يعرض 1 - 10 نتائج من 29 نتيجة بحث عن '"B. K. Kurbatov"', وقت الاستعلام: 1.50s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية

    المساهمون: The work was supported by the Russian Science Foundation, Grant No. 22-15-00048. The section “Synthetic analogues of apelins” is supported by the state assignment 122020300042-4., Обзорная статья выполнена при поддержке Российского научного фонда, грант № 22-1500048. Раздел «Синтетические аналоги апелинов» поддержан государственным заданием 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 29-39 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 29-39 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/2048/919Test; Hage A., Stevens L.M., Ouzounian M., Chung J., El-Hamamsy I., Chauvette V. et al. Impact of brain protection strategies on mortality and stroke in patients undergoing aortic arch repair with hypothermic circulatory arrest: evidence from the Canadian Thoracic Aortic Collaborative. Eur. J. Cardiothorac. Surg. 2020;58(1):95–103. DOI:10.1093/ ejcts/ezaa023.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Lio K.U., O’Corragain O., Bashir R., Brosnahan S., Cohen G., Lakhter V. et al. Clinical outcomes and factors associated with pulmonary infarction following acute pulmonary embolism: a retrospective observational study at a US academic centre. BMJ Open. 2022;12(12):e067579. DOI:10.1136/bmjopen-2022-067579.; Swinarska J.T., Stratta R.J., Rogers J., Chang A., Farney A.C., Orlando G. et al. Early graft loss after deceased-donor kidney transplantation: What are the consequences? J. Am. Coll. Surg. 2021;232(4):493–502. DOI:10.1016/j.jamcollsurg.2020.12.005.; O’Dowd B.F., Heiber M., Chan A., Heng H.H., Tsui L.C., Kennedy J.L. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1– 2):355–360. DOI:10.1016/0378-1119(93)90495-o.; Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251(2):471–476. DOI:10.1006/bbrc.1998.9489.; Hu G., Wang Z., Zhang R., Sun W., Chen X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021;12:632886. DOI:10.3389/ fphys.2021.632886.; Chng S.C., Ho L., Tian J., Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev. Cell. 2013;27(6):672–680. DOI:10.1016/j.devcel.2013.11.002.; Perjés Á., Skoumal R., Tenhunen O., Kónyi A., Simon M., Horváth I.G. et al. Apelin increases cardiac contractility via protein kinase Cεand extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473. DOI:10.1371/journal.pone.0093473.; Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538(2–3):162–171. DOI:10.1016/ s0167-4889(00)00143-9.; Than A., He H.L., Chua S.H., Xu D., Sun L., Leow M.K. et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem. 2015;290(23):14679–14691. DOI:10.1074/jbc.M115. 643817.; Sekerci R., Acar N., Tepekoy F., Ustunel I., Keles-Celik N. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta. Histochem. 2018;120(3):196–204. DOI:10.1016/j.acthis.2018.01.007.; Chen M.M., Ashley E.A., Deng D.X., Tsalenko A., Deng A., Tabibiazar R. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108(12):1432–1439. DOI:10.1161/01.CIR.0000091235.94914.75.; Bircan B., Çakır M., Kırbağ S., Gül H.F. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren. Fail. 2016;38(7):1122–1128. DOI:10.1080/0886022X.2016.1184957.; Gholampour F., Bagheri A., Barati A., Masoudi R., Owji S.M. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury. J. Surg. Res. 2020;247:429–437. DOI:10.1016/j.jss.2019.09.063.; Zhang X., Zhu Y., Zhou Y., Fei B. Activation of Nrf2 signaling by apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab. Syndr. Obes. 2020;13:2169–2177. DOI:10.2147/DMSO. S246743.; Xu F., Wu M., Lu X., Zhang H., Shi L., Xi Y. et al. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides. 2022;147:170682. DOI:10.1016/j.peptides.2021.170682.; Fan X.F., Xue F., Zhang Y.Q., Xing X.P., Liu H., Mao S.Z. et al. The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest. 2015;147(4):969–978. DOI:10.1378/chest.14-1426.; Xia F., Chen H., Jin Z., Fu Z. Apelin-13 protects the lungs from ischemia-reperfusion injury by attenuating inflammatory and oxidative stress. Hum. Exp. Toxicol. 