يعرض 1 - 10 نتائج من 52 نتيجة بحث عن '"Brochero, Helena Luisa"', وقت الاستعلام: 2.40s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 39 Núm. 2 (2021); 216-225 ; Agronomía Colombiana; Vol. 39 No. 2 (2021); 216-225 ; Agronomía Colombiana; v. 39 n. 2 (2021); 216-225 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/95978/81753Test; Abdullah, Z. S., Greenfield, B. P., Ficken, K. J., Taylor, J. W., Wood, M., & Butt, T. M. (2015). A new attractant for monitoring western flower thrips, Frankliniella occidentalis in protected crops. SpringerPlus, 4, Article 89. https://doi.org/10.1186/s40064-015-0864-3Test; Aliakbarpour, H., & Rawi, C. S. M. (2011). Evaluation of yellow sticky traps for monitoring the population of thrips (Thysanoptera) in a mango orchard. Environmental Entomology, 40(4), 873–879. https://doi.org/10.1603/EN10201Test; Ben-Yakir, D., & Chen, M. (2008). Studies of thrips migratory flights in Israel. Acta Phytopathologica et Entomologica Hungarica, 43(2), 243–248. https://doi.org/10.1556/aphyt.43.2008.2.5Test; Brødsgaard, H. F. (1989). Coloured sticky traps for Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae) in glasshouses. Journal of Applied Entomology, 107(1–5), 136–140. https://doi.org/10.1111/j.1439-0418.1989.tb00240.xTest; Bryan, D. E., & Smith, R. F. (1956). The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera, Thripidae). University of California Publications in Entomology. University of California Press.; Cao, Y., Zhi, J., Li, C., Zhang, R., Wang, C., Shang, B., & Gao, Y. (2018). Behavioral responses of Frankliniella occidentalis to floral volatiles combined with different background visual cues. Arthropod-Plant Interactions, 12, 31–39. https://doi.org/10.1007/s11829-017-9549-xTest; Cárdenas, E., & Corredor, D. (1989). Biología del Trips Frankliniella occidentalis (Pegande) (Thysanoptera: Thripidae) sobre crisantemo Chrysanthemum morifolium L. bajo condiciones de laboratorio. Agronomía Colombiana, 6, 71–77.; Cavalleri, A., & Mound, L. A. (2012). Toward the identification of Frankliniella species in Brazil (Thysanoptera, Thripidae). Zootaxa, 3270(1), 1–30. https://doi.org/10.11646/zootaxa.3270.1.1Test; Chau, A., & Heinz, K. M. (2006). Manipulating fertilization: a management tactic against Frankliniella occidentalis on potted chrysanthemum. Entomologia Experimentalis et Applicata, 120(3), 201–209. https://doi.org/10.1111/j.1570-7458.2006.00441.xTest; Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35(3), 124–129. https://doi.org/10.2307/2683975Test; Corredor, D. (1999). Integrated pest management in cut flower crops grown in plastic houses at the Bogota plateau. Acta Horticulturae, 482, 241–246. https://doi.org/10.17660/ActaHortic.1999.482.35Test; Davidson, M. M., Nielsen, M. C., Butler, R. C., Vellekoop, R., George, S., Gunawardana, D., Muir, C. A., & Teulon, D. A. J. (2015). The effect of adhesives and solvents on the capture and specimen quality of pest thrips on coloured traps. Crop Protection, 72, 108–111. https://doi.org/10.1016/j.cropro.2015.03.008Test; De Gelder, A., Dieleman, J. A., Bot, G. P. A., & Marcelis, L. F. M. (2012). An overview of climate and crop yield in closed greenhouses. The Journal of Horticultural Science and Biotechnology, 87(3), 193–202. https://doi.org/10.1080/14620316.2012.11512852Test; Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252. https://doi.org/10.2307/1266041Test; Elimem, M., Harbi, A., & Chermiti, B. (2011). Evaluation of Frankliniella occidentalis different body colours and their development in a pepper crop greenhouse in the Region of Moknine in Tunisia. Bulletin of Insectology, 64(1), 9–13.; González, E. C., Orjuela, J. A., Trujillo, J., & Becerra, M. (2014). Descripción de la cadena productiva de las flores en la zona de Bogotá y Cundinamarca. Semilleros, 1(1), 5–16.; Hansen, E. A., Funderburk, J. E., Reitz, S. R., Ramachandran, S., Eger, J. E., & McAuslane, H. (2003). Within-plant distribution of Frankliniella species (Thysanoptera: Thripidae) and Orius insidiosus (Heteroptera: Anthocoridae) in field pepper. Environmental Entomology, 32(5), 1035–1044. https://doi.org/10.1603/0046-225x-32.5.1035Test; He, Z., Guo, J. F., Reitz, S. R., Lei, Z. R., & Wu, S. Y. (2020). A global invasion by the thrip, Frankliniella occidentalis: current virus vector status and its management. Insect Science, 27(4), 626–645. https://doi.org/10.1111/1744-7917.12721Test; Hillocks, R. J. (2002). IPM and organic agriculture for smallholders in Africa. Integrated Pest Management Reviews, 7, 17–27. https://doi.org/10.1023/A:1025720512408Test; Iizuka, M., & Gebreeyesus, M. (2018). ‘Discovery’ of non-traditional agricultural exports in Latin America: diverging pathways through learning and innovation. Innovation and Development, 8(1), 59–78. https://doi.org/10.1080/2157930X.2017.1355771Test; Khavand, M., Minaei, K., & Atashi, H. (2019). Comparison of trapped western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) to yellow and blue sticky traps in three different heights on two greenhouse rose cultivars. Journal of Crop Protection, 8(3), 373–377.; Kigathi, R., & Poehling, H. M. (2012). UV-absorbing films and nets affect the dispersal of western f lower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Applied Entomology, 136(10), 761–771. https://doi.org/10.1111/j.1439-0418.2012.01707.xTest; Kim, B. S., Park, C. G., Moon, Y. M., Sung, B. K., Ren, Y., Wylie, S. J., & Lee, B. H. (2016). Quarantine treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. Journal of Economic Entomology, 109(6), 2334–2340. https://doi.org/10.1093/jee/tow200Test; Kirk, W. D. J. (1997). Feeding. In T. Lewis (Ed.), Thrips as crop pests (pp. 119–174). CAB International.; Kirk, W. D. J., Jan de Kogel, W., Koschier, E. H., & Teulon, D. A. J. (2021). Semiochemicals for thrips and their use in pest management. Annual Review of Entomology, 66, 101–119. https://doi.org/10.1146/annurev-ento-022020-081531Test; Lee, R. A. (2008). IPM strategies in the Colombian cut flower industry. IOBC/WPRS Bulletin, 32, 123–134.; Lewis, T. (1997). Field and laboratory techniques. In T. Lewis (Ed.), Thrips as crop pests (pp. 435–475). CAB International.; Liansheng, H., Din, Z. M., & Lai, Y. M. (2013). Spatial distribution and temporal dynamics of Frankliniella occidentalis Pergande, 1895 and Thrips palmi Karny, 1925 (Insecta: Thysanoptera: Thripidae) in orchids in Singapore. Life: The Excitement of Biology, 1(4), 176–196. https://doi.org/10.9784/LEB1Test(3)He.03; Loyola, C. E., Dole, J. M., & Dunning, R. (2019). South and Central America cut flower production and postharvest survey. HortTechnology, 29(6), 898–905. https://doi.org/10.21273/HORTTECH04484-19Test; Mainali, B. P., & Lim, U. T. (2010). Circular yellow sticky trap with black background enhances attraction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 45(1), 207–213.; Mao, L., Chang, Y., Yang, F., Zhang, L., Zhang, Y., & Jiang, H. (2018). Attraction effect of different colored cards on thrips Frankliniella intonsa in cowpea greenhouses in China. Scientific Reports, 8, Article 13603. https://doi.org/10.1038/s41598-018-32035-8Test; Matteson, N., Terry, I., Ascoli-Christensen, A., & Gilbert, C. (1992). Spectral efficiency of the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology, 38(6), 453–459. https://doi.org/10.1016/0022-1910Test(92)90122-T; Mejía, C. M., Ospina, L., Palacio, M. M., Calvo, S. J., & Giraldo, C. E. (2018). Relación entre método directo e indirecto de monitoreo de trips (Insecta: Thysanoptera) en un cultivo comercial de crisantemo Dendranthema (dc.) Des Moul (Asterácea) del Oriente Antioqueño, Colombia. Metroflor, 84, 25–32.; Mirab-Balou, M., & Chen, X. X. (2010). A new method for preparing and mounting thrips for miscroscopic examination. Journal of Environmental Entomology, 32(1), 115–121.; Mouden, S., Sarmiento, K. F., Klinkhamer, P. G. L., & Leiss, K. A. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science, 73(5), 813–822. https://doi.org/10.1002/ps.4531Test; Mound, L. A., & Kibby, G. (1998). Thysanoptera: an identification guide. CAB International.; Natwick, E. T., Byers, J. A., Chu, C. C., Lopez, M., & Henneberry, T. J. (2007). Early detection and mass trapping of Frankliniella occidentalis and Thrips tabaci in vegetable crops. Southwestern Entomologist, 32(4), 229–238. https://doi.org/10.3958/0147-1724-32.4.229Test; Nicholas, A. H., & Follett, P. A. (2018). Postharvest irradiation treatment for quarantine control of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 111(3), 1185–1189. https://doi.org/10.1093/jee/toy073Test; Obilor, E. I., & Amadi, E. C. (2018). Test for significance of Pearson’s correlation coefficient (r). International Journal of Innovative Mathematics, Statistics & Energy Policies, 6(1), 11–23.; Ogada, P. A., & Poehling, H. M. (2015). Sex-specific influences of Frankliniella occidentalis (western flower thrips) in the transmission of Tomato spotted wilt virus (Tospovirus). Journal of Plant Diseases and Protection, 122, 264–274. https://doi.org/10.1007/BF03356562Test; Ogino, T., Uehara, T., Muraji, M., Yamaguchi, T., Ichihashi, T., Suzuki, T., Kainoh, Y., & Shimoda, M. (2016). Violet LED light enhances the recruitment of a thrip predator in open fields. Scientific Reports, 6, Article 32302. https://doi.org/10.1038/srep32302Test; Otieno, J. A., Stukenberg, N., Weller, J., & Poehling, H. M. (2018). Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science, 91, 1301–1314.; Patel-Campillo, A. (2010). Rival commodity chains: agency and regulation in the US and Colombian cut flower agro-industries. Review of International Political Economy, 17(1), 75–102. https://doi.org/10.1080/09692290903296094Test; Pearsall, I. A., & Myers, J. H. (2001). Spatial and temporal patterns of dispersal of western flower thrips (Thysanoptera: Thripidae) in nectarine orchards in British Columbia. Journal of Economic Entomology, 94(4), 831–843. https://doi.org/10.1603/0022-0493-94.4.831Test; Pizzol, J., Nammour, D., Hervouet, P., Bout, A., Desneux, N., & Mailleret, L. (2010). Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. Journal of Pest Science, 83, 191–196. https://doi.org/10.1007/s10340-010-0286-5Test; Prema, M. S., Ganapathy, N., Renukadevi, P., Mohankumar, S., & Kennedy, J. S. (2018). Coloured sticky traps to monitor thrips population in cotton. Journal of Entomology and Zoology Studies, 6(2), 948–952.; Puth, M. T., Neuhäuser, M., & Ruxton, G. D. (2015). Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Animal Behaviour, 102, 77–84. https://doi.org/10.1016/j.anbehav.2015.01.010Test; Reitz, S. R., Gao, Y., Kirk, W. D. J., Hoddle, M. S., Leiss, K. A., & Funderburk, J. E. (2020). Invasion biology, ecology, and management of western flower thrips. Annual Review of Entomology, 65, 17–37. https://doi.org/10.1146/annurev-ento-011019-024947Test; Rhainds, M., Cloutier, C., Shipp, L., Boudreault, S., Daigle, G., & Brodeur, J. (2007). Temperature-mediated relationship between western flower thrips (Thysanoptera: Thripidae) and chrysanthemum. Environmental Entomology, 36(2), 475–483. https://doi.org/10.1093/ee/36.2.475Test; Rhainds, M., & Shipp, L. (2004). Dispersal of adult western flower thrips (Thysanoptera: Thripidae) in greenhouse crops. The Canadian Entomologist, 136(2), 241–254. https://doi.org/10.4039/n03-028Test; Rhodes, E. M., Liburd, O. E., & Grunwald, S. (2011). Examining the spatial distribution of flower thrips in southern highbush blueberries by utilizing geostatistical methods. Environmental Entomology, 40(4), 893–903. https://doi.org/10.1603/EN10312Test; Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89. https://doi.org/10.1016/j.coviro.2015.08.003Test; Rőth, F., Galli, Z., Tóth, M., Fail, J., & Jenser, G. (2016). The hypothesized visual system of Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) based on different coloured traps’ catches. North-Western Journal of Zoology, 12(1), 40–49.; Rueda-Ramírez, D. M., Rios-Malaver, D. M., Varela-Ramírez, A., & De Moraes, G. J. (2018). Colombian population of the mite Gaeolaelaps aculeifer as a predator of the thrips Frankliniella occidentalis and the possible use of an astigmatid mite as its factitious prey. Systematic and Applied Acarology, 23(12), 2359–2372. https://doi.org/10.11158/saa.23.12.8Test; Sampson, C., & Kirk, W. D. J. (2013). Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLOS One, 8(11), Article e80787. https://doi.org/10.1371/journal.pone.0080787Test; Shamshiri, R., & Ismail, W. I. W. (2013). A review of greenhouse climate control and automation systems in tropical regions. Journal of Agricultural Science and Applications, 2(3), 176–183.; Shin, Y. K., Kim, S. B., & Kim, D. S. (2020). Attraction characteristics of insect pests and natural enemies according to the vertical position of yellow sticky traps in a strawberry farm with highraised bed cultivation. Journal of Asia-Pacific Entomology, 23(4), 1062–1066. https://doi.org/10.1016/j.aspen.2020.08.016Test; Stukenberg, N., Pietruska, M., Waldherr, A., & Meyhöfer, R. (2020). Wavelength-specific behavior of the western flower thrips (Frankliniella occidentalis): evidence for a blue-green chromatic mechanism. Insects, 11(7), Article 423. https://doi.org/10.3390/insects11070423Test; Sutherland, A. M., & Parrella, M. P. (2011). Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment. Journal of Economic Entomology, 104(4), 1323-1328. https://doi.org/10.1603/ec10415Test; van Tol, R. W. H. M., Davidson, M. M., Butler, R. C., Teulon, D. A. J., & de Kogel, W. J. (2020). Visually and olfactorily enhanced attractive devices for thrips management. Entomologia Experimentalis et Applicata, 168(9), 665–677. https://doi.org/10.1111/eea.12969Test; van Tol, R. W. H. M., Tom, J., Roher, M., Schreurs, A., & van Dooremalen, C. (2021). Haze of glue determines preference of western flower thrips (Frankliniella occidentalis) for yellow or blue traps. Scientific Reports, 11, Article 6557. https://doi.org/10.1038/s41598-021-86105-5Test; Vanegas López, J. G., Merlos García, J. J., & Mayorga Abril, C. M. (2017). Flower export barriers: a comparative study in Colombia, Mexico and Ecuador. Latin American Business Review, 18(3–4), 227–250. https://doi.org/10.1080/10978526.2017.1354705Test; Wu, S., Xing, Z., Ma, T., Xu, D., Li, Y., Lei, Z., & Gao, Y. (2021). Competitive interaction between Frankliniella occidentalis and locally present thrips species: a global review. Journal of Pest Science, 94, 5–16. https://doi.org/10.1007/s10340-020-01212-yTest; Zar, J. H. (2010). Biostatistical analysis (5th ed.). Prentice Hall.; Zhao, K., & Rosa, C. (2020). Thrips as the transmission bottleneck for mixed infection of two orthotospoviruses. Plants, 9(4), Article 509. https://doi.org/10.3390/plants9040509Test; https://revistas.unal.edu.co/index.php/agrocol/article/view/95978Test

  5. 5
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 1 (2020); 73-84 ; Agronomía Colombiana; Vol. 38 No. 1 (2020); 73-84 ; Agronomía Colombiana; v. 38 n. 1 (2020); 73-84 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/78583/74720Test; Abeysinghe, S., P.D. Abeysinghe, C.K. de Silva, P. Udagama, K. Warawichanee, N. Aljafar, P. Kawicha, and M. Dickinson. 2016. Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Dis. 100, 2001-2010. Doi:10.1094/PDIS-02-16-0244-RE; Aliaga, F., E. Hopp, E. Álvarez, and L.A.B. Lopez-Lavalle. 2018. First report of a ‘Candidatus Phytoplasma asteris’ isolate associated with banana elephantiasis disease in Colombia. New Dis. Rep. 37, 12. Doi:10.5197/j.2044-0588.2018.037.012; Alma, A., F. Lessio, and H. Nicke. 2019. Insects as phytoplasma vectors: ecological and epidemiological aspects. pp. 1-26. In: Bertaccini, A., P.G. Weintraub, G.P. Rao, and N. Mori (eds.). Phytoplasmas: Plant pathogenic bacteria - II. Springer, Singapore. Doi:10.1007/978-981-13-2832-9_1; Álvarez, E., J.F. Mejía De Los Ríos, G.A. Llano Rodríguez, J.B. Loke, A. Calari, B. Duduk, and A. Bertaccini. 2009. Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis. 93, 1139-1145. Doi:10.1094/pdis-93-11-1139; Álvarez, E., J.F. Mejía, N. Contaldo, S. Paltrinieri, B. Duduk, and A. Bertaccini. 2014. ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Dis. 98 (3), 311-318. Doi:10.1094/PDIS-12-12-1182-RE; Beanland, L., C.W. Hoy, S.A. Miller, and L.R. Nault. 2000. Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann. Entomol. Soc. Am. 93(2), 271-276. Doi:10.1603/0013-8746(2000)093[0271:IOAYPO]2.0.CO;2; Bertaccini, A., M. Vibio, M. Pastore, S. Recupero, S. Guerrini, and D. Grimaldi. 1997. Nested-PCR assays for detection of phytoplasmas in strawberry. Acta Hortic. 439, 787-790. Doi:10.17660/ActaHortic.1997.439.130; Bertaccini, A. and B. Duduk. 2009. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol. Mediterr. 48, 355-378.; Bertaccini, A., B. Duduk, S. Paltrinieri, and N. Contaldo. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5, 1763-1788. Doi:10.4236/ajps.2014.512191; Bosco, D. and R. D’Amelio. 