يعرض 1 - 10 نتائج من 123 نتيجة بحث عن '"CHROMATIN MODIFIERS"', وقت الاستعلام: 1.16s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/2077/1210Test; Кузнецов К.О., Шарипова Э.Ф., Низаева А.С. и др. Роль микроРНК в норме и при патологии эндометрия. Российский вестник акушера-гинеколога. 2023;23(4):27–34. https://doi.org/10.17116/rosakush20232304127Test.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154Test.; Дубровина С.О., Берлим Ю.Д., Александрина А.Д. и др. Современные представления о диагностике и лечении эндометриоза. Акушерство и гинекология. 2023;(2):146–53. https://doi.org/10.18565/aig.2023.43Test.; Ye L., Whitaker L.H.R., Mawson R.L., Hickey M. Endometriosis. BMJ. 2022;379:e068950. https://doi.org/10.1136/bmj-2021-068950Test.; Адамян Л.В., Шаров М.Н., Мурватов К.Д. и др. Возможности повышения эффективности комплексной терапии эндометриоза и хронической тазовой боли у пациенток репродуктивного возраста. Проблемы репродукции. 2023;29(3):91–7. https://doi.org/10.17116/repro20232903191Test.; Хамадьянова А.У., Загидулина А.Р., Загретдинова Д.Р. и др. Перспективы исследования микробиома организма человека для лучшего понимания патогенеза рака яичников. Российский вестник акушера-гинеколога. 2023;23(1):39–46. https://doi.org/10.17116/rosakush20232301139Test.; Самойлова А.В., Гунин А.Г., Сидоров А.Е. и др. Современные направления изучения этиологии и патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2020;26(5):118–32. https://doi.org/10.17116/repro202026051118Test.; Houshdaran S., Oke A.B., Fung J.C. et al. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 2020;16(6):e1008601. https://doi.org/10.1371/journal.pgen.1008601Test.; Wilson M.R., Reske J.J., Chandler R.L. AP-1 subunit JUNB promotes invasive phenotypes in endometriosis. Reprod Sci. 2022;29(11):3266–77. https://doi.org/10.1007/s43032-022-00974-3Test.; Lu J., Xu J., Li J. et al. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res. 2018;46(19):10019–33. https://doi.org/10.1093/nar/gky679Test.; Егорова Д.А., Дерезина В.В., Чебанян М.В. и др. Роль эпигенетики в мужском и женском бесплодии. Акушерство, Гинекология и Репродукция. 2024;18(1):68–82. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.474Test.; Fyodorov D.V., Zhou B.-R., Skoultchi A.I., Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 2018;19(3):192–206. https://doi.org/10.1038/nrm.2017.94Test.; Ding L., Yang L., Ren C. et al. A review of aberrant DNA methylation and epigenetic agents targeting DNA methyltransferases in endometriosis. Curr Drug Targets. 2020;21(11):1047–55. https://doi.org/10.2174/1389450121666200228112344Test.; Пономаренко И.В., Полоников А.В., Верзилина И.Н., Чурносов М.И. Молекулярно-генетические детерминанты развития эндометриоза. Вопросы гинекологии, акушерства и перинатологии. 2019;18(1):82–6. https://doi.org/10.20953/1726-1678-2019-1-82-86Test.; Mulholland C.B., Traube F.R., Ugur E. et al. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Sci Rep. 2020;10(1):12066. https://doi.org/10.1038/s41598-020-68600-3Test.; Тихончук Е.Ю., Непша О.С., Адамян Л.В., Кузнецова М.В. Омиксные технологии в исследовании патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2016;22(5):110–22. https://doi.org/10.17116/repro2016225110-122Test.; Stirzaker C., Song J.Z., Ng W. et al. Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene. 2017;36:1328–38. https://doi.org/10.1038/onc.2016.297Test.; Wang L., Zhao J., Li Y. et al. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev. 2019;86(5):491–501. https://doi.org/10.1002/mrd.23127Test.; Baumann C., Olson M., Wang K. et al. Arginine methyltransferases mediate an epigenetic ovarian response to endometriosis. Reproduction. 2015;150(4):297–310. https://doi.org/10.1530/REP-15-0212Test.; Wu X., Miao J., Jiang J., Liu F. Analysis of methylation profiling data of hyperplasia and primary and metastatic endometrial cancers. Eur J Obstet Gynecol Reprod Biol. 2017;217:161–6. https://doi.org/10.1016/j.ejogrb.2017.08.036Test.; Zhao J., Wang L., Li Y. et al. Hypomethylation of the GSTM1 promoter is associated with ovarian endometriosis. Hum Reprod. 