دورية أكاديمية

Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: adsorption study and in vitro geno-cytotoxic assessment

التفاصيل البيبلوغرافية
العنوان: Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: adsorption study and in vitro geno-cytotoxic assessment
المؤلفون: da Rosa Salles, Theodoro, Schnorr, Carlos Eduardo, da Silva Bruckmann, Franciele, Cassol Vicensi, Enzo, Rossato Viana, Altevir, Passaglia Schuch, André, da Silva Garcia, Wagner de Jesus, Silva Oliveira, Luis Felipe, Harres de Oliveira, Artur, Roberto Mortari, Sergio, Bohn Rhoden, Cristiano Rodrigo
المصدر: https://www.sciencedirect.com/science/article/pii/S1383586623006214Test.
بيانات النشر: Elsevier Ltd.
Netherlands
سنة النشر: 2023
المجموعة: REDICUC - Repositorio Universidad de La Costa
مصطلحات موضوعية: Emerging Pollutants, Carbon nanomaterials, In vitro toxicity, Magnetite
الوصف: In this study, furosemide (FUR) adsorption was performed employing magnetic carbon nanotubes (CNT‧Fe3O4) with different amounts of incorporated magnetite. The CNT and magnetic CNTs were synthesized by chemical vapor deposition (CVD) and co-precipitation methods, respectively. The nanoadsorbents were characterized by FTIR, XRD, Raman, SEM, and VSM techniques. The adsorption experiments revealed that the best performance was obtained by CNT‧Fe3O4 1:10, showing values of 82.39% and 83.5 mg g−1 of removal percentage and maximum adsorption capacity at pH 2.0, due to the improvement in π-π interactions, and the presence of iron nanoparticles enhanced the adsorption, suggesting that cation-π interactions control the process. The sorption process exhibited high dependence on pH, adsorbent dosage, and initial concentration of adsorbate. Sips and Elovich models showed the best adjustment for experimental data, suggesting that the process occurs on a heterogeneous surface and with different energy adsorption sites, respectively. The thermodynamic parameters indicated a spontaneous and exothermic process. The outcome of in vitro cytotoxicity assays revealed that the adsorbent/drug complex, after adsorption, exhibited lower toxic effects than the free drug. On the other hand, the genotoxicity assay showed that only the Fe3O4 caused damage at the DNA level. Magnetic carbon nanotubes prove to be efficient in the removal of furosemide from the aqueous solution. Also, the complex after adsorption showed good biocompatibility, allowing a promising application in the biological area and stimulating future studies in drug repositioning.
نوع الوثيقة: article in journal/newspaper
وصف الملف: 12 páginas; application/pdf
اللغة: English
تدمد: 1383-5866
1873-3794
العلاقة: Separation and Purification Technology; [1] S.P. Maleti´c, J.M. Beljin, S.D. Ronˇcevi´c, M.G. Grgi´c, B.D. Dalmacija, State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques, J. Hazard. Mater. 365 (2019) 467–482, https://doi.org/10.1016/j.jhazmat.2018.11.020Test.; [2] I. Vasilachi, D. Asiminicesei, D. Fertu, M. Gavrilescu, Occurrence and fate of emerging pollutants in water environment and options for their removal, Water (Basel). 13 (2021) 181, https://doi.org/10.3390/w13020181Test.; [3] C. Laurenc´e, M. Rivard, T. Martens, C. Morin, D. Buisson, S. Bourcier, M. Sablier, M.A. Oturan, Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide, Chemosphere. 113 (2014) 193–199, https://doi.org/10.1016/jTest. chemosphere.2014.05.036.; [4] H. Olvera-Vargas, S. Leroy, M. Rivard, N. Oturan, M. Oturan, D. Buisson, Microbial biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation, Environ. Sci. Pollut. Res. Int. 23 (2016) 22691–22700, https://doi.org/10.1007/s11356-016-7398-2Test.; [5] A. Mendoza, J. Acena, ˜ S. P´erez, M. Lopez ´ de Alda, D. Barcelo, ´ A. Gil, Y. Valcarcel, ´ Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard, Environ. Res. 140 (2015) 225–241, https://doi.org/10.1016/jTest. envres.2015.04.003.; [6] Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Sep. Purif. Technol. 