2010. Transmission specificity and competition of multiple phytoplasmas in the insect vector. pp. 293-308. In: Weintraub, P.G., and P. Jones (eds.). Phytoplasmas: Genomes, plant hosts and vectors. First edition. CAB International, London. Doi:10.1079/9781845935306.0293; Bressan, A., V. Girolami, and E. Boudon-Padieu. 2005. Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol. Exp. Appl. 115, 283-290. Doi:10.1111/j.1570-7458.2005.00240.x; Christensen, N.M., M. Nicolaisen, M. Hansen, and A. Schulz. 2004. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol. Plant-Microbe In. 17, 1175-1184. Doi:10.1094/MPMI.2004.17.11.1175; Contaldo, N., E. Satta, Y. Zambon, S. Paltrinieri, and A. Bertaccini. 2016. Development and evaluation of different complex media for phytoplasma isolation and growth. J. Microbiol. Methods 127, 105-110. Doi:10.1016/j.mimet.2016.05.031; D’Amelio, R., C. Marzachi, and D. Bosco. 2007. Double infection of ‘Candidatus Phytoplasma asteris’ and “flavescence dorée” phytoplasma in the vector Euscelidius variegatus. B. Insectol. 60, 223-224.; Danet, J.L., X. Foissac, L. Zreik, P. Salar, E. Verdin, J.G. Nourrisseau, and M. Garnier. 2003. “Candidatus Phlomobacter fragariae” is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the plant hopper Cixius wagneri (China). Phytopathology 93, 644-649. Doi:10.1094/PHYTO.2003.93.6.644; Dietrich, C.H. 2005. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadellidae (Hemiptera: Auchenorrhyncha). Florida Entomol. 88, 502-517. Doi:10.1653/0015-4040(2005)88[502:KTTFOC]2.0.CO;2; Duduk, B., J.F. Mejia, A. Calari, and A. Bertaccini. 2008a. Identification of 16SrIX group phytoplasmas infecting Colombian periwinkles and molecular characterization on several genes. IOM 17th International Congress. 2008, July 6-11; Tienjin, China.; Duduk, B., J.F. Mejia, S. Paltrinieri, N. Contaldo, E. Alvarez, F. Varon, and A. Bertaccini. 2008b. Molecular differentiation of phytoplasmas affecting corn in Colombia and Serbia. Second International Phytoplasma Workshop. 2008, September 22- 26; La Havana.; Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294-299.; Franco-Lara, L. and L.M. Perilla-Henao. 2014. Phytoplasma diseases in trees of Bogotá, Colombia: a serious risk for urban trees and crops. pp. 90-100. In: A. Bertaccini (ed.). Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. International Phytoplasmologist Working Group, Italy.; Franco-Lara, L., N. Contaldo, J. Mejia, S. Paltrinieri, B. Duduk, and A. Bertaccini. 2017. Detection and identification of phytoplasmas associated with declining Liquidambar styraciflua trees in Colombia. Trop. Plant Pathol. 42, 352-361. Doi:10.1007/s40858-017-0170-4; Galetto, L., M. Nardi, P. Saracco, A. Bressan, C. Marzachi, and D. Bosco. 2009. Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus. Entomol. Exp. Appl. 131, 200-207. Doi:10.1111/j.1570-7458.2009.00845.x; Galetto, L., D. Miliordos, C. Roggia, M. Rashidi, D. Sacco, C. Marzachi, and D. Bosco. 2014. Acquisition capability of the grapevine Flavescence dorée by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant. J. Pest Sci. 87, 671-679. Doi:10.1007/s10340-014-0593-3; Galvis, C.A., J.E. Leguizamón, A.L. Gaitán, J.F. Mejía, E. Alvarez, and J. Arroyave. 2007. Detection and identification of a 16SrIIIrelated phytoplasma associated with coffee crispiness disease in Colombia. Plant Dis. 91, 248-252. Doi:10.1094/PDIS-91-3-0248; Gundersen, D.E. and I.M. Lee. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primers pairs. Phytopathol. Mediterr. 35, 44-151.; Harrison, N.A., D.E. Legard, R. DiBonito, and P.A. Richardson. 1997. Detection and differentiation of phytoplasmas associated with diseases of strawberry in Florida. Plant Dis. 81, 230-230. Doi:10.1094/PDIS.1997.81.2.230B; Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. The College of Agriculture University of California, Berkeley, USA.; Hogenhout, S., K. Oshima, E. Ammar, S. Kakizawa, H. Kingdom, and S. Namba. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9, 403-423. Doi:10.1111/j.1364-3703.2008.00472.x; Hung, T.H., S.C. Hung, C.N. Chen, M.H. Hsu, and H.J. Su. 2004. Detection by PCR of ‘Candidatus Liberibacter asiaticus’, the bacterium causing Citrus Huanglongbing in vector psyllids: application to the study of vector-pathogen relationships. Plant Pathol. 53, 96-102. Doi:10.1111/j.1365-3059.2004.00948.x; IRPCM. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243-1255. Doi:10.1099/ijs.0.02854-0; Jomantiene, R., J.L. Maas, E.L. Dally, and R.E. Davis. 1999. First report of clover yellow edge and STRAWB2 phytoplasmas in strawberry in Maryland. Plant Dis. 83, 1072-1072. Doi:10.1094/PDIS.1999.83.11.1072C; Lee, I.M., D.E. Gundersen-Rindal, R.E. Davis, and I.M. Bartoszyk. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Evol. Microbiol. 48, 1153-1169. Doi:10.1099/00207713-48-4-1153; Lee, I.M., R.E. Davis, and D.E. Gundersen-Rindal. 2000. Phytoplasma: Phytopathogenic Mollicutes. Annu. Rev. Microbiol. 54, 221-255. Doi:10.1146/annurev.micro.54.1.221; Lee, I.M., D.E. Gundersen-Rindal, R.E. Davis, K.D. Bottner, C. Marcone, and E. Seemüller. 2004. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 54, 1037-1048. Doi:10.1099/ijs.0.02843-0; Linnavuori, R. 1959. Revision of the neotropical Deltocephalinae and some related subfamilies (Homoptera). Societas Zoologica Botanica Fennica “Vanamo”, Helsinki.; Maggi, F., L. Galetto, C. Marzachì, and D. Bosco. 2014. Temperature- dependent transmission of ‘Candidatus phytoplasma asteris’ by the vector leafhopper Macrosteles quadripunctulatus Kirschbaum. Entomologia 2, 87-94. Doi:10.4081/entomologia.2014.202; Mejía, J.F., N. Contaldo, S. Paltrinieri, J.M. Pardo, C.A. Rios, E. Alvarez, and A. Bertaccini. 