2019;34(5):804–12. https://doi.org/10.1093/humrep/dez039Test.; Cухих Г.Т., Осипьянц А.И., Мальцева Л.И. и др. Аномальное гиперметилирование генов HOXА10 и HOXА11 при бесплодии, ассоциированном с хроническим эндометритом. Акушерство и гинекология. 2015;(12):69–74.; Barjaste N., Shahhoseini M., Afsharian P. et al. Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. J Assist Reprod Genet. 2019;36(8):1743–52. https://doi.org/10.1007/s10815-019-01508-8Test.; Greville G., Llop E., Howard J. et al. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics. 2021;13(1):34. https://doi.org/10.1186/s13148-021-01015-7Test.; Gibson D.A., Simitsidellis I., Collins F., Saunders P.T.K. Androgens, oestrogens and endometrium: a fine balance between perfection and pathology. J Endocrinol. 2020;246(3):R75–R93. https://doi.org/10.1530/JOE-20-0106Test.; Zelenko Z., Aghajanova L., Irwin J.C., Giudice L.C. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci. 2012;19(2):152–62. https://doi.org/10.1177/1933719111415546Test.; Clemenza S., Capezzuoli T., Eren E. et al. Progesterone receptor ligands for the treatment of endometriosis. Minerva Obstet Gynecol. 2023;75(3):288–97. https://doi.org/10.23736/S2724-606X.22.05157-0Test.; Bulun S.E., Yildiz S., Adli M., Wei J.J. Adenomyosis pathogenesis: insights from next-generation sequencing. Hum Reprod Update. 2021;27(6):1086–97. https://doi.org/10.1093/humupd/dmab017Test.; Rocha C.V., Da Broi M.G., Miranda-Furtado C.L. et al. Progesterone receptor B (PGR-B) is partially methylated in eutopic endometrium from infertile women with endometriosis. Reprod Sci. 2019;26(12):1568–74. https://doi.org/10.1177/1933719119828078Test.; MacLean J.A., Hayashi K. Progesterone actions and resistance in gynecological disorders. Cells. 2022;11(4):647. https://doi.org/10.3390/cells11040647Test.; Nguyen T.V., Lister R. Genomic targeting of TET activity for targeted demethylation using CRISPR/Cas9. Methods Mol Biol. 2021;2272:181–94. https://doi.org/10.1007/978-1-0716-10.1007/s10815-024-03026-81294-1_10Test.; Roca F.J., Loomans H.A., Wittman A.T. et al. Ten-eleven translocation genes are downregulated in endometriosis. Curr Mol Med. 2016;16(3):288–98. https://doi.org/10.2174/1566524016666160225153844Test.; Adamczyk M., Rawłuszko-Wieczorek A.A., Wirstlein P. et al. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother. 2022;150:112989. https://doi.org/10.1016/j.biopha.2022.112989Test.; Szczepańska M., Wirstlein P., Zawadzka M. et al. Alternation of ten-eleven translocation 1, 2, and 3 expression in eutopic endometrium of women with endometriosis-associated infertility. Gynecol Endocrinol. 2018;34(12):1084–90. https://doi.org/10.1080/09513590.2018.1490403Test.; Hada A., Hota S.K., Luo J. et al. Histone octamer structure is altered early in ISW2 ATP-dependent nucleosome remodeling. Cell Rep. 2019;28(1):282–94. https://doi.org/10.1016/j.celrep.2019.05.106Test.; Kaleem A., Hoessli D.C., Ahmad I. et al. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem. 2008;103(3):835–51. https://doi.org/10.1002/jcb.21454Test.; Taing L., Dandawate A., L'Yi S. et al. Cistrome Data Browser: integrated search, analysis and visualization of chromatin data. Nucleic Acids Res. 2024;52(D1):D61–D66. https://doi.org/10.1093/nar/gkad1069Test.; Singh W., Quinn D., Moody T.S., Huang M. Reaction mechanism of histone demethylation in αKG-dependent non-heme iron enzymes. J Phys Chem B. 2019;123(37):7801–11. https://doi.org/10.1021/acs.jpcb.9b06064Test.; Colón-Caraballo M., Monteiro J.B., Flores I. H3K27me3 is an epigenetic mark of relevance in endometriosis. Reprod Sci. 2015;22(9):1134–42. https://doi.org/10.1177/1933719115578924Test.; Colón-Caraballo M., Torres-Reverón A., Soto-Vargas J.L. et al. Effects of histone methyltransferase inhibition in endometriosis†. Biol Reprod. 2018;99(2):293–307. https://doi.org/10.1093/biolre/ioy030Test.; Zhao S., Zhong Y., Fu X. et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock. 2019;51(3):401–6. https://doi.org/10.1097/SHK.0000000000001141Test.; Gujral P., Mahajan V., Lissaman A.C., Ponnampalam A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 2020;18(1):84. https://doi.org/10.1186/s12958-020-00637-5Test.; Adamczyk M., Wender-Ozegowska E., Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility. Int J Mol Sci. 2022;23(7):3804. https://doi.org/10.3390/ijms23073804Test.; Mai H., Liao Y., Luo S. et al. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J Cell Mol Med. 2021;25:9972–82. https://doi.org/10.1111/jcmm.16835Test.; Samartzis E.P., Noske A., Samartzis N. et al. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod Sci. 2013;20(12):1416–22. https://doi.org/10.1177/1933719113488450Test.; Kim T.H., Yoo J.-Y., Choi K.-C. et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019;11(474):eaaf7533. https://doi.org/10.1126/scitranslmed.aaf7533Test.; Bedrick B.S., Courtright L., Zhang J. et al. Systematic review of epigenetics of endometriosis. F S Rev. 2024;5(1):100070. https://doi.org/10.1016/j.xfnr.2024.01.003Test.; Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. https://doi.org/10.1101/cshperspect.a018713Test.; Kim H.I., Seo S.K., Chon S.J. et al. Changes in the expression of TBP-2 in response to histone deacetylase inhibitor treatment in human endometrial cells. Int J Mol Sci. 2021;22(3):1427. https://doi.org/10.3390/ijms22031427Test.; Malvezzi H., Dobo C., Filippi R.Z. et al. Altered p16Ink4a, IL-1β, and Lamin b1 protein expression suggest cellular senescence in deep endometriotic lesions. Int J Mol Sci. 2022;23(5):2476. https://doi.org/10.3390/ijms23052476Test.; Kapoor R., Stratopoulou C.A., Dolmans M.-M. Pathogenesis of endometriosis: new insights into prospective therapies. Int J Mol Sci. 2021;22(21):11700. https://doi.org/10.3390/ijms222111700Test.; Arvindekar S., Jackman M.J., Low J.K.K. et al. Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci. 2022;31(9):e4387. https://doi.org/10.1002/pro.4387Test.; Sahu R.K., Singh S., Tomar R.S. The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol. 2020;180:114200. https://doi.org/10.1016/j.bcp.2020.114200Test.; Wiegand K.C., Lee A.F., Al-Agha O.M. et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33. https://doi.org/10.1002/path.2911Test.; Ярмолинская М.И., Самошкин Н.Г., Полякова В.О., Нетреба Е.А. Экспрессия ARID1A, синтазы простагландина Е2 и рецептора простагландина Е2 у больных с наружным генитальным эндометриозом. Проблемы репродукции. 2019;25(3):34–9. https://doi.org/10.17116/repro20192503134Test.; Kawahara N., Yamada Y., Kobayashi H. CCNE1 is a putative therapeutic target for ARID1A-mutated ovarian clear cell carcinoma. Int J Mol Sci. 2021;22(11):5869. https://doi.org/10.3390/ijms22115869Test.; Murawski M., Jagodziński A., Bielawska-Pohl A., Klimczak A. Complexity of the genetic background of oncogenesis in ovarian cancer-genetic instability and clinical implications. Cells. 2024;13(4):345. https://doi.org/10.3390/cells13040345Test.; Marquardt R.M., Kim T.H., Yoo J. et al. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J. 2021;35(2):e21209. https://doi.org/10.1096/fj.202002178RTest.; Wilson M.R., Reske J.J., Holladay J. et al. ARID1A mutations promote P300-dependent endometrial invasion through super-enhancer hyperacetylation. Cell Rep. 2020;33(6):108366. https://doi.org/10.1016/j.celrep.2020.108366Test.; Kim H.I., Kim T.H., Yoo J.-Y. et al. ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem Biophys Res Commun. 2021;550:151–7. https://doi.org/10.1016/j.bbrc.2021.02.144Test.; Бейлерли О.А., Гареев И.Ф. Длинные некодирующие РНК: какие перспективы? Профилактическая медицина. 2020;23(2):124–8. https://doi.org/10.17116/profmed202023021124Test.; Ghafouri-Fard S., Shoorei H., Taheri M. Role of non-coding RNAs in the pathogenesis of endometriosis. Front Oncol. 2020;10:1370. https://doi.org/10.3389/fonc.2020.01370Test.; Zhang L., Yu Z., Qu Q. et al. Exosomal lncRNA HOTAIR promotes the progression and angiogenesis of endometriosis via the miR-761/HDAC1 axis and activation of STAT3-mediated inflammation. Int J Nanomed. 2022;17:1155–70. https://doi.org/10.2147/IJN.S354314Test.; Bao Q., Zheng Q., Wang S. et al. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front Oncol. 2022;12:953055. https://doi.org/10.3389/fonc.2022.953055Test.; Liu Z., Liu L., Zhong Y. et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9:84. https://doi.org/10.1186/s13578-019-0346-3Test.; Huan Q., Cheng S.-C., Du Z.-H. et al. LncRnA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-β/Smad signaling via miR-424-5p. J Obstet Gynaecol Res. 2021;47(7):2394–405. https://doi.org/10.1111/jog.14801Test.; Li Y., Liu Y.-D., Chen S.-L. et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod. 2019;25(1):17–29. https://doi.org/10.1093/molehr/gay045Test.; Cai H., Zhu X., Li Z. et al. lncRNA/mRNA profiling of endometriosis rat uterine tissues during the implantation window. Int J Mol Med. 2019;44(6):2145–60. https://doi.org/10.3892/ijmm.2019.4370Test.; Tatone C., Di Emidio G., Barbonetti A. et al. Sirtuins in gamete biology and reproductive phys- iology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update. 2018;24(3):267–89. https://doi.org/10.1093/humupd/dmy003Test.; Taguchi A., Wada-Hiraike O., Kawana K. et al. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res. 2014;40(3):770–8. https://doi.org/10.1111/jog.12252Test.; Rezk N.A., Lashin M.B., Sabbah N.A. MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis. Noncoding RNA Res. 2021;6(1):35–41. https://doi.org/10.1016/j.ncrna.2021.02.002Test.; Takebayashi K., Nasu K., Okamoto M. et al. hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol. 2020;18(1):31. https://doi.org/10.1186/s12958-020-00590-3Test.; Li X., Xiong W., Long X. et al. Inhibition of METTL3/m6A/ miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis. Biol Reprod. 2021;105(5):1221–33. https://doi.org/10.1093/biolre/ioab152Test.; Sahin C., Mamillapalli R., Yi K.W., Taylor H.S. microRNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med. 2018;22(11):5346–53. https://doi.org/10.1111/jcmm.13807Test.; Liu A., Jin M., Xie L. et al. Loss of miR-29a impairs decidualization of endometrial stromal cells by TET3 mediated demethylation of Col1A1 promoter. iScience. 2021;24(9):103065. https://doi.org/10.1016/j.isci.2021.103065Test.; https://www.gynecology.su/jour/article/view/2077Test

    الإتاحة: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.52410.17116/rosakush2023230412710.17116/repro2022280115410.18565/aig.2023.4310.1136/bmj-2021-06895010.17116/repro2023290319110.17116/rosakush2023230113910.17116/repro20202605111810.1371/journal.pgen.100860110.1007/s43032-022-00974-310.1093/nar/gky67910.17749/2313-7347/ob.gyn.rep.2024.47410.1038/nrm.2017.9410.2174/138945012166620022811234410.20953/1726-1678-2019-1-82-8610.1038/s41598-020-68600-310.17116/repro2016225110-12210.1038/onc.2016.29710.1002/mrd.2312710.1530/REP-15-021210.1016/j.ejogrb.2017.08.03610.1093/humrep/dez03910.1007/s10815-019-01508-810.1186/s13148-021-01015-710.1530/JOE-20-010610.1177/193371911141554610.23736/S2724-606X.22.05157-010.1093/humupd/dmab01710.1177/193371911982807810.3390/cells1104064710.1007/978-1-0716-10.1007/s10815-024-03026-81294-1_1010.2174/156652401666616022515384410.1016/j.biopha.2022.11298910.1080/09513590.2018.149040310.1016/j.celrep.2019.05.10610.1002/jcb.2145410.1093/nar/gkad106910.1021/acs.jpcb.9b0606410.1177/193371911557892410.1093/biolre/ioy03010.1097/SHK.000000000000114110.1186/s12958-020-00637-510.3390/ijms2307380410.1111/jcmm.1683510.1177/193371911348845010.1126/scitranslmed.aaf753310.1016/j.xfnr.2024.01.00310.1101/cshperspect.a01871310.3390/ijms2203142710.3390/ijms2305247610.3390/ijms22211170010.1002/pro.438710.1016/j.bcp.2020.11420010.1002/path.291110.17116/repro2019250313410.3390/ijms2211586910.3390/cells1304034510.1096/fj.202002178R10.1016/j.celrep.2020.10836610.1016/j.bbrc.2021.02.14410.3389/fonc.2020.0137010.2147/IJN.S35431410.3389/fonc.2022.95305510.1186/s13578-019-0346-310.1111/jog.1480110.1093/molehr/gay04510.3892/ijmm.2019.437010.1093/humupd/dmy00310.1111/jog.1225210.1016/j.ncrna.2021.02.00210.1186/s12958-020-00590-310.1093/biolre/ioab15210.1111/jcmm.1380710.1016/j.isci.2021.103065Test
    https://www.gynecology.su/jour/article/view/2077Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    رسالة جامعية
  9. 9
    دورية أكاديمية

    المصدر: Genetics in Medicine. 21(4)

    وصف الملف: application/pdf

  10. 10
    دورية أكاديمية