يعرض 1 - 10 نتائج من 165 نتيجة بحث عن '"Busico, Gianluigi"', وقت الاستعلام: 0.83s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: University of Campania “Luigi Vanvitelli”, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Caserta, Italy, Department of GIS/RS, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran, Department of Geology, Laboratory of Engineering Geology & Hydrogeology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    العلاقة: Journal of Environmental Management; /347(2023); Agrawal, P., Sinha, A., Kumar, S., Agarwal, A., Banerjee, A., Villuri, V.G.K., Pasupuleti, S., 2021. Exploring artificial intelligence techniques for groundwater quality assessment. Water 13 (9), 1172. https://doi.org/10.3390/w13091172Test. Alamne, S.B., Assefa, T.T., Belay, S.A., Hussein, M.A., 2022. Mapping groundwater nitrate contaminant risk using the modified DRASTIC model: a case study in Ethiopia. Environ. Syst. Res. 11 (1), 8. https://doi.org/10.1186/s40068-022-00253Test- 9. Aller, L., 1985. DRASTIC: a Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Allocca, V., Celico, F., Celico, P., De Vita, P., Fabbrocino, S., Mattia, S., Monacelli, G., Musilli, I., Piscopo, V., Scalise, A.R., Summa, G.M., Tranfaglia, G., 2007. Illustrative JOURNAL of MAPS 573 Notes of the Hydrogeological Map of Southern Italy, vol. 211. Istituto Poligrafico e Zecca Dello Stato, 88- 448-0215-5. Amorosi, A., Pacifico, A., Rossi, V., Ruberti, D., 2012. Late quaternary incision and deposition in an active volcanic setting: the Volturno valley fill. southern Italy. Sediment. Geol. 282, 307–320. https://doi.org/10.1016/j.sedgeo.2012.10.00Test. Ascott, M.J., Gooddy, D.C., Wang, L., et al., 2017. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 8, 1416. https://doi.org/10.1038/s41467-017-01321Test- w. Babiker, I.S., Mohamed, M.A.A., Hiyama, T., 2007. Assessing groundwater quality using GIS. Water Resour. Manag. 21, 699–715. https://doi.org/10.1007/s11269-006Test- 9059-6. Batjes, N.H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., Mendes de Jesus, J., 2017. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. Data 9, 1–14. https://doi.org/10.5194/essd-9-1-2017Test. Barzegar, R., Razzagh, S., Quilty, J., Adamowski, J., Pour, H.K., Booij, M.J., 2021. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. J. Hydrol. 598, 126370 https://doi.org/10.1016/j.jhydrol.2021.126370Test. BaSeLiNe, 1999. Natural Baseline Quality in European Aquifers, a Basis for Aquifer Management. https://nora.nerc.ac.uk/id/eprint/512162Test. Bedi, S., Samal, A., Ray, C., Snow, D., 2020. Comparative evaluation of machine learning models for groundwater quality assessment. Environ. Monit. Assess. 192, 1–23. https://doi.org/10.1007/s10661-020-08695-3Test. Benaafi, M., Yassin, M.A., Usman, A.G., Abba, S.I., 2022. Neurocomputing modelling of hydrochemical and physical properties of groundwater coupled with spatial clustering, GIS, and statistical techniques. Sustainability 14 (4), 2250. https://doiTest. org/10.3390/su14042250. Bordbar, M., Neshat, A., Javadi, S., 2019. A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ. Sci. Pollut. Res. 26, 21808–21827. https://doi.org/10.1007/s11356-019-04853-4Test. Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., Dixon, B., Paryani, S., 2021. Improving the coastal aquifers’ vulnerability assessment using SCMAI ensemble of three machine learning approaches. Nat. Hazards 1–22. https://doi.org/10.1007/s11069Test- 021-05013-z. Boufekane, A., Maizi, D., Madene, E., Busico, G., Zghibi, A., 2022. Hybridization of GALDIT method to assess actual and future coastal vulnerability to seawater intrusion. J. Environ. Manag. 