يعرض 1 - 10 نتائج من 34 نتيجة بحث عن '"BAR DOMAINS"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Neuroscience Center, Helsinki Institute of Life Science HiLIFE, STEMM - Stem Cells and Metabolism Research Program, Medicum

    وصف الملف: application/pdf

    العلاقة: Khanal , P , Boskovic , Z , Lahti , L , Ghimire , A , Minkeviciene , R , Opazo , P & Hotulainen , P 2023 , ' Gas7 Is a Novel Dendritic Spine Initiation Factor ' , eNeuro , vol. 10 , no. 4 , ENEURO.0344-22.2023 . https://doi.org/10.1523/ENEURO.0344-22.2023Test; ORCID: /0000-0003-1017-1172/work/135801919; ORCID: /0000-0002-0063-4236/work/135803468; 0bf6a12c-7916-4d54-a42c-a3fd2c10b17f; http://hdl.handle.net/10138/358042Test; 000973675200004

  2. 2
    دورية أكاديمية

    المؤلفون: Larsen, Andreas Haahr

    المصدر: Larsen , A H 2022 , ' Molecular Dynamics Simulations of Curved Lipid Membranes ' , International Journal of Molecular Sciences , vol. 23 , no. 15 , 8098 . https://doi.org/10.3390/ijms23158098Test

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية
  4. 4

    المساهمون: Minerva Foundation Institute for Medical Research Helsinki, University of Queensland, Department of Computer Science, Aalto-yliopisto, Aalto University, Neuroscience Center, Helsinki Institute of Life Science HiLIFE, STEMM - Stem Cells and Metabolism Research Program, Medicum

    وصف الملف: application/pdf

  5. 5
  6. 6

    المصدر: International journal of molecular sciences, vol. 22, no. 5, 2348, 2021.
    International Journal of Molecular Sciences
    International Journal of Molecular Sciences, Vol 22, Iss 2348, p 2348 (2021)
    Volume 22
    Issue 5