2011. Molecular detection and identification of group 16SrV and 16SrXII phytoplasmas associated with potatoes in Colombia. B. Insectol. 64(Suppl.), S97-S98.; Mejía, J.F., S. Paltrinieri, E. Rincón, C.M. Ospina, A. Gaitán, J.M. Pardo, E. Alvarez, and A. Bertaccini. 2014. Coffee crispiness and nogal cafetero witches’ broom associated with ‘Candidatus Phytoplasma pruni’-related strains in Colombia: multilocus gene characterization. pp 101-108. In: A. Bertaccini (ed.). Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. International Phytoplasmologist Working Group, Italy.; Murral, D.J., L.R. Nault, C.W. Hoy, L.V. Madden, and S.A. Miller. 1996. Effects of temperature and vector age on transmission of two Ohio strains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). J. Econ. Entomol. 89, 1223-1232. Doi:10.1093/jee/89.5.1223; Oxelman, B., M. Liden, and D. Berglund. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Pl. Syst. Evol. 206, 393-410. Doi:10.1007/BF00987959; Padovan, A., K. Gibb, and D. Persley. 1998. Phytoplasmas associated with diseases in strawberry. Australas. Plant Pathol. 27, 280. Doi:10.1071/AP98036; Padovan, A., K. Gibb, and D. Persley. 2000. Association of ‘Candidatus Phytoplasma australiense’ with green petal and lethal yellows diseases in strawberry. Plant Pathol. 49, 362-368. Doi:10.1046/j.1365-3059.2000.00461.x; Palermo, S., A. Arzone, and D. Bosco. 2001. Vector-pathogen-host plant relationship of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol. Exp. Appl. 99, 347-354. Doi:10.1046/j.1570-7458.2001.00834.x; Pérez-López, E., M. Luna-Rodríguez, C. Olivier, and T. Dumonceaux. 2016. The underestimated diversity of phytoplasmas in Latin America. Int. J. Syst. Evol. Microbiol. 66, 492-513. Doi:10.1099/ijsem.0.000726; Perilla-Henao, L.M., M. Dickinson, and L. Franco-Lara. 2012. First report of ‘Candidatus Phytoplasma asteris’ affecting woody hosts (Fraxinus uhdei, Populus nigra, Pittosporum undulatum and Croton spp.) in Colombia. Plant Dis. 96, 1372. Doi:10.1094/PDIS-03-12-0290-PDN; Perilla-Henao, L.M. and L. Franco-Lara. 2013. Especies arbóreas de las familias Euphorbiaceae, Pittosporaceae y Salicaceae son infectadas por ‘Ca. Phytoplasma fraxini’ y ‘Ca. Phytoplasma asteris᾿ en infecciones mixtas en Bogotá, Colombia. Rev. Fac. Cienc. Bas. 9, 248-265. Doi:10.18359/rfcb.386; Perilla-Henao, L.M. and L. Franco-Lara. 2014. Phytoplasmas 16SrI and 16SrVII of urban trees of Bogotá infect strawberries in the Sabana de Bogotá, Colombia. 47 Congreso Brasileiro de Fitopatología. 2014, August 17-22; Londrina, Brazil.; Perilla-Henao, L.M. and C.L. Casteel. 2016. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci. 7, 1-15. Doi:10.3389/fpls.2016.01163; Perilla-Henao, L.M., M.R. Wilson, and L. Franco-Lara. 2016. Leafhoppers Exitianus atratus and Amplicephalus funzaensis transmit phytoplasmas of groups 16SrI and 16SrVII in Colombia. Plant Pathol. 65, 1200-1209. Doi:10.1111/ppa.12490; Purcell, A.H., J. Richardson, and A. Finlay. 1981. Multiplication of the agents of X-disease in a non-vector leafhopper Macrosteles fascifrons. Ann. Appl. Biol. 99, 283-289. Doi:10.1111/j.1744-7348.1981.tb04797.x; Rashidi, M., L. Galetto, D. Bosco, A. Bulgarelli, M. Vallino, F. Veratti, and C. Marzachì. 2015. Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol. 15, 193. Doi:10.1186/s12866-015-0522-5; Ratnasingham, S. and P.D.N. Hebert. 2007. BOLD: the Barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7, 355-364. Doi:10.1111/j.1471-8286.2007.01678.x; Siddique, A.B.M., J.N. Guthrie, K.B. Walsh, D.T. White and P.T. Scott. 1998. Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback. Plant Dis. 82, 1112-1120. Doi:10.1094/PDIS.1998.82.10.1112; Silva-Castaño, A.F., M.R. Wilson, H.L. Brochero, and L. Franco-Lara. 2019. Biodiversity, bugs and barcodes: the Cicadellidae associated with grassland and phytoplasmas in the Sabana de Bogotá, Colombia. Fla. Entomol. 102, 755-762. Doi:10.1653/024.102.0413; Takiya, D., P. Tran, C. Dietrich, and N. Moran. 2006. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemptera: Cicadellidae) and their duel bacterial symbionts. Mol. Ecol. 15, 4175-4191. Doi:10.1111/j.1365-294X.2006.03071.x; Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 12, 2725-2729. Doi:10.1093/molbev/mst197; Valiunas, D., J. Staniulis, and R. Davis. 2006. ‘Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria × ananassa. Int. J. Syst. Evol. Microbiol. 56, 277-281. Doi:10.1099/ijs.0.63935-0; Varela, C. and L. Franco-Lara. 2017. Evidencia de fitoplasmas asociados a una nueva enfermedad de papa en Cundinamarca.VII Congreso de Horticultura, 2017 November 15-17, Cajica, Colombia.; Vega, F.E., R.E. Davis, P. Barbosa, E.L. Dally, A.H. Purcell, and I.M. Lee. 1993. Detection of a plant pathogen in a non-vector insect species by the polymerase chain reaction. Phytopathology 83, 621-624. Doi:10.1094/Phyto-83-621; Webb, D.R., R.G. Bonfiglioli, L. Carraro, R. Osler, and R.H. Symons. 1999. Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89, 894-901. Doi:10.1094/PHYTO.1999.89.10.894; Weintraub, P.G. and L. Beanland. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91-111. Doi:10.1146/annurev.ento.51.110104.151039; Weintraub, P. 2007. Insect vector of phytoplasmas and their control- an update. Bull. Insectol. 60(2), 169-173.; https://revistas.unal.edu.co/index.php/agrocol/article/view/78583Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: http://www.revistas.unal.edu.co/index.php/agrocol/article/view/55616Test; Universidad Nacional de Colombia Revistas electrónicas UN Agronomía Colombiana; Agronomía Colombiana; Santamaría, Maikol and Ebratt, Everth and Castro, Angela and Brochero, Helena Luisa (2016) Hymenopterous parasitoids of Dasiops (Diptera: Lonchaeidae) infesting cultivated Passiflora spp. (Passifloraceae) in Cundinamarca and Boyaca, Colombia. Agronomía Colombiana, 34 (2). pp. 200-208. ISSN 2357-3732; https://repositorio.unal.edu.co/handle/unal/58552Test; http://bdigital.unal.edu.co/55335Test/

