrysgro.2016.04.002Test; Ivleva L.I., Dunaeva E.E., Voronina I.S., Doroshenko M.E., Papashvili A.G. Ca3(VO4)2:Tm3+ - A new crystalline medium for 2-μm lasers. Journal of Crystal Growth. 2018; 501: 18–21. https://doi.org/10.1016/j.jcrysgro.2018.08.019Test; Ivleva L.I., Dunaeva., E.E., Voronina I.S., Doroshenko M.E., Papashvili A.G., Sulc J., Kratochvíl J., Jelinkova H. Impact of Tm3+/Ho3+ co-doping on spectroscopic and laser properties of Ca3(VO4)2 single crystal. Journal of Crystal Growth. 2019; 513: 10–14. https://doi.org/10.1016/j.jcrysgro.2019.02.054Test; Frank M., Smetanin S.N., Jelínek Jr.M., Vyhlídal D., Ivleva L.I., Dunaeva E.E., Voronina I.S., Shukshin V.E., Zverev P.G., Kubeček V. Synchronously-pumped, all-solid-state, picosecond Raman laser at 1169 and 1222 nm on single and combined Raman modes in a Ca3(VO4)2 crystal with 30-times pulse shortening down to 1.2 ps. Laser Physics Letters. 2020; 17(11): 115402. https://doi.org/10.1088/1612-202X/abbedfTest; Glass A.M., Abrahams S.C., Ballman A.A., Loiacono G. Calcium orthovanadate, Ca3(VO4)2 - A new high temperature ferroelectric. Ferroelectrics. 1977; 17(1): 579–582. https://doi.org/10.1080/00150197808236782Test; Voronina I.S., Voronov V.V., Dunaeva E.E., Iskhakova L.D., Papashvili A.G., Doroshenko M.E., Ivleva L.I. Growth and properties of manganese doped Ca3(VO4)2 single crystals. Journal of Crystal Growth. 2021; 555: 125965. https://doi.org/10.1016/j.jcrysgro.2020.125965Test; Voronina I.S., Dunaeva E.E., Papashvili A.G., Doroshenko M.E., Ivleva L.I. Modification of calcium orthovanadate single crystal due to cobalt doping. Journal of Crystal Growth. 2023; 615(3): 127242. https://doi.org/10.1016/j.jcrysgro.2023.127242Test; Bracht H. Diffusion mechanisms and intrinsic point-defect properties in silicon. MRS Bulletin. 2000; 25(6): 22−27. https://doi.org/10.1557/mrs2000.94Test; Kozlov V.A., Kozlovski V.V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. Semiconductors. 2001; 35: 735–761. https://doi.org/10.1134/1.1385708Test; Mirov S.B., Fedorov V.V., Martyshkin D.V., Moskalev I.S., Mirov M.S., Gapontsev V.P. Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]. Optical Materials Express. 2011; 1(5): 898–910. https://doi.org/10.1364/OME.1.000898Test; Vaksman Yu.F., Pavlov V.V., Nitsuk Yu.A., Purtov Yu.N., Nasibov A.S., Shapkin P.V. Optical absorption and chromium diffusion in ZnSe single crystals. Semiconductors. 2005; 39(4): 377–380. https://doi.org/10.1134/1.1900247Test; Родин С.А. Диффузионное легирование CVD-ZnSe ионами Cr2+. Дис. … канд. хим. наук. Нижний Новгород; 2018. 129 с.; Sorokina T. Cr2+-doped II-VI materials for lasers and nonlinear optics. Optical Materials. 2004; 26(4): 395–412. https://doi.org/10.1016/j.optmat.2003.12.025Test; Schmidt R.V., Kaminow I.P. Metal‐diffused optical waveguides in LiNbO3. Applied Physics Letters. 1974; 25(8): 458–460. https://doi.org/10.1063/1.1655547Test; Baumann I., Brinkmann R., Dinand M., Sohler W., Beckers L., Buchal C., Fleuster M., Holzbrecher H., Paulus H., Müller K.-H., Gog T., Materlik G., Witte O., Stolz H., von der Osten W. Erbium incorporation in LiNbO3 by diffusion-doping. Applied Physics A. 1996; 64: 33–44. https://doi.org/10.1007/s003390050441Test; Jiménez-Melendo M., Haneda H., Nozawa H. Ytterbium cation diffusion in yttrium aluminum garnet (YAG) - Implications for creep mechanisms. Journal of American Ceramic Society. 2001; 84(10): 2356–2360. https://doi.org/10.1111/j.1151-2916.2001.tb01014.xTest; Hettrick S.J., Wilkinson J.S., Shepherd D.P. Neodymium and gadolinium diffusion in yttrium vanadate. Journal of the Optical Society of America B. 2002; 19(1): 123–124. https://doi.org/10.1364/JOSAB.19.000033Test; Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: Высшая школа; 2000. 493 с.; Gopal R., Calvo C. The structure of Ca3(VO4)2. Zeitschrift für Kristallographie - Crystalline Materials. 1973; 137(1): 67–85. https://doi.org/10.1524/zkri.1973.137.1.67Test; Lazoryak B.I. Design of inorganic compounds with tetrahedral anions. Russian Chemical Review. 1996; 65(4): 287–305. https://doi.org/10.1070/RC1996v065n04ABEH000211Test; Leonidov I.A., Leonidova O.N., Surat L.L., Samigullina R. Ca3(VO4)2–LaVO4 cation conductors. Inorganic Materials. 2003; 39(6): 616–620. https://doi.org/10.1023/A:1024057405145Test; Rahimi Mosafer H., Paszkowicz W., Minikayev R., Kozłowski M., Diduszko R., Berkowski M. The crystal structure and thermal expansion of novel substitutionally disordered Ca10TM0.5(VO4)7 (TM = Co, Cu) orthovanadates. Dalton Transactions. 2021; 50(41): 14762–14773. https://doi.org/10.1039/D1DT02446ATest; Диаграммы состояния систем тугоплавких оксидов. Под ред. Ф.Я. Галахова. Справ. Вып. 5. Двойные системы. В 4 ч. Л.: Наука; 1987. Ч. 3. 287 c.; Tolkacheva A.S., Shkerin S.N., Nikonov A.V., Pershina S.V., Khavlyuk P.D., Leonidov I.I. Electrical and thermal properties of Ca5Mg4−xCox(VO4)6 (0 ≤ x ≤ 4), a promising electrode material. Materials Letters. 2021; 305: 130811. https://doi.org/10.1016/j.matlet.2021.130811Test; Voronina I.S., Dunaeva E.E., Papashvili A.G., Iskhakova L.D., Doroshenko M.E., Ivleva L.I. High-temperature diffusion doping as a method of fabrication of Ca3(VO4)2:Mn single crystals. Journal of Crystal Growth. 2021; 563(3): 126104. https://doi.org/10.1016/j.jcrysgro.2021.126104Test; Соловьев С.Д., Кораблев Г.А., Кодолов В.И. Расчет энергии активации объемной диффузии и самодиффузии элементов в твердых телах. Химическая физика и мезоскопия. 2005; 7(1): 31–40.; Shannon R.D. Revised effective ionic radii and systematic studies of unteratomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Foundations of Crystallography. 1976; 32(SEP1): 751–767. https://doi.org/10.1107/S0567739476001551Test; https://met.misis.ru/jour/article/view/555Test

  10. 10
    دورية أكاديمية