318, 115580 https://doi.org/10.1016/jTest. jenvman.2022.115580. M. Bordbar et al. Journal of Environmental Management 347 (2023) 119041 10 Braca, G., Bussettini, M., Gaf` a, R.M., Monti, G.M., Martarelli, L., Silvi, A., La Vigna, F., 2022. The nationwide water budget estimation in the light of the new permeability. Map of Italy AS/IT JGW 11 (3), 31–39. https://doi.org/10.7343/as-2022-575Test. Busico, G., Kazakis, N., Colombani, N., Khosravi, K., Voudouris, K., Mastrocicco, M., 2020a. The importance of incorporating denitrification in the assessment of groundwater vulnerability. Appl. Sci. 10 (7) https://doi.org/10.3390/app10072328Test. Busico, G., Kazakis, N., Cuoco, E., Colombani, N., Tedesco, D., Voudouris, K., Mastrocicco, M., 2020b. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 171, 115386 https://doi.org/10.1016/j.watres.2019.115386Test. Busico, G., Kazakis, N., Colombani, N., Mastrocicco, M., Voudouris, K., Tedesco, D., 2017. A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3− and SO42− concentrations. Sci. Total Environ. 609, 1512–1523. https://doi.org/10.1016/jTest. scitotenv.2017.07.257. Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., Voudouris, K., 2018. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain. Southern Italy. Environ. Pollut. 234, 260–269. https://doi.org/10.1016/jTest. envpol.2017.11.053. Busico, G., Mastrocicco, M., Cuoco, E., Sirna, M., Tedesco, D., 2019. Protection from natural and anthropogenic sources: a new rating methodology to delineate “nitrate vulnerable zone”. Environ. Earth Sci. 78 (4), 1–13. https://doi.org/10.1007/s12665Test- 019-8118-2. Busico, G., Buffardi, C., Ntona, M.M., Vigliotti, M., Colombani, N., Mastrocicco, M., Ruberti, D., 2021. Actual and forecasted vulnerability assessment to seawater intrusion via GALDIT-SUSI in the Volturno river mouth (Italy). Rem. Sens. 13 (18), 3632. https://doi.org/10.3390/rs13183632Test. Chachadi, A.G., Lobo-Ferreira, J.P., 2001. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin 4, 7–9. Cuoco, E., Darrah, T.H., Buono, G., Verrengia, G., De Francesco, S., Eymold, W.K., Tedesco, D., 2015. Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian plain (southern Italy). Implications for geochemical survey. Environ. Monit. Assess. 187 (2), 46. https://doi.org/10.1007/s10661-015Test- 4307-y. Danielopol, D.L., Griebler, C., Gunatilaka, A., Notenboom, J., 2003. Present state and future prospects for groundwater ecosystems. Environ. Conserv. 30 (2), 104–113. https://doi.org/10.1017/S0376892903000109Test. Durov, S.A., 1948. Natural waters and graphic representation of their composition. Dokl. Akad. Nauk SSSR 59 (3), 87–90. Elbeltagi, A., Pande, C.B., Kouadri, S., Islam, A.R.M.T., 2022. Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India. Environ. Sci. Pollut. Res. 1–15 https://doi.org/10.1007Test/ s11356-021-17064-7. Famiglietti, J.S., Rodell, M., 2013. Water in the balance. Science 340 (6138), 1300–1301. https://doi.org/10.1126/science.1236460Test. Fan, Y., Li, H., Miguez-Macho, G., 2013. Global patterns of groundwater table depth. Science 339 (6122), 940–943. http://doi:10.1126/science.1229881Test. Farmani, R., Henriksen, H.J., Savic, D., 2009. An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environ. Model. Software 24 (3), 303–310. https://doi.org/10.1016/j.envsoft.2008.08.005Test. Fiorillo, F., Guadagno, F.M., 2011. Long karst spring discharge time series and droughts occurrence in Southern Italy. Environ. Earth Sci. 65 (8), 2273–2283. https://doi.orgTest/ 10.1007/s12665-011-1495-9. Gaiolini, M., Colombani, N., Busico, G., Rama, F., Mastrocicco, M., 2022. Impact of boundary conditions dynamics on groundwater budget in the Campania region (Italy). Water (Switzerland) 14 (16). https://doi.org/10.3390/w14162462Test. Ghosal, S., Ruj, C., 2023. Societal impact analysis of community-managed potable water supply system in rural India (2023. J. Appl. Soc. Sci. 17 (1), 148–167. https://doiTest. org/10.1177/19367244221119140. Giaccio, B., Hajdas, I., Isaia, R., Deino, A.L., Nomade, S., 2017. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the timescales of climatic-cultural processes at 40 ka. Sci. Rep. 7, 45940 https://doi.org/10.1038Test/ srep45940. Goodarzi, M.R., Niknam, A.R.R., Jamali, V., Pourghasemi, H.R., 2022. Aquifer vulnerability identification using DRASTIC-LU model modification by fuzzy analytic hierarchy process. Model. Earth Syst. Environ. 