    وصف الملف: application/pdf; text/url

  7. 7
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Lomize, Andrei L.; Todd, Spencer C.; Pogozheva, Irina D. (2022). "Spatial arrangement of proteins in planar and curved membranes by PPM 3.0." Protein Science 31(1): 209-220.; https://hdl.handle.net/2027.42/171626Test; Protein Science; Wang W, Chen X, Zhang L, et al. Atomic structure of human TOM core complex. Cell Discov. 2020; 6: 67.; Carlson B, Soderling SH. Mechanisms of cellular protrusions branch out. Dev Cell. 2009; 17: 307 – 309.; Boye TL, Jeppesen JC, Maeda K, et al. Annexins induce curvature on free‐edge membranes displaying distinct morphologies. Sci Rep. 2018; 8: 10309.; Davies KM, Anselmi C, Wittig I, Faraldo‐Gómez JD, Kühlbrandt W. Structure of the yeast F 1 F 0 ‐ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A. 2012; 109: 13602 – 13607.; Guo H, Bueler SA, Rubinstein JL. Atomic model for the dimeric F 0 region of mitochondrial ATP synthase. Science. 2017; 358: 936 – 940.; Daum B, Nicastro D, Austin J 2nd, McIntosh JR, Kühlbrandt W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell. 2010; 22: 1299 – 1312.; Guo YR, MacKinnon R. Structure‐based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017; 6: e33660.; Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2018; 554: 481 – 486.; Wang L, Zhou H, Zhang M, et al. Structure and mechanogating of the mammalian tactile channel Piezo2. Nature. 2019; 573: 225 – 229.; Tucker K, Park E. Cryo‐EM structure of the mitochondrial protein‐import channel TOM complex at near‐atomic resolution. Nat Struct Mol Biol. 2019; 26: 1158 – 1166.; Wang Y, Nguyen NX, She J, et al. Structural mechanism of EMRE‐dependent gating of the human mitochondrial calcium uniporter. Cell. 2019; 177: 1252 – 1261.; Wang Y, Han Y, She J, et al. Structural insights into the Ca(2+)‐dependent gating of the human mitochondrial calcium uniporter. Elife. 2020; 9: e60513.; Zhuo W, Zhou H, Guo R, et al. Structure of intact human MCU supercomplex with the auxiliary MICU subunits. Protein Cell. 2021; 12: 220 – 229.; Fan M, Zhang J, Tsai C‐W, et al. Structure and mechanism of the mitochondrial Ca(2+) uniporter holocomplex. Nature. 2020; 582: 129 – 133.; De La Fuente S, Fernandez‐Sanz C, Vail C, et al. Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle. J Biol Chem. 2016; 291: 23343 – 23362.; Yang X, Wang Q, Cao E. Structure of the human cation‐chloride cotransporter nkcc1 determined by single‐particle electron cryo‐microscopy. Nat Commun. 2020; 11: 1016.; Tascón I, Sousa JS, Corey RA, et al. Structural basis of proton‐coupled potassium transport in the KUP family. Nat Commun. 2020; 11: 626.; Agip AA, Blaza JN, Bridges HR, et al. Cryo‐EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat Struct Mol Biol. 2018; 25: 548 – 556.; Huang Z, Shen L, Wang W, et al. Structure of photosystem I‐LHCI‐LHCII from the green alga Chlamydomonas Reinhardtii in state 2. Nat Commun. 2021; 12: 1100.; Chen M, Perez‐Boerema A, Zhang L, et al. Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly. Nature Plants. 2020; 6: 314 – 320.; Pi X, Zhao S, Wang W, et al. The pigment‐protein network of a diatom photosystem II‐light‐harvesting antenna supercomplex. Science. 2019; 365: eaax4406.; Wang Z, Fan G, Hryc CF, et al. An allosteric transport mechanism for the AcrAB‐TolC multidrug efflux pump. Elife. 2017; 6: e24905.; Glavier M, Puvanendran D, Salvador D, et al. Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA‐OprM chaperone‐like complex. Nat Commun. 2020; 11: 4948.; Fitzpatrick AWP, Llabrés S, Neuberger A, et al. Structure of the MacAB‐TolC ABC‐type tripartite multidrug efflux pump. Nat Microbiol. 2017; 2: 17070.; Syrjanen J, Michalski K, Kawate T, Furukawa H. On the molecular nature of large‐pore channels. J Mol Biol. 2021; 433: 166994.; Pogozheva ID, Tristram‐Nagle S, Mosberg HI, Lomize AL. Structural adaptations of proteins to different biological membranes. Biochim Biophys Acta. 2013; 1828: 2592 – 2608.; Campelo F, McMahon HT, Kozlov MM. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J. 2008; 95: 2325 – 2339.; Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, Kühlbrandt W. Cryo‐EM structure of the TOM core complex from neurospora crassa. Cell. 2017; 170: 693 – 700.; Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): The single global macromolecular structure archive. Methods Mol Biol. 2017; 1607: 627 – 641.; Lawson CL, Baker ML, Best C, et al. EMDataBank.org: Unified data resource for CryoEM. Nucleic Acids Res. 2011; 39: D456 – D464.; Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. Positioning of proteins in membranes: A computational approach. Protein Sci. 2006; 15: 1318 – 1333.; Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40: D370 – D376.; Nugent T, Jones DT. Membrane protein orientation and refinement using a knowledge‐based statistical potential. BMC Bioinform. 