242 (2020), 116800, https://doi.orgTest/ 10.1016/j.seppur.2020.116800.; [7] A. Alayli, H. Nadaroglu, E. Turgut, Nanobiocatalyst beds with Fenton process for removal of methylene blue, Appl. Water Sci. 11 (2021), https://doi.org/10.1007Test/ s13201-021-01367-8.; [8] F.T. Alshorifi, A.A. Alswat, R.S. Salama, Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B, Heliyon. 8 (2022) e09652.; [9] O. Nemati Sani, A.A. Navaei fezabady, M. Yazdani, M. Taghavi, Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters, J. Water Proc. Eng. 32 (2019), 100894, https://doi.org/10.1016/jTest. jwpe.2019.100894.; [10] S. Erdem, M. Oztekin, ¨ Y. Sag ˘ Açıkel, Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads, Environ. Nanotechnol. Monit. Manag. 16 (2021), 100576, https://doi.org/10.1016/j.enmm.2021.100576Test.; [11] M.L.G. Vieira, C.P. Pinheiro, K.A. Silva, T.R.S. Cadaval Jr, G.L. Dotto, L.A.A. Pinto, Development of adsorbent rigid structure based on Spirulina sp./chitosan bioblends coatings for dye adsorption in fixed bed column, Environ. Sci. Pollut. Res. Int. 29 (2022) 79466–79477, https://doi.org/10.1007/s11356-022-21372-xTest.; [12] C.R.B. Rhoden, F. da S. Bruckmann, T. da R. Salles, C.G. Kaufmann Junior, S. R. Mortari, Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide, J. Water Proc. Eng. 43 (2021), 102262, https://doi.org/10.1016/jTest. jwpe.2021.102262.; [13] T. da R. Salles, H. de B. Rodrigues, F. da S. Bruckmann, L.C.S. Alves, S.R. Mortari, C.R.B. Rhoden, Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana, Disciplinarum Scientia - Ciˆencias Naturais e Tecnologicas. ´ 21 (2020) 15–26, https://doi.org/10.37779/nt.v21i3.3632Test.; [14] F.B. Nunes, F. da Silva Bruckmann, T. da Rosa Salles, C.R.B. Rhoden, Study of phenobarbital removal from the aqueous solutions employing magnetitefunctionalized chitosan, Environ. Sci. Pollut. Res. Int. 30 (2023) 12658–12671, https://doi.org/10.1007/s11356-022-23075-9Test.; [15] Z. Wang, W. Xu, F. Jie, Z. Zhao, K. Zhou, H. Liu, The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater, Sci. Rep. 11 (2021) 16878, https://doi.org/10.1038Test/ s41598-021-96465-7.; [16] C.G. Kaufmann Junior, R.Y.S. Zampiva, J. Venturini, L.M. dos Santos, C. Florence, E. da Silva Fernandes, S.R. Mortari, C.P. Bergmann, C.S. ten Caten, A.K. Alves, CNT sponges with outstanding absorption capacity and electrical properties: Impact of the CVD parameters on the product structure, Ceram. Int. 45 (2019) 13761–13771, https://doi.org/10.1016/j.ceramint.2019.04.072Test.; [17] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval Jr, H.A. Pereira, I.D.S. Nunes, C.W. Basso, M. do C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption, Chemosphere. 283 (2021), 131193, https:// doi.org/10.1016/j.chemosphere.2021.131193.; [18] D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol. 75 (2017) 1599–1606, https://doi.org/10.2166/wst.2017.025Test.; [19] F.S. Bruckmann, C. Schnorr, L.R. Oviedo, S. Knani, L.F.O. Silva, W.L. Silva, G. L. Dotto, C.R. Bohn Rhoden, Adsorption and photocatalytic degradation of pesticides into nanocomposites: A review, Molecules. 