  8. 8
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 34 Núm. 2 (2016); 200-208 ; Agronomía Colombiana; Vol. 34 No. 2 (2016); 200-208 ; Agronomía Colombiana; v. 34 n. 2 (2016); 200-208 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf; text/html

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/55616/57798Test; https://revistas.unal.edu.co/index.php/agrocol/article/view/55616/60775Test; Aguiar-Menezes, E., R. Nascimento, and F. Menezes. 2004. Diversity of fly species (Diptera: Tephritoidea) from Passiflora spp. and their hymenopterous parasitoids in two municipalities of the southeastern Brazil. Neot. Entomol. 33, 113-116. Doi:10.1590/ S1519-566X2004000100020.; Aluja, A., S.M. Ovruski, L. Guillén, L. Oroño, and J. Sivinski. 2009. Comparison of the host searching and oviposition behaviors of the tephritid (Diptera) parasitoids Aganaspis pelleranoi and Odontosema anastrephae (Hymenoptera: Figitidae, Eucoilinae). J. Insect Behav. 22, 423-451. Doi:10.1007/s10905-009-9182-3.; Ambrecht, I. 1985. Biología de la mosca de los botones florales del maracuyá Dasiops inedulis (Diptera. Lonchaeidae). Undergraduate thesis. Faculty of Sciences, Universidad del Valle, Cali, Colombia.; Arias-Penna, T. 2003. Lista de los géneros y especies de la superfamilia Proctotrupoidea (Hymenoptera) de la región Neotropical. Biota Colomb. 4, 3-32.; Basso, C. and G. Grille (eds.). 2009. Relaciones entre organismos en los sistemas hospederos-parasitoides-simbiontes. Horticultura 211, 34-35.; Buffington, M. and F. Ronquist. 2008. Familia Figitidae. pp. 829-838. In: Fernández, F. and M.J. Sharkey (eds.). 2006. Introducción a los Hymenoptera de La Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; Campos, D. and M. Sharkey. 2006. Familia Braconidae. pp. 331-384. In: F. Fernández y M.J. Sharkey (eds.). 2006. Introducción a los Hymenoptera de La Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; Castro, A., A. Sepúlveda, C. Vallejo, C. Korytkowski, E. Ebratt, H. Brochero, H. Gómez, J. Salamanca, M. Santamaría, M. Cubides, M. González, O. Martínez, S. Parada, and Z. Flores. 2012. Moscas de género Dasiops Rondani 1856 (Diptera: Lonchaeidae) en cultivos de pasifloras. Technical Bulletin. Instituto Colombiano Agropecuario (ICA), Bogotá.; Chacón, P. and M. Rojas. 1984. Entomofauna asociada a Passiflora mollissima, P. edulis, P. flavicarpa y P. quadrangularis en el departamento del Valle del Cauca. Turrialba 34, 297-311.; CDB, Convenio sobre la Diversidad Biológica. 2010. Document Unep/CBD/94/1 Río de Janeiro, Brasil. In: https://www.cbd.intTest/; consulted: November, 2015.; Diaz, N. and F. Gallardo. 2001. Aganaspis Lin 1987. generic enlargement and a key for species present in a Neotropical region (Cynipoidea: Figitidae: Eucoilinae). Phycis 58, 91-95.; Dix, O.J. 2009. Sinopsis de las especies de la subfamilia Alysiinae (Hymenoptera: Braconidae) en Colombia. MSc thesis. Faculty of Sciences, Universidad Nacional de Colombia, Bogotá.; Ehler, L. 1994. Parasitoid communities, parasitoid guilds, and biological control. pp. 418-436. In: Hawkins, B.A. and W. Sheehan (eds.). Parasitoid community ecology. Oxford University Press, Oxford, UK.; Fernández, F. and M.J. Sharkey (eds.). 2006. Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; García, F. and E. Corseuil. 2004. Native hymenopteran parasitoids associated with fruit flies (Diptera: Tephritidae). Fla Entomol. 87, 517-521. Doi:10.1653/0015-4040(2004)087[0517:NHPAW F]2.0.CO;2.; Gliessmann, S. 2006. Agroecology: the ecology of sustainable food systems. 2nd ed. CRC Press, Boca Raton, FL.; Guimarães, J., F. Gallardo, N. Diaz, and R. Zucchi. 2003. Eucoilinae species (Hymenoptera: Cynipoidea: Figitidae) parasitoids of fruit-infesting dipterous larvae in Brazil: identity, geographical distribution and host associations. Zootaxa 278, 1-23. Doi:10.11646/zootaxa.278.1.1.; Guimarães, J.A. and R.A. Zucchi. 2004. Parasitism behavior ofthree species of Eucoilinae (Hymenoptera: Cynipoidea, Figitidae) parasitoids of fruit flies (Diptera). Neot. Entomol. 33, 217-224. Doi:10.1590/S1519-566X2004000200012.; Hajek, A. 2004. Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge, UK. Doi:10.1017/CBO9780511811838.; Hance, T., J. van Baaren, P. Vernon, and G. Boivin. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107-26. Doi:10.1146/annurev.ento.52.110405.091333.; Harms, N. and M. Grodowitz. 2011. Overwintering biology of Hydrellia pakistanae (Diptera: Ephydridae), biological control agent of Hydrilla. J. Aquatic Plant Manage. 49, 114-117.; Haye, T., A. Broadbent, J. Whistlecraft, and U. Kuhlmann. 2005. Comparative analysis of the reproductive biology of two Peri-stenus species (Hymenoptera: Braconidae), biological control agents of Lygus plant bugs (Hemiptera: Miridae). Biol. Control 32, 442-449. Doi:10.1016/j.biocontrol.2004.11.004.; Heraty, J. 2009. Parasitoid biodiversity and insect pest management. pp. 445-462. In: Foottit, R.G. and P.H. Adler (eds.). Insect biodiversity: science and society. Blackwell Publishing, Oxford, UK. Doi:10.1002/9781444308211.ch19.; Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San Jose.; Korytkowski, C. 2003. Manual de identificación de moscas de la fruta. Parte 1: Generalidades sobre clasificación y evolución de Acalyptratae, familias Neriidae, Ropalomeridae, Lonchaeidae, Richardiidae, Otitidae y Tephritidae. Master Program in Entomology, Universidad de Panamá, Transistmica, Panama.; Landis, D., S. Wratten, and G. Gurr. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175-201. Doi:10.1146/annurev.ento.45.1.175.; MADR, Ministerio de Agricultura y Desarrollo Rural. 2015. Agronet. Análisis y estadísticas. In: www.agronet.gov.co; consulted: February, 2016.; Masner, L. 2006a. Superfamilia Proctotrupoidea. pp. 609-612. In: Fernández, F. and M.J. Sharkey (eds.). Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; Masner, L. 2006b. Familia Diapriidae. pp. 615 - 618. In: Fernández, F. and M.J. Sharkey (eds.). Introducción a los Hymenoptera de La Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; Masner, L. and J.L. García. 2002. The genera of Diapriinae (Hy-menoptera: Diapriidae) in the New World. Bull. Amer. Mus. Nat. Hist. 268, 138.; Monteiro, M. and E. Do Prado. 2000. Ocorrência de Trichopria sp. (Hymenoptera: Diapriidae) atacando pupas de Chrysomya putoria (Wiedemann) (Diptera: Calliphoridae) na granja. An. Soc. Entomol. Brasil. 29, 159-167. Doi:10.1590/ S0301-80592000000100020.; Nunes, A., F. Appel, R. Da Silva, M. Silveira, V. Costai, and D. Nava. 2012. Moscas frugívoras e seus parasitoides nos municípios de Pelotas e Capão do Leão, Rio Grande do Sul, Brasil. Ciênc. Rural 42, 6-12. Doi:10.1590/S0103-84782012000100002.; Núñez, L., R. Gómez, G. Guarín, and G. León. 2009. Moscas de las frutas (Díptera: Tephritidae) y parasitoides asociados con Psidium guajava L. y Coffea arabica L. en tres municipios de la Provincia de Vélez (Santander, Colombia). Corpoica Cienc. Tecnol. Agropecu. 5, 5-12.; Ovruski, S., M. Aluja, J. Sivinski, and R. Wharton. 2000. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: diversity, distribution, taxonomic status and their use in fruit fly biological control. Int. Pest Manage. 5, 81-107.; Santamaría, M., E. Ebratt, E. Brochero, and A. Castro. 2014. Caracterización de daños de moscas del genero Dasiops (Diptera: Lonchaeidae) en Passiflora spp. (Passifloraceae) cultivadas en Colombia. Rev. Fac. Nal. Agr. Medellín 67, 7151-7162. Doi:10.15446/rfnam.v67n1.42605.; Santos, A., E. Varón, and J. Salamanca. 2009. Prueba de extractos vegetales para el control de Dasiops spp. en granadilla (Passiflora ligularis Juss) en el Huila, Colombia. Corpoica Cienc. Tecnol. Agropecu. 10, 141-151.; Sharkey, M. and D. Wahl. 2006. Superfamilia Ichneumonoidea. pp. 287-292. In: Fernández, F. and M.J. Sharkey (eds.). 2006. Introducción a los Hymenoptera de La Región Neotropical. Sociedad Colombiana de Entomología; Universidad Nacional de Colombia, Bogotá.; Sivinski, J., M. Aluja, and M. López. 1997. Spatial and temporal distributions of parasitoids of Mexican Anastrepha species (Diptera: Tephritidae) within the canopies of fruit trees. Ann. Entomol. Soc. Am. 90, 604-618. Doi:10.1093/aesa/90.5.604.; Souza, S., A. Resende, P. Strikis, J. Costa, M. Ricci, and E.E. Aguiar-Menezes. 2005. Infestação natural de moscas frugívoras (Diptera: Tephritoidea) em café arábica, sob cultivo orgânico arborizado e a pleno sol, em Valença, RJ. Neotrop. Entomol. 34, 639-648. Doi:10.1590/S1519-566X2005000400015.; Souza-Filho, Z., E. de Araujo, J. Guimarães, and J. Gomes. 2007. Endemic parasitoids associated with Anastrepha spp. (Diptera: Tephritidae) infesting guava (Psidium guajava) in southern Bahia, Brazil. Fla. Entomol. 90, 783-785. Doi:10.1653/0015-4040(2007)90[783:EPAWAS]2.0.CO;2.; Speight, M., M. Hunter, and A. Watt. 2008. Ecology of the insects: concepts and applications. 2nd ed. Blackwell Publishing, Oxford, UK.; Straub, C., D. Finke, and W. Snyder. 2008. Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol. Control 45, 225-237. Doi:10.1016/j.biocontrol.2007.05.013.; Thomson, L.J. and A. Hoffmann. 2010. Natural enemy responses and pest control: Importance of local vegetation. Biol. Control 52, 160-166. Doi:10.1016/j.biocontrol.2009.10.008.; Wharton, R.A. 1997. Alysiinae. pp. 85-18. In: Wharton, R.A., P.M. Marsh, and M.J. Sharkey (eds.). Manual of the New World genera of the family Braconidae (Hymenoptera). International Society Hymenoptera, Washington, DC.; Wyckhuys, K., C. Korytkowski, J. Martínez, B. Herrera, A.M. Rojas, and J. Ocampo. 2012. Species composition and seasonal occurrence of Diptera associated with passionfruit crops in Colombia. Crop Prot. 32, 90-98. Doi:10.1016/j.cropro.2011.10.003.; https://revistas.unal.edu.co/index.php/agrocol/article/view/55616Test

  9. 9
    دورية أكاديمية

    المصدر: Agronomía Colombiana; Vol. 34 Núm. 2 (2016); 209-216 ; Agronomía Colombiana; Vol. 34 No. 2 (2016); 209-216 ; Agronomía Colombiana; v. 34 n. 2 (2016); 209-216 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf; text/html

    العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/54084/57727Test; https://revistas.unal.edu.co/index.php/agrocol/article/view/54084/60776Test; Aranda, G.A. 2004. Trips del palto (Heliothrips haemorrhoidalis Bouche): disposición espacial a nivel de huerto y determinación del número de muestras a utilizar en paltos. Pontificia Universidad Católica de Valparaiso, Quilota, Chile.; Barbedo, J.G.A. 2014. Using digital image processing for counting whiteflies on soybean leaves. J. Asia Pac. Entomol. 17, 685-694. Doi:10.1016/j.aspen.2014.06.014.; Basso, C., J. Franco, G. Grille, and C. Pascal. 2001. Distribución espacial de Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en plantas de tomate. Bol. San. Veg. Plagas 27, 475-487.; Bernal, L., L. Pesca, D. Rodríguez, F. Cantor, and J. Cure. 2008. Plan de muestreo directo para Trialeurodes vaporariorum (West-wood) (Hemiptera: Aleyrodidae) en cultivos comerciales de tomate. Agron. Colomb. 26, 266-276.; Bueno, J.M., C. Cardona, and P. Chacón. 2005. Fenología, distribución espacial y desarrollo de métodos de muestreo para Trialeurodes vaporariorum (Homóptera: Aleyrodidae) en habichuela y fríjol. Rev. Colomb. Entomol. 31, 161-170.; Caballero, R. 1994. Clave de campo para inmaduros de moscas blancas de Centroamérica (Homoptera: Aleyrodidae). CEIBA 35, 47-51.; Gusmão, M.R. 2004. Muestreo del minador de hoja Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) en el cultivo del tomate en Coimbra e Viçosa, Brasil. PhD thesis. Universidade Federal de Viçosa, Viçosa, Brazil.; ICA, Instituto Colombiano Agropecuario. 2012. Manejo fitosanitario del cultivo del aguacate Hass (Persea americana Mill). In: http://www.ica.gov.co/getattachment/4b5b9b6f-ecfc-46e1-b9ca-b35cc1cefee2/-nbsp;Manejo-fitosanitario-del-cultivo-de-Aguacate.aspxTest; consulted: March, 2016.; Larral, P. and R. Ripa. 2009. Manejo de plagas en paltos y cítricos. Instituto de Investigaciones agropecuarias (INIA), Santiago.; Kruskal, H. and W.A. Wallis. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583-621. Doi:10.1080/01621459.1952.10483441.; Laurentin, H. and C. Pereira. 2002. Patrón de distribución y muestreo de estados inmaduros de la mosca blanca Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) en ajonjolí (Sesamun indicum L). Bioagro 14, 145-152.; MADR, Ministerio de Agricultura y Desarrollo Rural. 2012. Anuario estadístico de frutas y hortalizas 2007-2011. In: http://www.agronet.gov.co/www/htm3b/public/Anuario/anuarioFH20062010.pdfTest; consulted: April, 2016.; Martin, J. 2004. Whiteflies of Belize (Hemiptera: Aleyrodidae). Part 1. Introduction and account of the subfamily Aleurodicinae Quaintance & Baker. Zootaxa 681, 1-119.; Martin, J.H. 2006. The identity ofParaleyrodes perseae (Quaintance) (Stemorrhyncha: Aleyrodidae), a potential pest of fruit trees in the United States and beyond. Zootaxa 1128, 3547.; Martin, J.H. and L.A. Mound. 2007. An annotated check list of the world's whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492, 84.; Moura, F.M. 2001. Plano de amostragem convencional da moscabranca Bemisia tabaci (GENN.) (Homoptera: Aleyrodidae) na cultura do pepino. MSc thesis. Programa de Pós-graduação em Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil.; Nachman, G. 1981. A mathematical model of the functional relationship between density and spatial distribution of a population. J. Anim. Ecol. 50, 453-460. Doi:10.2307/4066.; Naranjo, S.E. and P.C. Ellsworth. 2005. Mortality dynamics and population regulation in Bemisia tabaci. Entomol. Exp. Appl. 116, 93-108. Doi:10.1111/j.1570-7458.2005.00297.x.; Pedigo, L.P. and M.R. Zeiss. 1996. Analyses in insect ecology and management. Iowa State University Press, Ame, IA.; Pinto-Zevallos, D.M. and I. Vánninen. 2013. Yellow sticky traps for decisión-making in whitefly management: what has been achieved? Crop Prot. 47, 74-84. Doi:10.1016/j.cropro.2013.01.009.; Ríos, D., D.M. Corrales, G.J. Daza, and A. Aristizábal. 2005. Aguacate: cultivares y patrones importantes para Colombia. Profrutales; Palmira Profrutales Feriva, Candelaria, Colombia.; Rodríguez, I., J. Bueno, C. Cardona, and H. Morales. 2012. Biotipo B de Bemisia tabaci (Hemiptera: Aleyrodidae): plaga de pimentón en el Valle del Cauca, Colombia. Rev. Colomb. Entomol. 38, 14-22.; SAGARPA. 2002. Norma Oficial Mexicana. NOM-066-FITO-2002. Especificaciones para el manejo fitosanitario y movilización del aguacate. Diario oficial. Secretaria de Agricultura, Ganadería de Desarrollo Rural, Mexico DF. pp. 54-65.; Sánchez, J. 2005. Control de mosca blanca (Paraleyrodes persea Quaitance y/o Tetraleurodes persea) con microorganismos entomopatógenos. Boletin El Aguacatero 44, 15-21.; SAS Institute. 2009. SAS user guide: statistical Analysis System, version 9.2. Cary, NC.; Segura, S.C., D.M. Moreira, and D.W. Gómez. 2012. Identificar las especies de mosca blanca y evaluar en campo el potencial de control con diferentes alternativas en el municipio de Fresno Tolima. Undergraduate thesis. Universidad de Ciencias Ambientales y Aplicadas (UDCA), Bogotá.; Sierra, P.V., L.F. Quiroga, and E.H. Varón D. 2014. Preferencia de mosca blanca (Paraleyrodes sp.) por cultivares de aguacate (Persea americana Mill.) en Fresno, Tolima. Corpoica Cienc. Tecnol. Agropecu. 15, 197-206.; Silva, A., T. Mota, M. Fernandes, and S. Kassab. 2014. Sequential sampling of Bemisia tuberculata (Bondar, 1923) (Hemiptera: Aleytodidae) on cassava crop. An. Acad. Bras. Ciênc. 86, 889-896. Doi:10.1590/0001-37652014117212.; Taylor, L.R. 1961. Aggregation, variance and the mean. Nature 189, 732-735. Doi:10.1038/189732a0.; Vergara, R.R. 1996. Entomología económica. Universidad Nacional de Colombia, Medellin, Colombia. pp. 76-124.; Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bull. 1, 80-83. Doi:10.2307/3001968.; https://revistas.unal.edu.co/index.php/agrocol/article/view/54084Test

  10. 10
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: http://www.revistas.unal.edu.co/index.php/agrocol/article/view/54084Test; Universidad Nacional de Colombia Revistas electrónicas UN Agronomía Colombiana; Agronomía Colombiana; Caicedo R., Luis Sigifredo and Varón D., Edgar Herney and Brochero, Helena Luisa (2016) Binomial sampling of Paraleyrodes Quaintance pos. bondari (Hemiptera: Aleyrodidae) in Persea americana Mill. Agronomía Colombiana, 34 (2). pp. 209-216. ISSN 2357-3732; https://repositorio.unal.edu.co/handle/unal/58553Test; http://bdigital.unal.edu.co/55336Test/