8 (4), 5365–5380. https://doi.orgTest/ 10.1007/s40808-022-01408-4. Kazakis, N., Voudouris, K.S., 2015. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J. Hydrol. 525, 13–25. https://doi.org/10.1016/j.jhTest. Kazakis, N., Busico, G., Colombani, N., Mastrocicco, M., Pavlou, A., Voudouris, K., 2019. GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. J. Environ. Manag. 235, 257–265. https://doi.org/10.1016/j.jenvman.2019.01.069Test. Khan, Q., Liaqat, M.U., Mohamed, M.M., 2022. A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers. Geocarto Int. 37 (20), 5832–5850. https://doi.org/10.1080/10106049.2021.1923833Test. Khosravi, K., Barzegar, R., Golkarian, A., Busico, G., Cuoco, E., Mastrocicco, M., Kazakis, N., 2021a. Predictive modeling of selected trace elements in groundwater using hybrid algorithms of iterative classifier optimizer. J. Contam. Hydrol. 242 https://doi.org/10.1016/j.jconhyd.2021.103849Test. Khosravi, K., Bordbar, M., Paryani, S., Saco, P.M., Kazakis, N., 2021b. New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Sci. Total Environ. 767, 145416 https://doi.org/10.1016/jTest. scitotenv.2021.145416. Konikow, L.F., 2011. Contribution of global groundwater depletion since 1900 to sea level rise. Geophys. Res. Lett. 38 (17), L17401 https://doi.org/10.1029Test/ 2011GL048604. Lee, H., Park, S., Hang, V., Nguyen, M., Shin, H.S., 2023. Proposal for a new customization process for a data-based water quality index using a random forest approach. Environ. Pollut. 121222 https://doi.org/10.1016/j.envpol.2023.121222Test. Mace, R.E., 2023. The importance of groundwater sustainability. In: Groundwater Sustainability: Conception, Development, and Application. Springer International Publishing, Cham, pp. 1–20. https://doi.org/10.1007/978-3-031-13516-3_1Test. Machiwal, D., Jha, M.K., Singh, V.P., Mohan, C., 2018a. Assessment and mapping of groundwater vulnerability to pollution: current status and challenges. Earth Sci. Rev. 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009Test. Machiwal, D., Cloutier, V., Güler, C., Kazakis, N., 2018b. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 77, 681. https://doi.org/10.1007/s12665-018-7872-xTest. Mastrocicco, M., Colombani, N., 2021. The issue of groundwater salinization in coastal areas of the mediterranean region: a review. Water (Switzerland) 13 (1). http://doTest i:10.3390/w13010090. Mastrocicco, M., Busico, G., Colombani, N., 2019. Deciphering interannual temperature variations in springs of the Campania region (Italy). Water 11 (2), 288. https://doiTest. org/10.3390/w11020288. Milia, A., Torrente, M.M., 2015. Tectono-stratigraphic signature of a rapid multistage subsiding rift basin in the Tyrrhenian-Apennine hinge zone (Italy): a possible interaction of upper plate with subducting slab. J. Geodyn. 86, 42–60. https://doiTest. org/10.1016/j.jog.2015.02.005. Mishra, N., Sharma, A.K., 2021. Groundwater storage analysis in changing land use/land cover for haridwar Districts of upper Ganga canal command (1972–2011). In: Advances in Civil Engineering and Infrastructural Development: Select Proceedings of ICRACEID 2019. Springer Singapore, pp. 233–241. https://doi.org/10.1007/978Test- 981-15-6463-5_22. Mohammed, M.A., Szabo, ´ N.P., Szucs, ˝ P., 2022. Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city Sudan. Heliyon 8 (11), e11308. https://doi.org/10.1016/j.heliyon.2022.e11308Test. Molinari, A., Guadagnini, L., Marcaccio, M., Guadagnini, A., 2018. Geostatistical multimodel approach for the assessment of the spatial distribution of natural background concentrations in large-scale groundwater bodies. Water Res. https:// doi.org/10.1016/j.watres.2018.09.049. Mountrakis, G., Im, J., Ogole, C., 2011. Support vector machines in remote sensing: a review. ISPRS J. Photogrammetry Remote Sens. 66 (3), 247–259. https://doi.orgTest/ 10.1016/j.isprsjprs.2010.11.001. Najafzadeh, M., Homaei, F., Mohamadi, S., 2022. Reliability evaluation of groundwater quality index using data-driven models. Environ. Sci. Pollut. Res. 29 (6), 8174–8190. https://doi.org/10.1007/s11356-021-16158-6Test. Nieto, P., Custodio, E., Manzano, M., 2005. Baseline groundwater quality: a European approach. Environ. Sci. Pol. 8 (4), 399–409. https://doi.org/10.1016/jTest. envsci.2005.04.004. Norouzi, H., Moghaddam, A.A., 2020. Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arabian J. Geosci. 13, 1–13. https://doi.org/10.1007/s12517Test- 020-05904-8. Norouzi, H., Moghaddam, A.A., Celico, F., Shiri, J., 2021. Assessment of groundwater vulnerability using genetic algorithm and random forest methods (case study: Miandoab plain, NW of Iran). Environ. Sci. Pollut. Res. 28, 39598–39613. https:// doi.org/10.1007/s11356-021-12714-2. Peters, N.E., Meybeck, M., 2000. Water quality degradation effects on freshwater availability: impacts of human activities. Water Int. 25 (2), 185–193. https://doiTest. org/10.1080/02508060008686817. Pham, Q.B., Tran, D.A., Ha, N.T., Islam, A.R.M.T., Salam, R., 2022. Random forest and nature-inspired algorithms for mapping groundwater nitrate concentration in a coastal multi-layer aquifer system. J. Clean. Prod. 343, 130900 https://doi.orgTest/ 10.1016/j.jclepro.2022.130900. Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analyses. Eos, Transactions American Geophysical Union 25 (6), 914–928. https:// doi.org/10.1029/TR025i006p00914. Rama, F., Busico, G., Arumi, J.L., Kazakis, N., Colombani, N., Marfella, L., Mastrocicco, M., 2022. Assessment of intrinsic aquifer vulnerability at continental scale through a critical application of the drastic framework: the case of south America. Sci. Total Environ. 823 https://doi.org/10.1016/j.scitotenv.2022.153748Test. Rodriguez-Galiano, V., Mendes, M.P., Garcia-Soldado, M.J., Chica-Olmo, M., Ribeiro, L., 2014. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci. Total Environ. 476, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001Test. Rokhshad, A.M., Khashei Siuki, A., Yaghoobzadeh, M., 2021. Evaluation of a machine based learning method to estimate the rate of nitrate penetration and groundwater contamination. Arabian J. Geosci. 14, 1–11. https://doi.org/10.1007/s12517-020Test- 06257-y. Rufino, F., Busico, G., Cuoco, E., Darrah, T.H., Tedesco, D., 2019. Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy. Environ. Monit. Assess. 191, 1–17. https://doi.org/10.1007/s10661-019-7978-yTest. Rufino, F., Busico, G., Cuoco, E., Muscariello, L., Calabrese, S., Tedesco, D., 2022. Geochemical characterization and health risk assessment in two diversified M. Bordbar et al. Journal of Environmental Management 347 (2023) 119041 11 environmental settings (southern Italy). Environ. Geochem. Health 44 (7), 2083–2099. http://doi:10.1007/s10653-021-00930-1Test. Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., Pradhan, B., 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 644, 954–962. https://doiTest. org/10.1016/j.scitotenv.2018.07.054. Shahabi, A., Malakouti, M., Fallahi, E., 2005. Effects of bicarbonate content of irrigation water on nutritional disorders of some apple varieties. J. Plant Nutr. 28, 1663–1678. http://doi:10.1080/01904160500203630Test. Singha, S., Pasupuleti, S., Singha, S.S., Singh, R., Kumar, S., 2021. Prediction of groundwater quality using efficient machine learning technique. Chemosphere 276, 130265. https://doi.org/10.1016/j.chemosphere.2021.130265Test. Sorichetta, A., Ballabio, C., Masetti, M., Robinson Jr., G.R., Sterlacchini, S., 2013. A comparison of data-driven groundwater vulnerability assessment methods. Groundwater 51 (6), 866–879. https://doi.org/10.1111/gwat.12012Test. Steichen, J., Koelliker, J., Grosh, D., Heiman, A., Yearout, R., Robbins, V., 1988. Contamination of farmstead wells by pesticides, volatile organics, and inorganic chemicals in Kansas. Ground Water Monit. Remediat 8 (3), 153–160. https://doiTest. org/10.1111/j.1745-6592.1988.tb01092.x. Sullivan, T.P., Gao, Y., 2017. Development of a new P3 (Probability, Protection, and Precipitation) method for vulnerability, hazard, and risk intensity index assessments in karst watersheds. J. Hydrol. 