27 (2022), https://doi.orgTest/ 10.3390/molecules27196261.; [20] F. da S. Bruckmann, T. Zuchetto, C.M. Ledur, C.L. dos Santos, W.L. da Silva, S. Binotto Fagan, I. Zanella da Silva, C.R. Bohn Rhoden, Methylphenidate adsorption onto graphene derivatives: theory and experiment, New J Chem. 46 (2022) 4283–4291, https://doi.org/10.1039/d1nj03916dTest.; [21] G. William Kajjumba, S. Emik, A. Ongen, ¨ H. Kurtulus Ozcan, ¨ S. Aydın, Modelling of adsorption kinetic processes—errors, theory and application, in: Advanced Sorption Process Applications, IntechOpen, 2019.; [22] F. da S. Bruckmann, A. Rossato Viana, M.Z. Tonel, S.B. Fagan, W.J. da S. Garcia, A. H. de Oliveira, L.S. Dorneles, S. Roberto Mortari, W.L. da Silva, I.Z. da Silva, C.R. B. Rhoden, Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity, Environ. Sci. Pollut. Res. Int. 29 (2022) 70413–70434, https://doi.org/10.1007/s11356-022-20786-xTest.; [23] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study, J. Environ. Chem. Eng. 9 (2021), 106674, https://doi.org/10.1016/jTest. jece.2021.106674.; [24] A. Rossato Viana, B. Godoy Noro, D. Santos, K. Wolf, Y. Sudatti Das Neves, R. N. Moresco, A.F. Ourique, E.M. Moraes Flores, C.R.B. Rhoden, L. Maria Fontanari Krause, B. Stefanello Vizzotto, Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract, J. Toxicol. Environ. Health Part A. 86 (2023) 51–68, https://doi.org/10.1080/15287394.2022.2156956Test.; [25] A. Rossato Viana, N. Bianchin Bottari, D. Santos, M. Bolson Serafin, B. Garlet Rossato, R.N. Moresco, K. Wolf, A. Ourique, R. Horner, ¨ E.M. ´ de Moraes Flores, M. R. Chitolina Schetinger, B. Stefanello Vizzotto L., Maria Fontanari Krause, Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic, J. Toxicol. Environ. Health Part A. 85 (2022) 972–987, https://doi.org/10.1080/15287394.2022.2130844Test.; [26] M. Carrett-Dias, L.K. Almeida, J.L. Pereira, D.V. Almeida, D.M.V.B. Filgueira, L. F. Marins, A.P. de S. Votto, G.S. Trindade, Cell differentiation and the multiple drug resistance phenotype in human erythroleukemic cells, Leuk. Res. 42 (2016) 13–20, https://doi.org/10.1016/j.leukres.2016.01.008Test.; [27] E.C. ´ de Oliveira, F. da Silva Bruckmann, P.F. Schopf, A.R. Viana, S.R. Mortari, M. R. Sagrillo, N.J.S. de Vasconcellos, L. da Silva Fernandes, C.R. Bohn Rhoden In, vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite, J. Nanopart. Res. 24 (2022), https://doiTest. org/10.1007/s11051-022-05529-w.; [28] M.S. Levy, P. Lotfian, R. O’Kennedy, M.Y. Lo-Yim, P.A. Shamlou, Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method, Nucleic Acids Res. 28 (2000) E57, https://doi.org/10.1093/nar/28.12Test. e57.; [29] F. da Silva Bruckmann, A.R. Viana, L.Q.S. Lopes, R.C.V. Santos, E.I. Muller, S. R. Mortari, C.R.B. Rhoden, Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol, J. Inorg. Organomet. Polym. Mater. 32 (2022) 1459–1472, https://doi.org/10.1007/s10904-021-02207-7Test.; [30] B.P. Sahu, M.K. Das, Nanoprecipitation with sonication for enhancement of oral bioavailability of furosemide, Acta Pol. Pharm. 71 (2014) 129–137.; [31] M. Gallignani, R.A. Rondon, ´ J.F. Ovalles, M.R. Brunetto, Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form, Acta Pharm. Sin. B. 4 (2014) 376–383, https://doi.org/10.1016/jTest. apsb.2014.06.013.; [32] A. Harres, M. Mikhov, V. Skumryev, A.M.H. de Andrade, J.E. Schmidt, J. Geshev, Criteria for saturated magnetization loop, J. Magn. Magn. Mater. 402 (2016) 76–82, https://doi.org/10.1016/j.jmmm.2015.11.046Test.; [33] D.L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small. 1 (2005) 482–501, https://doi.org/10.1002/smll.200500006Test.; [34] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 9894, https://doi.orgTest/ 10.1038/s41598-017-09897-5.; [35] J. Sung Lee, J. Myung Cha, H. Young Yoon, J.-K. Lee, Y. Keun Kim, Magnetic multigranule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Sci. Rep. 5 (2015) 12135, https://doi.org/10.1038/srep12135Test.; [36] E.P. Wohlfarth, The effect of particle interaction on the coercive force of ferromagnetic micropowders, Proc. R. Soc. Lond. 232 (1955) 208–227, https://doiTest. org/10.1098/rspa.1955.0212.; [37] J.J. Lu, M.-T. Lin, C.C. Kuo, H.L. Huang, Hysteretic behavior of magnetic particles with dipole interaction, J. Appl. Phys. 85 (1999) 5558–5560, https://doi.orgTest/ 10.1063/1.369894.; [38] M. El-Hilo, I. Bsoul, Interaction effects on the coercivity and fluctuation field in granular powder magnetic systems, Physica B Condens. Matter. 389 (2007) 311–316, https://doi.org/10.1016/j.physb.2006.07.003Test.; [39] B. Aslibeiki, P. Kameli, H. Salamati, The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles, J. Appl. Phys. 119 (2016), 063901, https://doi.org/10.1063Test/ 1.4941388.; [40] M. Song, M. Li, Adsorption and regeneration characteristics of phosphorus from sludge dewatering filtrate by magnetic anion exchange resin, Environ. Sci. Pollut. Res. Int. 26 (2019) 34233–34247, https://doi.org/10.1007/s11356-018-4049-9Test.; [41] Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Wang, The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes, J. Environ. Radioact. 105 (2012) 40–47, https://doi.org/10.1016/j.jenvrad.2011.10.009Test.; [42] J. Liu, D. Xu, P. Chen, Q. Yu, H. Qiu, X. Xiong, Solvothermal synthesis of porous superparamagnetic RGO@Fe3O4 nanocomposites for microwave absorption, J. Mater. Sci.: Mater. Electron. 30 (2019) 17106–17118, https://doi.org/10.1007Test/ s10854-019-02057-7.; [43] F. Coa, ˆ M. Strauss, Z. Clemente, L.L. Rodrigues Neto, J.R. Lopes, R.S. Alencar, A. G. Souza Filho, O.L. Alves, V.L.S.S. Castro, E. Barbieri, D.S.T. Martinez, Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity, Sci. Total Environ. 607–608 (2017) 1479–1486, https://doi.org/10.1016/jTest. scitotenv.2017.07.045.; [44] Y. Liu, N. Wu, Z. Wang, H. Cao, J. Liu, Fe3O4 nanoparticles encapsulated in multiwalled carbon nanotubes possess superior lithium storage capability, New J Chem. 41 (2017) 6241–6250, https://doi.org/10.1039/c7nj00230kTest.; [45] K. Zhang, Q. Zhang, X. Gao, X. Chen, Y. Wang, W. Li, J. Wu, Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites, J. Alloys Compd. 748 (2018) 706–716, https://doi.org/10.1016/j.jallcom.2018.03.202Test.; [46] H. Sadegh, K. Zare, B. Maazinejad, R. Shahryari-ghoshekandi, I. Tyagi, S. Agarwal, V.K. Gupta, Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal, J. Mol. Liq. 215 (2016) 221–228, https://doi.org/10.1016/jTest. molliq.2015.12.042.; [47] C. Aparecida Matias, P.B. Vilela, V.A. Becegato, A.T. Paulino, Adsorption kinetic, isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel alternative natural adsorbents, Water Air Soil Pollut. 230 (2019), https://doi.orgTest/ 10.1007/s11270-019-4324-5.; [48] K. Ezeh, I.C. Ogbu, K.G. Akpomie, N.C. Ojukwu, J.C. Ibe. Utilizing the Sorption Capacity of Local Nigerian Sawdust for Attenuation of Heavy Metals from Solution: Isotherm, Kinetic, and Thermodynamic Investigations, n.d.; [49] A. Ebrahimian Pirbazari, E. Saberikhah, M. Badrouh, M.S. Emami, Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution, Water Resour, Ind. 6 (2014) 64–80, https://doi.org/10.1016/jTest. wri.2014.07.003.; [50] G.Y. Abate, A.N. Alene, A.T. Habte, D.M. Getahun, Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent, Environ. Syst. Res. 9 (2020), https://doi.orgTest/ 10.1186/s40068-020-00191-4.; [51] K. Tak´ acs-Nov´ ak, V. Szoke, ˝ G. Volgyi, ¨ P. Horvath, ´ R. Ambrus, P. Szabo-R ´ ´ev´esz, Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid, J. Pharm. Biomed. Anal. 83 (2013) 279–285, https://doi.orgTest/ 10.1016/j.jpba.2013.05.011.; [52] L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez, Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry, Environ. Toxicol. Chem. 29 (2010) 2713–2719, https://doi.org/10.1002/etc.350Test.; [53] E.M. P´erez, N. Martín, Π-π interactions in carbon nanostructures, Chem. Soc. Rev. 44 (2015) 6425–6433, https://doi.org/10.1039/c5cs00578gTest.; [54] P. Karthik, R. Vinoth, P. Zhang, W. Choi, E. Balaraman, B. Neppolian, Π-π interaction between metal-organic framework and reduced graphene oxide for visible-light photocatalytic H2 production, ACS Appl. Energy Mater. 1 (2018) 1913–1923, https://doi.org/10.1021/acsaem.7b00245Test.; [55] Y. Yang, F. Sun, J. Li, J. Chen, M. Tang, The effects of different factors on the removal mechanism of Pb(ii) by biochar-supported carbon nanotube composites, RSC Adv. 10 (2020) 5988–5995, https://doi.org/10.1039/c9ra09470aTest.; [56] S. Lin, Y. Zhao, Y.-S. Yun, Highly effective removal of nonsteroidal antiinflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: Adsorption performance and mechanisms, ACS Appl. Mater. Interfaces. 10 (2018) 28076–28085, https://doi.org/10.1021/acsami.8b08596Test.; [57] N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride, Adsorption (Boston). 22 (2016) 901–914, https://doi.orgTest/ 10.1007/s10450-016-9794-9.; [58] E.D.V. Duarte, M.G. Oliveira, M.P. Spaolonzi, H.P.S. Costa, T.L. da Silva, M.G.C. da Silva, M.G.A. Vieira, Adsorption of pharmaceutical products from aqueous solutions on functionalized carbon nanotubes by conventional and green methods: A critical review, J. Clean. Prod. 372 (2022), 133743, https://doi.org/10.1016/jTest. jclepro.2022.133743.; [59] E. Ahangaran, H. Aghaie, R. Fazaeli, Study of amoxicillin adsorption on the silanized multiwalled carbon nanotubes: Isotherms, kinetics, and thermodynamics study, Russ. J. Phys. Chem. 94 (2020) 2818–2828, https://doi.org/10.1134Test/ s0036024420130038.; [60] H. Zhang, P. Wang, L. Shi, J. Xue, A. Liang, D. Zhang, Opposite impacts of chemical oxidation for ofloxacin adsorption on activated carbon and carbon nanotubes, Sci. Total Environ. 771 (2021), 145455, https://doi.org/10.1016/jTest. scitotenv.2021.145455.; [61] A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies, Water Sci. Technol. 74 (2016) 1202–1216, https://doiTest. org/10.2166/wst.2016.301.; [62] J. Yao, Y. Deng, S. Pan, R. Korna, J. Wen, N. Yuan, K. Wang, H. Li, Y. Yang, The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes, J. Hazard. Mater. 415 (2021), 125551, https://doi.org/10.1016/jTest. jhazmat.2021.125551.; [63] K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74 (2017) 25–48, https://doi.org/10.1016/j.jtice.2017.01.024Test.; [64] F. da Silva Bruckmann, C. Mafra Ledur, I. Zanella da Silva, G. Luiz Dotto, C. Rodrigo Bohn Rhoden, A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide, J. Mol. Liq. 353 (2022), 118837, https://doi.org/10.1016/j.molliq.2022.118837Test.; [65] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, E. I. Müller, L.F.O. Silva, G.L. Dotto, C.R. Bohn Rhoden, Highly efficient adsorption of tetracycline using chitosan-based magnetic adsorbent, Polymers (Basel) 14 (2022) 4854, https://doi.org/10.3390/polym14224854Test.; [66] M.T. Amin, A.A. Alazba, M. Shafiq, Successful application of eucalyptus camdulensis biochar in the batch adsorption of crystal Violet and methylene blue dyes from aqueous solution, Sustainability. 13 (2021) 3600, https://doi.orgTest/ 10.3390/su13073600.; [67] C. Li, Y. Yan, Q. Zhang, Z. Zhang, L. Huang, J. Zhang, Y. Xiong, S. Tan, Adsorption of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxidechitosan-poly(vinyl alcohol) hydrogels, Langmuir. 35 (2019) 4481–4490, https:// doi.org/10.1021/acs.langmuir.8b04189.; [68] T. da Rosa Salles, F. da Silva Bruckamann, A.R. Viana, L.M.F. Krause, S.R. Mortari, C.R.B. Rhoden, Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells, J. Polym. Environ. 30 (2022) 2695–2713, https://doi.org/10.1007/s10924-022-02388-3Test.; [69] S. Raghav, D. Kumar, Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent, J. Chem. Eng. Data. 63 (2018) 1682–1697, https://doi.org/10.1021/acs.jced.8b00024Test.; [70] N.G. Rincon-Silva, ´ J.C. Moreno-Pirajan, ´ L.G. Giraldo, Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from eucalyptus seed, J. Chem. 2015 (2015) 1–12, https://doi.orgTest/ 10.1155/2015/569403.; [71] N.P. Higgins, A.V. Vologodskii, Topological behavior of Plasmid DNA, Microbiol. Spectr. 3 (2015), https://doi.org/10.1128/microbiolspec.PLAS-0036-2014Test.; [72] B. Murugesan, J. Sonamuthu, S. Samayanan, S. Arumugam, S. Mahalingam, Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite, Appl. Surf. Sci. 434 (2018) 400–411, https://doiTest. org/10.1016/j.apsusc.2017.10.142.; [73] S. Alarifi, D. Ali, Mechanisms of multi-walled carbon nanotubes-induced oxidative stress and genotoxicity in mouse fibroblast cells, Int. J. Toxicol. 34 (2015) 258–265, https://doi.org/10.1177/1091581815584799Test.; [74] J.S. Kim, K.S. Song, I.J. Yu, Multiwall carbon nanotube-induced DNA damage and cytotoxicity in male human peripheral blood lymphocytes, Int. J. Toxicol. 35 (2016) 27–37, https://doi.org/10.1177/1091581815598749Test.; [75] A. Kavosi, S. Hosseini Ghale Noei, S. Madani, S. Khalighfard, S. Khodayari, H. Khodayari, M. Mirzaei, M.R. Kalhori, M. Yavarian, A.M. Alizadeh, M. Falahati, The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer, Sci. Rep. 8 (2018), https://doi.org/10.1038/s41598-018Test- 26790-x.; [76] M.L. Di Giorgio, S. Di Bucchianico, A.M. Ragnelli, P. Aimola, S. Santucci, A. Poma, Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy, Mutat. Res. 722 (2011) 20–31, https://doiTest. org/10.1016/j.mrgentox.2011.02.008.; 12; 315; Theodoro da Rosa Salles, Carlos Schnorr, Franciele da Silva Bruckmann, Enzo Cassol Vicensi, Altevir Rossato Viana, André Passaglia Schuch, Wagner de Jesus da Silva Garcia, Luis F.O. Silva, Artur Harres de Oliveira, Sergio Roberto Mortari, Cristiano Rodrigo Bohn Rhoden, Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment, Separation and Purification Technology, Volume 315, 2023, 123713, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2023.123713Test.; https://hdl.handle.net/11323/10455Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/
DOI: 10.1016/j.seppur.2023.123713
الإتاحة: https://doi.org/10.1016/j.seppur.2023.123713Test
https://doi.org/10.1016/j.jhazmat.2018.11.020Test
https://doi.org/10.3390/w13020181Test
https://doi.org/10.1016/jTest
https://doi.org/10.1007/s11356-016-7398-2Test
https://doi.org/10.1016/j.enmm.2021.100576Test
https://doi.org/10.1007/s11356-022-21372-xTest
https://doi.org/10.37779/nt.v21i3.3632Test
https://doi.org/10.1007/s11356-022-23075-9Test
https://doi.org/10.1016/j.ceramint.2019.04.072Test
حقوق: © 2023 Elsevier B.V. All rights reserved. ; Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) ; https://creativecommons.org/licenses/by-nc-nd/4.0Test/ ; info:eu-repo/semantics/embargoedAccess ; http://purl.org/coar/access_right/c_f1cfTest
رقم الانضمام: edsbas.AE61BD9E
قاعدة البيانات: BASE
الوصف
تدمد:13835866
18733794
DOI:10.1016/j.seppur.2023.123713