2013; 14: 276.; Araiso Y, Tsutsumi A, Qiu J, et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature. 2019; 575: 395 – 401.; Senes A, Chadi DC, Law PB, Walters RF, Nanda V, Degrado WF. E(z), a depth‐dependent potential for assessing the energies of insertion of amino acid side‐chains into membranes: Derivation and applications to determining the orientation of transmembrane and interfacial helices. J Mol Biol. 2007; 366: 436 – 448.; Schramm CA, Hannigan BT, Donald JE, et al. Knowledge‐based potential for positioning membrane‐associated structures and assessing residue‐specific energetic contributions. Structure. 2012; 20: 924 – 935.; Hsieh D, Davis A, Nanda V. A knowledge‐based potential highlights unique features of membrane alpha‐helical and beta‐barrel protein insertion and folding. Protein Sci. 2012; 21: 50 – 62.; Tusnady GE, Dosztanyi Z, Simon I. Transmembrane proteins in the Protein Data Bank: Identification and classification. Bioinformatics. 2004; 20: 2964 – 2972.; Tusnady GE, Dosztanyi Z, Simon I. TMDET: Web server for detecting transmembrane regions of proteins by using their 3d coordinates. Bioinformatics. 2005; 21: 1276 – 1277.; Postic G, Ghouzam Y, Guiraud V, Gelly J‐C. Membrane positioning for high‐ and low‐resolution protein structures through a binary classification approach. Prot Eng Des Sel. 2015; 29: 87 – 92.; Dutagaci B, Feig M. Determination of hydrophobic lengths of membrane proteins with the HDGB implicit membrane model. J Chem Inf Model. 2017; 57: 3032 – 3042.; Kozma D, Simon I, Tusnady GE. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2013; 41: D524 – D529.; Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49: W431 – W437.; Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: An integration of molecular mechanisms. J Cell Biol. 2016; 214: 375 – 387.; Stansfeld PJ, Goose JE, Caffrey M, et al. MemProtMD: Automated insertion of membrane protein structures into explicit lipid membranes. Structure. 2015; 23: 1350 – 1361.; Newport TD, Sansom MSP, Stansfeld PJ. The MemProtMD database: A resource for membrane‐embedded protein structures and their lipid interactions. Nucleic Acids Res. 2019; 47: D390 – d397.; Yin Y, Arkhipov A, Schulten K. Simulations of membrane tubulation by lattices of amphiphysin N‐BAR domains. Structure. 2009; 17: 882 – 892.; Lomize AL, Pogozheva ID, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model. 2011; 51: 930 – 946.; Lomize AL, Schnitzer KA, Todd SC, Pogozheva ID. Thermodynamics‐based molecular modeling of α‐helices in membranes and micelles. J Chem Inf Model. 2021; 61: 2884 – 2896.; Suetsugu S. The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins. J Biochem. 2010; 148: 1 – 12.; Suetsugu S, Toyooka K, Senju Y. Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Sem Cell Dev Biol. 2010; 21: 340 – 349.; Lemmon M. Membrane recognition by phospholipid‐binding domains. Nat Rev Mol Cell Biol. 2008; 9: 99 – 111.; Gallop JL, Jao CC, Kent HM, et al. Mechanism of endophilin N‐BAR domain‐mediated membrane curvature. EMBO J. 2006; 25: 2898 – 2910.; Liu S, Xiong X, Zhao X, Yang X, Wang H. F‐BAR family proteins, emerging regulators for cell membrane dynamic changes‐from structure to human diseases. J Hematol Oncol. 2015; 8: 47.

  8. 8
    دورية أكاديمية
  9. 9
    مراجعة
  10. 10
    مراجعة

    المؤلفون: Senju, Yosuke, Lappalainen, Pekka

    المساهمون: Institute of Biotechnology, Pekka Lappalainen / Principal Investigator

    وصف الملف: application/pdf

    العلاقة: The studies focusing on protein-lipid interplay in the laboratory of PL are supported by Human Frontiers Science Program Organization (RGP0005/2016) and academy of Finland Centre of Excellence (272130). We apologize that many studies on regulation of the actin cytoskeleton dynamics by phosphoinositides could not be cited due to space limitations. Minna Poukkula (University of Helsinki) is acknowledged for excellent comments on the manuscript.; Senju , Y & Lappalainen , P 2019 , ' Regulation of actin dynamics by PI(4,5)P-2 in cell migration and endocytosis ' , Current Opinion in Cell Biology , vol. 56 , pp. 7-13 . https://doi.org/10.1016/j.ceb.2018.08.003Test; ORCID: /0000-0002-9606-3270/work/68616193; http://hdl.handle.net/10138/321962Test; 24822f48-5796-4801-a071-c65df566c60e; 000457629800003