549, 428–451. https://doi.org/10.1016/jTest. jhydrol.2017.04.007. Taghavi, N., Niven, R.K., Paull, D.J., Kramer, M., 2022. Groundwater vulnerability assessment: a review including new statistical and hybrid methods. Sci. Total Environ. 153486 https://doi.org/10.1016/j.scitotenv.2022.153486Test. Tesoriero, A.J., Voss, F., 1997. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Groundwater 35 (6), 1029–1039. https://doi.org/10.1111/j.1745Test- 6584.1997.tb00175.x. Tomaszkiewicz, M., Abou Najm, M., El-Fadel, M., 2014. Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environ. Model. Software 57, 13–26. https://doi.org/10.1016/j.envsoft.2014.03.010Test. Tufano, R., Allocca, V., Coda, S., Cusano, D., Fusco, F., Nicodemo, F., De Vita, P., 2020. Groundwater vulnerability of principal aquifers of the Campania region (southern Italy). J. Maps 16 (2), 565–576. https://doi.org/10.1080/17445647.2020.1787887Test. Vasavi, M., Bhavana, M., 2021. Ground water quality assessment in Guntur district GIS data using data mining techniques. PalArch’s J. Archaeol. Egypt/Egypt 18 (4), 2758–2767. https://archives.palarch.nl/index.php/jae/article/view/6708Test. Wei, A., Bi, P., Guo, J., Lu, S., Li, D., 2021. Modified DRASTIC model for groundwater vulnerability to nitrate contamination in the Dagujia river basin, China. Water Supply 21 (4), 1793–1805. https://doi.org/10.2166/ws.2021.018Test. Worrall, F., Besien, T., Kolpin, D.W., 2002. Groundwater vulnerability: interactions of chemical and site properties. Sci. Total Environ. 299 (1–3), 131–143. https://doiTest. org/10.1016/S0048-9697(02)00270-X. Yamazaki, D., Ikeshima, D., Neal, J.C., O’Loughlin, F., Sampson, C.C., Kanae, S., Bates, P. D., 2017. Merit DEM: a new high-accuracy global digital elevation model and its merit to global hydrodynamic modeling. In: AGU Fall Meeting Abstracts, H12C-04. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P.D., Allen, G.H., Pavelsky, T.M., 2019. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55 (6), 5053–5073. https://doi.org/10.1029Test/ 2019WR024873. Zhang, Y., Li, X., Luo, M., Wei, C., Huang, X., Xiao, Y., Pei, Q., 2021. Hydrochemistry and entropy-based groundwater quality assessment in the Suining area, Southwestern China. J. Chem. 2021, 1–11. https://doi.org/10.1155/2021/5591892Test; http://hdl.handle.net/2122/17191Test

  3. 3
    دورية أكاديمية

    العلاقة: EU project LIFE16 CCA/IT/000011.; Busico, G.; Grilli, E.; Carvalho, S.C.P.; Mastrocicco, M.; Castaldi, S. Assessing Soil Erosion Susceptibility for Past and Future Scenarios in Semiarid Mediterranean Agroecosystems. Sustainability 2023, 15, 12992. https://doi.org/10.3390/su151712992Test; http://hdl.handle.net/10451/59567Test

  4. 4
    دورية أكاديمية

    المساهمون: Università degli studi della Campania "Luigi Vanvitelli" = University of the Study of Campania Luigi Vanvitelli, Aristotle University of Thessaloniki, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Patras, Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “Second Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (Project Number: 00138, Title: Groundwater Depletion. Are Eco-Friendly Energy Recharge Dams a Solution?- the Environment, Design, and Innovation Ph.D. Program funded by the V:ALERE 2020 Program (VAnviteLli pEr la RicErca) of the University of Campania “Luigi Vanvitelli”

    المصدر: ISSN: 2073-4441 ; Water ; https://hal.science/hal-04401686Test ; Water, 2023, 15 (22), pp.1-19. ⟨10.3390/w15224018⟩.

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: Bordbar, Mojgan, Rezaie, Fatemeh, Bateni, Sayed M., Jun, Changhyun, Kim, Dongkyun, Busico, Gianluigi, Moghaddam, Hamid Kardan, Paryani, Sina, Panahi, Mahdi, Valipour, Mohammad

    العلاقة: volume:9; issue:4; firstpage:45; lastpage:67; numberofpages:23; journal:CURRENT CLIMATE CHANGE REPORTS; https://hdl.handle.net/11591/517683Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85181482443

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية