يعرض 1 - 10 نتائج من 87 نتيجة بحث عن '"Bordoni, Paola"', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Irpinia, Grottaminarda, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, see Acknowledgements

    العلاقة: Bulletin of Earthquake Engineering; /21 (2023); Mercuri, A., Cultrera, G., Minarelli, L. et al. CRISP: an archive for the site characterization of permanent Italian seismic stations. Bull Earthquake Eng 21, 2415–2439 (2023). https://doi.org/10.1007/s10518-023-01618-wTest; http://hdl.handle.net/2122/16571Test; https://link.springer.com/article/10.1007/s10518-023-01618-wTest

  3. 3
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, Università La Sapienza, Dipartimento di ingegneria strutturale e geotecnica, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia

    العلاقة: Engineering Geology; /314 (2023); Akinci, A., Galadini, F., Pantosti, D., Petersen, D., Malagnini, L., and Perkins, D., 2009. Effect of time dependence on probabilistic seismic hazard maps and deaggregation for the central Apennines, Italy, Bull. Seism. Soc. Am, 99, 585-610. Akinci, A., Perkins, D., Lombardi, A.M. and Basili, R., 2010. Uncertainties in the estimation of the probability of occurrence of strong earthquakes from individual seismological sources in the Apennines, Italy, Journal of Seismology, 14, 95-117. Akinci, A., Moschetti, M.P., and Taroni, M., 2018. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard map. Seismological Research Letter, Vol .89, 1225. doi:10.1785/022018015. Akinci, A., Vannoli, P., Falcone G., Taroni, M., Tiberti, M.M., Murru, M., Burrato, P., and Mariucci M.T., 2017. When time and faults matter: towards a time-dependent probabilistic SHA in Calabria, Italy. Bulletin of Earthquake Engineering, Vol.15, pp.2497-2524. Al Shawa, O., Atzori, S., Doglioni, C., Liberatore, D., Sorrentino, L., Tertulliani, A., 2021. Coseismic vertical ground deformation vs. intensity measures: examples from the Apennines. Engineering Geology, 293, 106323, https://doi.org/10.1016/j.enggeo.2021.106323Test Anderson, J.G., Luco, J.E., 1983. Consequences of slip rate constraints on earthquake occurrence relations. Bull Seismol Soc Am 73:471–496. Bard, P.-Y., and Bouchon, M., 1980a. The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bulletin of the Seismological Society of America 70, 1263–1286. https://doi.org/10.1785/BSSA0700041263Test Bard, P.-Y., and Bouchon, M., 1980b. The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves. Bulletin of the Seismological Society of America 70, 1921–1941. https://doi.org/10.1785/BSSA0700051921Test Bard, P.-Y., and Bouchon, M., 1985. The two-dimensional resonance of sediment-filled valleys. Bulletin of the Seismological Society of America 75, 519–541. https://doi.org/10.1785/BSSA0750020519Test Bindi D, Pacor F, Luzi L, et al Ground motion prediction equations derived from the Italian strong-motion database. Bull Earthq Eng 9:1899–1920 Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., Augliera, P., 2014. Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %- damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1): 391– 430. Boncio, P., Lavecchia, G., and Pace, B. 2004. Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy), Journal of Seismology, 8, 407–425. Bommer, J.J., Abrahamson, N.A. 2006. Why Do Modern Probabilistic Seismic- Hazard Analyses Often Lead to Increased Hazard Estimates? Bull. Seismol. Soc. Am., 96:1967–1977. doi:10.1785/0120060043 Bommer J.J., Acevedo A.B. 2004. The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 8(4): 1-50. Bordoni, P., Di Giulio, G., Haines, A.J., Cara, F., Milana, G., Rovelli, A., 2010. Issues in Choosing the References to Use for Spectral Ratios from Observations and Modeling at Cavola Landslide in Northern Italy. Bulletin of the Seismological Society of America 100, 1578–1613. https://doi.org/10.1785/0120090116Test Bosi, C., Galadini, F., Giaccio, B., Messina, P., and Sposato, A. 2003. Plio-Quaternary continental deposits in the Latium-Abruzzi Apennines: the correlation of geological events across different intermontane basins, I1 Quaternario, 16, 55–76. Carminati, E. and Doglioni, C. 2012. Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth, Earth-Sci. Rev., 112, 67–96. Cauzzi, C., Faccioli, E., Vanini, M., Bianchini, A., 2015. Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthquake Eng, doi:10.1007/s10518-014-9685-y. Ceccaroni E., Ameri G., Gomez Capera A.A., Galadini F. 2009. The 2nd century AD earthquake in central Italy: archaeoseismological data and seismotectonic implications. Natural Hazards, 50, 335-359. Cheloni D., Falcucci E., Gori S. 2019. Half-Graben Rupture Geometry of the 30 October 2016 M W 6.6 Mt. Vettore-Mt. Bove Earthquake, Central Italy. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2018JB015851Test Cheloni, D.; Giuliani, R.; D’Anastasio, E.; Atzori, S.; Walters, R.J.; Bonci, L.; D’Agostino, N.; Mattone, M.; Calcaterra, S.; Gambino, P.; et al. 2014. Coseismic and post-seismic slip of the 2009 L’Aquila (central Italy) MW 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics, 622, 168–185. Chioccarelli, E., Iervolino, I. 2010. Near-source seismic demand and pulse-like records: A discussion for L’Aquila earthquake, Earthquake Engineering & Structural Dynamics, 39: 1039-1062. doi:10.1002/eqe.987. Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martini, P. M., Nappi, R. and the Open EMERGEO Working Group 2018. Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy. Journal of Maps, 14(2), 151–160. Cito, P. and Iervolino I, 2020. Rarity, proximity, and design actions: mapping strong earthquakes in Italy. Annals of Geophysics, 63, 6, SE671, 2020; doi:10.4401/ag-8516 Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., Cattaneo, M., De Gori, P., Chiarabba, C., Monachesi, G., Lombardi, A., Valoroso, L., Latorre, D., Marzorati, S. 2017. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models, Seismological Research Letters, 88, 757–771. Cosentino, D., Cipollari, P., Marsili, P., Scrocca, D. 2010. Geology of the central Apennines: a regional review. Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 11In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy, 2010 Cornell, C.A., 1971. Probabilistic analysis of damage to structures under seismic loads, in: Dynamic Waves in Civil Engineering. John Wiley & Sons, New York, pp. 473–488. Cornell, CA, Jalayer, F, Hamburger ,RO, Foutch, DA. 2002 Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. ASCE Journal of Structural Engineering; 128(4): 526533. D’Amico, M., Felicetta, C., Russo, E., Sgobba, S., Lanzano, G., Pacor, F., and Luzi, L. 2020. Italian Accelerometric Archive v 3.1 - Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale. https://doi.org/10.13127/itaca.3.1Test Darendeli, M.B., 2001. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves (Phd Dissertation). The University of Texas at Austin. http://hdl.handle.net/2152/10396Test Dhakal, R.P., Mander, J.B. and Mashiko, N. (2006), Identification of critical ground motions for seismic performance assessment of structures. Earthquake Engng. Struct. Dyn 35: 989-1008. https://doi.org/10.1002/eqe.568Test Di Domenica A., Pizzi A. 2017. Defining a mid-Holocene earthquake through speleoseismological and independent data: Implications for the outer Central Apennines (Italy) seismotectonic framework. Solid Earth 8(1),161-176 Di Giulio, G., de Nardis, R., Boncio, P., Milana, G., Rosatelli, G., Stoppa, F., Lavecchia, G., 2016. Seismic response of a deep continental basin including velocity inversion: the Sulmona intramontane basin (Central Apennines, Italy). Geophys. J. Int. 204, 418–439. https://doi.org/10.1093/gji/ggv444Test DISS Working Group (2021). Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/diss3.3.0Test (last accessed 07 September 2022) Doglioni, C., Barba, S., Carminati, E. & Riguzzi, F. 2011. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Int., 184, 160–171. Doglioni, C., Carminati, E., Petricca, P., Riguzzi, F., 2015. Normal fault earthquakes or graviquakes. Scientific Reports, 5, 12110 doi:10.1038/srep12110. Ellsworth, W.L, 1995. Characteristic earthquakes and longterm earthquake forecasts: implications of central California seismicity. In: Cheng FY, Sheu MS (eds) Urban disaster mitigation: the role of science and technology. Elsevier, Amsterdam, pp 1–14 Ellsworth, William L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., Simpson, R. W., 1999, A Physically-Based Earthquake Recurrence Model for Estimation of Long-Term Earthquake Probabilities: U. S. Geological Survey Open-File Report 99-522, 23 pp., https://pubs.usgs.gov/of/1999/0522Test/. Electric Power Research Institute, 1993. Guidelines for determining design basis ground motions (No. EPRI TR-102293). Electric Power Research Institute, Palo Alto, California. https://www.epri.com/research/products/TR-102293-V5Test (last accessed 7 September 2022) Faccioli, E., 2006. Seismic hazard assessment for derivation of earthquake scenarios in Risk-UE. Bull Earthquake Eng 4, 341–364. https://doi.org/10.1007/s10518-006-9021-2Test FEMA 2000. Recommended seismic evaluation and upgrade criteria for existing welded steel moment frame buildings. Report No. FEMA-351, SAC Joint Venture, Federal Emergency Management Agency, Washington DC. https://www.nehrp.gov/pdf/fema351.pdfTest (last accessed 7 September 2022) Emergeo Working Group, 2010. Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 central Italy. Terra Nova, 22, 43–51. Falcucci, E., Gori, S., Bignami, C., Pietrantonio, G., Melini, D., Moro, M., Saroli, M., Galadini, F. 2018. The Campotosto seismic gap in between the 2009 and 2016-2017 seismic sequences of central Italy and the role of inherited lithospheric faults in regional seismotectonic settings. Tectonics, 37. doi:10.1029/2017TC004844. Falcucci, E., Gori, S., Peronace, E., Fubelli, G., Moro, M., Saroli, M., Giaccio, B., Messina, P., Naso, G., Scardia, G., Sposato, A., Voltaggio, M., Galli, P., Galadini, F. 2009. The Paganica fault and surface coseismic ruptures caused by the 6 April 2009, earthquake (L’Aquila, central Italy), Seismol. Res. Lett., 80, 940–950. Faure Walker, J., Boncio, P., Pace, B. et al. 2021. Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment. Scientific Data, 8, 87 2021. https://doi.org/10.1038/s41597-021-00868-0Test. Field, E.H., Jackson, D.D., Dolan, J.F., 1999. A mutually consistent seismic hazard source model for Southern California. Bull Seismol Soc Am 89(3):559–578 Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J. II, & Zeng, Y. 2015. Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3). Bulletin of the Seismological Society of America, 105(2A), 511– 543. https://doi.org/10.1785/0120140093Test Galadini, F., and Galli, P. 1999. The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): Implications for active tectonics in central Apennines, Tectonophysics, 308, 143–170. Galadini, F., and Galli, P. 2000. Active tectonics in the central Apennines (Italy) - Input data for seismic hazard assessment. Natural Hazards, 22, 225–270. Galadini F., and Galli P. 2001. Archaeoseismology in Italy: case studies and implications on long-term seismicity. Journal of Earthquake Engineering, 5, 35-68. Galli P., Pallone F. 2019. Reviewing the intensity distribution of the 1933 earthquake (Maiella, central Italy. Clues on the seismogenic fault. Alpine and Mediterranean Quaternary, 32 2), 1-8. Galli, P., Galadini, F., Pantosti, D. 2008. Twenty years of paleoseismology in Italy, Earth Science Reviews 88, 89–117. Galli, P., Giaccio, B., Peronace, E., Messina, P. 2015. Holocene paleoearthquakes and Early-Late Pleistocene slip rate on the Sulmona Fault (Central Apennines, Italy. Bull. Seismol. Soc. Am., 105, 1–13, doi:10.1785/0120140029. Gardner, J.K, Knopoff, L, 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(15):1363–1367 Gasperini, P., Lolli, B., and Vannucci, G., 2013. Empirical Calibration of Local Magnitude Data Sets Versus Moment Magnitude. Bull. Seismol. Soc. Am. 103 2227-2246 Giaccio, B., Messina, P., Sposato, A., Voltaggio, M., Zanchetta, G., Galadini, F., Gori, S., Santacroce, R. 2009. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area. Quat. Sci. Rev. 28,2710–2733. Giaccio B., Castorina F., Nomade S., Scardia G., Voltaggio M., Sagnotti L. 2012. Revised chronology of the Sulmona lacustrine succession, Central Italy. Journal of Quaternary Science, 28(6), 545–551. Gerstenberger, M.C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E., Fujiwara, H., Luco, N., Ma, K-F., Meletti, C., Petersen, M., 2020. Probabilistic Seismic Hazard Analysis at Regional and National Scale: State of the Art and Future Challenges. Rev. Geophys. 58, e2019RG000653. Gori S. 2010. Definition of seismogenic sources in poorly known tectonically active regions of the Italian Peninsula. Ph.D. Thesis. Università degli Studi Roma Tre, Roma, Italia. Gori S., Dramis F., Galadini F. & Messina P. 2007. The use of geomorphological markers in the footwall of active faults for kinematic evaluation: examples from the central Apennines. Boll. Soc. Geol. It. ,126, 365-374. Gori, S., Giaccio, B., Galadini, F., Falcucci, E., Messina, P., Sposato, A., Dramis, F. 2011. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy), Int. J.Earth Sci., 100, 157–171. Gori, S., Falcucci, E., Dramis, F., Galadini, F., Galli, P., Giaccio,B., Messina, P., Pizzi, A., Sposato, A., and Cosentino, D. 2014. Deep-seated gravitational slope deformation, large-scale rock failure,and active normal faulting along Mt. Morrone (Sulmona basin,Central Italy): Geomorphological and paleoseismological analyses. Geomorphology, 208, 88–101. Haines, A.J., Hulme, T., Yu, J., 2004. General elastic wave scattering problems using an impedance operator approach – I. Mathematical development. Geophysical Journal International 159, 643–657. https://doi.org/10.1111/j.1365-246X.2004.02405.xTest Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348. https://doi.org/10.1029/JB084iB05p02348Test Helmstetter, A., Kagan, Y.Y., and Jackson, D.D, 2007. High-resolution time-independent grid based forecast for M ≥ 5 earthquakes in California, Seismol. Res. Lett. 78, 78–86. Hudson, M., Idriss, I., and Beikae, 1992. QUAD4M, a Computer Program to Evaluate the Seismic Response of Soil Structures Using Finite Element Procedures and Incorporating a Compliant Base https://www.researchgate.net/publication/288511774_QUAD4MTest last seen 28Th September 2022 Kaklamanos, J., Baise, L.G., Boore, D.M., 2011. Estimating Unknown Input Parameters when Implementing the NGA Ground-Motion Prediction Equations in Engineering Practice. Earthquake Spectra 27, 1219–1235. https://doi.org/10.1193/1.3650372Test Kawase, H., Aki, K., 1989. A study on the response of a soft basin for incident S, P, and Rayleigh waves with special reference to the long duration observed in Mexico City. Bulletin of the Seismological Society of America 79, 1361–1382. https://doi.org/10.1785/BSSA0790051361Test. Koukouvelas, I.K. 1998. The Egion fault, earthquake-related and long-term deformation, gulf of Corinth, Greece. J. Geodynamics, 26(24), 501-513. Komatitsch, D., and Vilotte, J.-P., 1998. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America 88, 368–392. https://doi.org/10.1785/BSSA0880020368Test Iervolino, I., Galasso, C., Cosenza, E. 2010. REXEL: computer aided record selection for code-based seismic structural analysis. Bulletin of Earthquake Engineering 8, 339-362. Iervolino, I., Galasso, C., Paolucci, R. and Pacor F. 2011. Engineering ground motion record selection in the ITalian ACcelerometric Archive. Bulletin of Earthquake Engineering 9, 1761-1778. Iervolino, I., Vitale, A., Cito, P., 2021. Empirical assessment of seismic design hazard’s exceedance area. Sci Rep 11, 18803. https://doi.org/10.1038/s41598-021-98388-9Test Improta L., Latorre D., Margheriti L., Nardi A., Marchetti A., Lombardi A.M., Castello B., Villani F., Ciaccio M.G., Mele F.M., Moretti M. and the Bollettino Sismico Italiano Working Group. 2019. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalogue of Early Aftershocks. Scientific Reports, 9, 6921. https://doi.org/10.1038/s41598-019-43393-2Test. Itasca Consulting Group, Inc. 2019. FLAC3D — Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 7.0. Minneapolis: Itasca. Lanzano G., Luzi, L., D’Amico, V. , Pacor, F., Meletti, C., Marzocchi, W., Rotondi, R., Varini, E., 2020. Ground Motion Models for the new seismic hazard model of Italy (MPS19): selection for active shallow crustal regions and subduction zones. Bulletin of Earthquake Engineering 18: 3487–3516, doi:10.1007/s10518-020-00850-y. Lanzano, G., Luzi, L., Pacor, F., Felicetta, C., Puglia, R., Sgobba, S., D’Amico, M., 2019. A Revised Ground‐Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bulletin of the Seismological Society of America, 109 (2): 525–540. doi: https://doi.org/10.1785/0120180210Test. Lanzo, G., Silvestri, F., Costanzo, A., d’Onofrio, A., Martelli, L., Pagliaroli, A., Sica, S., Simonelli, A., 2011. Site response studies and seismic microzoning in the Middle Aterno valley (L’aquila, Central Italy). Bulletin of Earthquake Engineering 9, 1417. https://doi.org/10.1007/s10518-011-9278-yTest Lavecchia G., de Nardis R. 2010. Seismogenic sources of major earthquakes of the Maiella area (central Italy): constraints from macroseismic field simulations and regional seismotectonics. UR 4.01, DPC-INGV project 2007-2009 Lysmer, J., L., and Kuhlemeyer R.L., 1969. Finite Dynamic Model for Infinite Media. Journal of Engineering Mechanics Division 95, 859–878. Luzi L., Lanzano G., Felicetta C., D’Amico M. C., Russo E., Sgobba S., Pacor, F., & ORFEUS Working Group 5 2020. Engineering Strong Motion Database (ESM) (Version 2.0). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ESM.2Test Luzi, L., Pacor, F., Puglia, R., Lanzano, G., Felicetta, C., D’Amico, M., Michelini, A., Faenza, L., Lauciani, V., Iervolino, I., Baltzopoulos, G., Chioccarelli, E. 2017. The Central Italy Seismic Sequence between August and December 2016: Analysis of Strong‐Motion Observations. Seismological Research Letters, 88 (5), 1219–1231. https://doi.org/10.1785/0220170037Test. Malagnini, L., and Herrman, R.B., 2000. Ground-motion scaling in the region of the 1997 Umbria-Marche earthquake (Italy), Bull. Seismol. Soc. Am. 90, 1041–1051. Malagnini, L., Akinci, A., Mayeda, K., Munafò, I., Herrmann, R.B., and Mercuri, A., 2011. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy, Geophys. J. Int. 184, 325–337. Manfredi, V., Masi, A., Ozcebe, A., Paolucci, R., Smerzini, C. (2022). Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bulletin of Earthquake Engineering. 20. 10.1007/s10518-022-01393-0. Meyer B., Armijo R., Massonnet D., J.B. de Chabalier J.B., Delacourt C., Ruegg J.C., Achache J., Briole P., Papanastassio D. (1996) The 1995 Grevena (Northern Greece) earthquake: fault model constrained with tectonic observations and SAR interferometry. Geophys. Res. Letter, 23, 2677–2680. Meletti, C., Visini, F., D’Amico, V., Rovida, A., 2016. Seismic hazard in Central Italy and the 2016 Amatrice earthquake. Annals of Geophysics 59, 44. https://doi.org/10.4401/ag-7248Test Meletti, C., Marzocchi, W., D’Amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., Taroni, M., Visini, F., Group, M.W., 2021. The new Italian seismic hazard model (MPS19). Annals of Geophysics 64, 112. https://doi.org/10.4401/ag-8579Test McGuire, R.K., 1976. FORTRAN computer program for seismic risk analysis. U.S. Geol. Surv. Open-File Rept. 76–67. Miccadei E., Barberi R., Cavinato G.P. 1998. La geologia quaternaria della conca di Sulmona (Abruzzo, Italia centrale. Geol. Rom. Vol.XXXIV. Miccadei E., Piacentini T., Barberi R. 2002. Uplift and local tectonic subsidence in the evolution of intramontane basins: the example of the Sulmona basin (central Apennines, Italy. In: Dramis F; Farabollini P, Molin P (ed) Large-Scale Vertical Movements and Related Gravitational Processes. International Workshop Camerino-Rome, 21-26 June, 1999. Studi Geologici Camerti, 119-134. Montaldo, V., Faccioli, E., Zonno, G., Akinci, A., and Malagnini, L. 2005. Ground-motion predictive relationships for the reference seismic hazard map of Italy, J. Seism. 9, 295–316. Montaldo, V., Meletti, C., Martinelli, F., Stucchi, M., and Locati, M. 2007. On-Line seismic hazard data for the new Italian building code, J. Earthq. Eng., 11, 119–132,doi:10.1080/13632460701280146, 2007. NTC2018, Norme Tecniche per le Costruzioni. Gazzetta Ufficiale n. 42 S.O. N°8, 20 Febbraio 2018 (in Italian) Ogata, Y. 1999. Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J Geophys Res 104B(8):17995–18014. Olsen, K.B., Schuster, G.T., 1995. Causes of low-frequency ground motion amplification in the Salt Lake Basin: the case of the vertically incident P wave. Geophysical Journal International 122, 1045–1061. https://doi.org/10.1111/j.1365-246X.1995.tb06854.xTest Panza, G.F., and Bela, J., 2020. NDSHA: A new paradigm for reliable seismic hazard assessment. Eng. Geol., 275, 105403, https://doi.org/10.1016/j.enggeo.2019.105403Test Pampanin, S., 2012. Reality-check and Renewed challenges in Earthquake Engineering: Implementing low-damage structural Systems – from theory to practice, Bulletin of the New Zealand Society for Earthquake Engineering, 45(4), pp. 137-160, December, ISSN 1174-9875, from Keynote lecture at the WCEE2012 Patacca E., Scandone P., Di Manna, P. 2021. Geological map of the Majella mountain. https://www.isprambiente.gov.it/it/attivita/suolo-e-territorio/cartografia/carta-geologica-della-majella/carta-geologica-della-majellaTest (last check of availability 18 Feb. 2022). Petricca, P., Bignami, C., Doglioni, C., 2021. The epicentral fingerprint of earthquakes marks the coseismically activated crustal volume. Earth-Science Reviews 218, 103667. https://doi.org/10.1016/j.earscirev.2021.103667Test Petricca, P., Barba, S., Carminati, E., Doglioni, C., Riguzzi, F., 2015. Graviquakes in Italy. Tectonophysics, 656, 202–214, doi:10.1016/j.tecto.2015.07.001 Petersen, M. D. , M. P. Moschetti, P. Powers, C. S. Mueller, K. M. Haller, A. D. Frankel, Y. Zeng, S. Rezaeian, S. C. Harmsen, O. S. Boyd, N. Field, R. Chen, K. S. Rukstales, N. Luco, R. L. Wheeler and A. H. Olsen, 2014. Documentation for the 2014 National Seismic Hazard Maps, U.S. Geological Survey 2014. Pizzi A., Pugliese G. 2004. InSAR-DEM analyses integrated with geological field methods for the study of long-term seismogenic fault behaviour: Applications in the axial zone of the central Apennines (Italy. Journal of Seismology, 8(3), 313-329. Pizzi A., Falcucci E., Gori S., Galadini F., Messina P., Di Vincenzo M., Esestime P., Giaccio B., Pomposo G., Sposato A. 2010. Active faulting in the Maiella Massif (central Apennines), Italy. GeoActa, 9430, 141-158. Puglia R., Russo E., Luzi L., D'Amico M., Felicetta C., Pacor F., Lanzano G. 2018. Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms. Bull Earthquake Eng. https://doi.org/10.1007/s10518-017-0299-zTest. Puliti I., Pizzi A., Gori S., Falcucci E., Galadini F., Maceroni D., Moro M., Saroli M. 2021. - New paleoseismological constraints of late Holocene earthquakes along the Mt. Morrone fault (Sulmona basin, Abruzzi Apennines, Italy). 90° Congresso della Società Geologica Italiana, Trieste, 14-16 settembre 2021. Riassunti delle Comunicazioni, p. 217. https://doi.org/10.3301/ABSGI.2021.03Test. Rinaldini, A., Grillo, A., Marino, A., 2007. Local seismic amplification analysis in the industrial area of Sulmona, Central Italy, in: Earthquake Resistant Engineering Structures VI. Presented at the ERES 2007, WIT Press, Bologna, Italy, pp. 215–224. https://doi.org/10.2495/ERES070211Test Romano M.A., de Nardis R., Lavecchia G., Garbin M., Peruzza L., Priolo E., Romanelli M., Ferrarini F. 2013. Preliminary analysis of the microearthquakes-faults association in the Sulmona basin (central Apennines, Italy. Rend. Online Soc. Geol. It., 29, 150-153. Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini P. (eds), 2021. CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome. doi:10.6092/INGV.IT-CPTI15. Sgobba, S., Puglia, R., Pacor F., Luzi, L., Russo, E., Felicetta, C., Lanzano, G., D'Amico, M., Baraschino, R., Baltzopoulos, G., Iervolino, I. 2019. REXELweb: a tool for selection of ground-motion records from the Engineering Strong Motion database (ESM). 7th International Conference on Earthquake Geotechnical Engineering (ICEGE) 17 - 20 June 2019, Roma, Italy. 8(i), pp. 4947-4953. Sgobba, S., C. Felicetta, E. Russo, M. D’Amico, G. Lanzano, F. Pacor, L. Luzi, R. Baraschino,G. Baltzopoulos, I. Iervolino. 2021a. The online graphical user interface of REXELweb for the selection of accelerograms from the engineering strong motion database (ESM). 39° Convegno nazionale Gruppo Nazionale di Geofisica della Terra Solida 22-24 giugno 2021 online. Sgobba S., Felicetta C., Lanzano G., Ramadan F., D’Amico M., Pacor F. 2021b. NESS2.0: An Updated Version of the Worldwide Dataset for Calibrating and Adjusting Ground‐Motion Models in Near Source. Bulletin of the Seismological Society of America; doi:https://doi.org/10.1785/0120210080Test Sgobba, S.; Lanzano, G.; Pacor, F.; Felicetta, C. 2021c. An Empirical Model to Account for Spectral Amplification of Pulse-Like Ground Motion Records. Geosciences, 11, 15. https://doi.org/10.3390/geosciences11010015Test STACEC, srl., 2017. LSR 2d (Local Seismic Response 2d), Bovalino, RC (Italy). Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G.M., Boschi, E., 2011. Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bulletin of the Seismological Society of America 101, 1885–1911. https://doi.org/10.1785/0120100130Test Valentini, A., Visini, F., Pace, B. 2017. Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy. Natural Hazards and Earth System Sciences, 17(11), 2017–2039. https://doi.org/10.5194/nhessTest‐17‐2017‐2017 Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., and Waldhauser, F. 2013. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. Journal of Geophysical Research - Solid Earth, 118, 1156–1176. Villani, M., Faccioli, E., Ordaz, M., Stupazzini, M., 2014. High-Resolution Seismic Hazard Analysis in a Complex Geological Configuration: The Case of the Sulmona Basin in Central Italy. Earthquake Spectra 30, 1801–1824. https://doi.org/10.1193/1112911EQS288MTest Vittori E., Cavinato G.P., Miccadei E. 1995. Active faulting along the northeastern edge of the Sulmona basin, central Apennines, Italy. In “Perspective in paleoseismology” a cura di Serva L. E Burton Slemmons D. Ass. of Engin. Geol. Special Publication., 6: 115-126, sudbury. Vucetic, M., 1994. Cyclic Threshold Shear Strains in Soils. ASCE, Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228. Wells D.L., Coppersmith K.J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84, 974-1002. Appendix. Supplementary materials Yelikaya, T.,and Mercanlig, O., 2020. Three Dimensional physics based earthquake simulation scenarios for the Sulmona basin (Abruzzo, Italy), in: Phd Dissertation. Politecnico Milano, p. 196.; http://hdl.handle.net/2122/15818Test

  4. 4
    كتاب

    المؤلفون: Bordoni, Paola

    مصطلحات موضوعية: Seismic risk, Mugello, Local construction techniques, Safeguard

    العلاقة: Proceedings HERITAGE 2022 - International Conference on Vernacular Heritage: Culture, People and Sustainability; HERITAGE2022 International Conference on Vernacular Heritage: Culture, People and Sustainability; Septiembre 15-17, 2022; Valencia, España; http://ocs.editorial.upv.es/index.php/HERITAGE/HERITAGE2022/paper/view/14369Test; urn:isbn:9788413960203; http://hdl.handle.net/10251/189291Test

  5. 5
    دورية أكاديمية

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Geosecure S.r.l., Rome, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia, L’Aquila, Italy

    العلاقة: Seismological Research Letters; http://hdl.handle.net/2122/17021Test

  6. 6
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Itasca consulting, ENEA

    العلاقة: THE 6TH IASPEI / IAEE INTERNATIONAL SYMPOSIUM: THE EFFECTS OF SURFACE GEOLOGY ON SEISMIC MOTION AUGUST 2021, KYOTO, JAPAN; Bielak, J., Karaoglu, H. and Taborda, R., (2011). “Memory-efficient displacement-based internal friction for wave propagation simulation”. Geophysics, 76(6), pp.T131-T145. Darendeli M., (2001). “Development of a New Family of Normalized Modulus Reduction and Material Damping Curves” (Ph.D. dissertation). University of Texas at Austin, USA. Dawson, E.M., and Z. Cheng (2021). “Maxwell damping, an alternative to Rayleigh damping”, Draft paper for Geo-Extreme Conference, Savanah, Georgia, August 15-18, 2021. Di Giulio, G., Hailemikael, S., Vassallo, M., and Milana, G. (2021). “EGS6 Blind prediction. Step1 by INGV and ENEA team”. ESG6, Kyoto, Japan. Hailemikael, S., Di Giulio, G., Bordoni, P., Vassallo, M., Milana, G. (2021) “ESG6 Blind prediction. 1D modeling for steps 2 and 3 by INGV and ENEA team”, ESG6, Kyoto, Japan. Hase, Y. and Iwauchi, A., (1992). “On Cyclocarya paliurus (Batal.) Iljinskaja from the Early and Middle Pleistocene Sediments in Central Kyushu, Japan”. 熊本大学教養部紀要 自然科学篇, (27), pp.p 59-68. Ishizaka S., Iwasaki, Y., Hase, Y., Watanabe, K., Iwauchi, A. and Taziri, M., (1995). “Subsidence Rate and Sediments of the Last Interglacial Epoch in the Kumamoto Plain, Japan”, The Quaternary Research, 34 (5), 335-344. Itasca Consulting Group, Inc. (2019). “FLAC3D — Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 7.0”. Minneapolis: Itasca.4. Koketsu, K.,Miyake, H., andSuzuki, H., (2012). “Japan Integrated Velocity Structure Model Version 1”, Proc. World Conf. Earthq. Eng., Paper No. 1773. Koketsu, K., Miyake, H., Afnimar, and Tanaka, Y. (2009). “A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan”, Tectonophysics, 472, 290-300. Nakazawa, T., Sakata, K., Sato, Y., Hoshizumi, H., Urabe, A., and Yoshimi, M. (2018). “Stratigraphy and distribution pattern of volcanogenic sediments beneath downtown Mashiki, Kumamoto, SW Japan, seriously damaged by the 2016 Kumamoto Earthquake”, Jour. Geol. Soc. Japan, 124, 5, 347–359, doi:10.5575. Oyo Corporation (2020) Kumamoto Eq. Ground Structure Survey Report (Draft). Tsuno, S., Korenaga, M., Okamoto, H., Yamanaka, H., Chimoto, K., and Matsushima, T. (2017). “Local site effect in Kumamoto City revealed by the 2016 Kumamoto earthquake”, Earth, Planets and Space, 69, 37, doi 10.1186/s40623-017-0622-6. Investigation and Observation for Elucidation of Three-Dimensional Shape of 3.2 Fault Zone and Crustal Structure around Fault Zone 3.2 -1 Investigation and Observation for Elucidation of Crustal Structure by Earthquake, Electromagnetic, etc. https://www.jishin.go.jp/main/chousakenkyuu/kumamoto_sogochousa/h28/h28kumamoto_sogochousa_3_2.pdfTest “Seamless Digital Geological Map of Japan (1:200,000) by National Institute of Advanced Industrial Science and Technology (AIST)” (https://gbank.gsj.jp/seamless/index_en.htmlTest?).; http://hdl.handle.net/2122/15227Test

  7. 7
    تقرير

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia

  8. 8
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: AGU Fall Meeting 2019; Cara et al. Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies. Scientific Data. 2019 Sep 25;6(1):182. Doi:10.1038/s41597-019-0188-1. Milana et al. Local site effects estimation at Amatrice (Central Italy) through seismological methods. Bull Earthquake Eng. 2019 Feb 16:1-27. Doi:10.1007/s10518-019-00587-3 Priolo et al. Seismological analyses of the seismic microzonation of 138 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bull Earthquake Eng (2019): 1-41. Doi:10.1007/s10518-019-00652-x; http://hdl.handle.net/2122/13098Test

  9. 9
    مؤتمر

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia, D'Amico, Sebastiano, Galea, Pauline, Bozionelos, George, Colica, Emanuele, Farrugia, Daniela, Agius, Matthew R.

    العلاقة: 36th General Assembly of the European Seismological Commission; http://hdl.handle.net/2122/13421Test; Book of Abstracts of the 36th General Assembly of the European Seismological Commission Sebastiano D'Amico, Pauline Galea, George Bozionelos, Emanuele Colica, Daniela Farrugia and Matthew R. Agius (Eds.)., ISBN: 978-88-98161-12-6

  10. 10
    دورية أكاديمية