2021;40(4):685–694. DOI:10.1177/0960327120961436.; Wu F., Qiu J., Fan Y., Zhang Q., Cheng B., Wu Y. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gα /Gαtions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Xin Q., Cheng B., Pan Y., Liu H., Yang C., Chen J. et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. DOI:10.1016/j. peptides.2014.09.016.; Duan J., Cui J., Yang Z., Guo C., Cao J., Xi M. et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J. Neuroinflammation. 2019;16(1):24. DOI:10.1186/s12974019-1406-7.; Liu D.R., Hu W., Chen G.Z. Apelin-12 exerts neuroprotective effect against ischemia-reperfusion injury by inhibiting JNK and P38MAPK signaling pathway in mouse. Eur. Rev. Med. Pharmacol. Sci. 2018;22(12):3888–3895. DOI:10.26355/eurrev_201806_15273.; Chu H., Yang X., Huang C., Gao Z., Tang Y., Dong Q. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of Aquaporin-4. Cerebrovasc. Dis. 2017;44(1–2):10–25. DOI:10.1159/000460261.; Zhang R., Wu F., Cheng B., Wang C., Bai B., Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp. Biol. Med. (Maywood). 2023;248(2):146–156. DOI:10.1177/15353702221139186; Mughal A., Sun C., O’Rourke S.T. Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J. Pharmacol. Exp. Ther. 2018;366(2):265–273. DOI:10.1124/jpet.118.248682.; Dönmez Y., Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore). 2019;98(43):e17645. DOI:10.1097/MD.0000000000017645.; Sans-Roselló J., Casals G., Rossello X., González de la Presa B., Vila M., Duran-Cambra A. et al. Prognostic value of plasma apelin concentrations at admission in patients with ST-segment elevation acute myocardial infarction. Clin. Biochem. 2017;50(6):279–284. DOI:10.1016/j.clinbiochem.2016.11.018.; Wang C., Du J.F., Wu F., Wang H.C. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+] transient and contrac contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Wang C., Liu N., Luan R., Li Y., Wang D., Zou W. et al. Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Cardiovasc. Res. 2013;100(1):114–124. DOI:10.1093/cvr/cvt160.; Rostamzadeh F., Najafipour H., Yeganeh-Hajahmadi M., Esmaeili-Mahani S., Joukar S., Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci. 2017;191:24–33. DOI:10.1016/j.lfs.2017.09.044.; Simpkin J.C., Yellon D.M., Davidson S.M., Lim S.Y., Wynne A.M., Smith C.C. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res. Cardiol. 2007;102(6):518–528. DOI:10.1007/s00395-007-0671-2.; Писаренко О.И., Шульженко В.С., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Беспалова Ж.Д. и др. Влияние экзогенного апелина-12 на функциональное и метаболическое восстановление изолированного сердца крысы после ишемии. Кардиология. 2010;50(10):44–49.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Уменьшение реперфузионного повреждения сердца in vivo с помощью пептида апелина-12 у крыс. Бюллетень экспериментальной биологии и медицины. 2011;152(7):79–82.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Участие NO-зависимых механизмов действия апелина в защите миокарда от ишемического/реперфузионного повреждения. Кардиология. 2012;52(2):52–58. Pisarenko O.I., Serebriakova L.I., Pelogeĭkina Iu.A., Studneva I.M., Kkhatri D.N., Tskitishvili O.V. et al. Involvement of NO-dependent mechanisms of apelin action in myocardial protection against ischemia/reperfusion damage. Kardiologiia. 2012;52(2):52–58. (In Russ.).; Abbasloo E., Najafipour H., Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exp. Pharmacol. Physiol. 2020;47(3):393–402. DOI:10.1111/1440-1681.13195.; Pisarenko O.I., Shulzhenko V.S., Pelogeykina Y.A., Studneva I.V. Enhancement of crystalloid cardioplegic protection by structural analogs of apelin-12. J. Surg. Res. 2015;194(1):18–24. DOI:10.1016/j. jss.2014.11.007.; Писаренко О.И., Беспалова О.И., Ланкин В.З., Тимошин А.А., Серебрякова Л.И., Шульженко В.С. и др. Антиоксидантные свойства апелина-12 и его структурного аналога при экспериментальной ишемии и реперфузии. Кардиология. 2013;53(5):61–67.; Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin A., Anesia R. et al. Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br. J. Pharmacol. 2015;172(12):2933–2945. DOI:10.1111/ bph.13038.; Tao J., Zhu W., Li Y., Xin P., Li J., Liu M. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1471–H1486. DOI:10.1152/ ajpheart.00097.2011.; Yu P., Ma S., Dai X., Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am. J. Transl. Res. 2020;12(8):4467–4477.; Chen Y., Qiao X., Zhang L., Li X., Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol. Res. 2020;69(5):813–822. DOI:10.33549/physiolres.934488.; Hou X., Zeng H., Tuo Q.H., Liao D.F., Chen J.X. Apelin gene therapy increases autophagy via activation of sirtuin 3 in diabetic heart. Diabetes Res. (Fairfax). 2015;1(4):84–91. DOI:10.17140/DROJ-1-115.; Wang W., McKinnie S.M., Patel V.B., Haddad G., Wang Z., Zhabyeyev P. et al. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J. Am. Heart Assoc. 2013;2(4):e000249. DOI:10.1161/JAHA.113.000249.; Masri B., Morin N., Pedebernade L., Knibiehler B., Audigier Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 2006;281(27):18317–18326. DOI:10.1074/jbc.M600606200.; Bai B., Cai X., Jiang Y., Karteris E., Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism. J. Cell. Mol. Med. 2014;18(10):2071–2081. DOI:10.1111/jcmm.12404.; Chapman N.A., Dupré D.J., Rainey J.K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell. Biol. 2014;92(6):431–440. DOI:10.1139/bcb-2014-0072.; Moon M.J., Oh D.Y., Moon J.S., Kim D.K., Hwang J.I., Lee J.Y. et al. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Mol. Cell. Endocrinol. 2007;277(1–2):51– 60. DOI:10.1016/j.mce.2007.07.008.; Folino A., Accomasso L., Giachino C., Montarolo P.G., Losano G., Pagliaro P. et al. Apelin-induced cardioprotection against ischaemia/ reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol. (Oxf.). 2018;222(2):e12924. DOI:10.1111/apha.12924.; Yang S., Li H., Tang L., Ge G., Ma J., Qiao Z. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3βmPTP pathway. Arch. Med. Sci. 2015;11(5):1065–1073. DOI:10.5114/ aoms.2015.54863.; Pisarenko O.I., Shulzhenko V.S., Studneva I.M., Serebryakova L.I., Pelogeykina Y.A., Veselova O.M. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides. 2015;73:67–76. DOI:10.1016/j.peptides.2015.09.001.; Писаренко О.И., Пелогейкина Ю.А., Шульженко В.С., Студнева И.М., Беспалова З.Д., Азмуко А.А. и др. Влияние ингибирования новообразования на метаболическое восстановление ишемизи рованного сердца крысы апелином-12. Биомедицинская химия.2012;58(6):702–711; Rastaldo R., Cappello S., Folino A., Berta G.N., Sprio A.E., Losano G. et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am. J. Physiol. Heart Circ. Physiol. 2011;300(6):H2308–H2315. DOI:10.1152/ ajpheart.01177.2010.; Pisarenko O.I., Lankin V.Z., Konovalova G.G., Serebryakova L.I., Shulzhenko V.S., Timoshin A.A. et al. Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol. Cell. Biochem. 2014;391(1–2):241–250. DOI:10.1007/ s11010-014-2008-4.; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. DOI:10.1016/j.bmcl.2020.127499.; Trân K., Murza A., Sainsily X., Coquerel D., Côté J., Belleville K. et al. A systematic exploration of macrocyclization in apelin-13: impact on binding, signaling, stability, and cardiovascular effects. J. Med. Chem. 2018;61(6):2266–2277. DOI:10.1021/acs.jmedchem.7b01353.; Li L., Zeng H., Chen J.X. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2012;303(5):H605–H618. DOI:10.1152/ajpheart.00366.2012.; Azizi Y., Faghihi M., Imani A., Roghani M., Zekri A., Mobasheri M.B. et al. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur. J. Pharmacol. 2015;761:101–108. DOI:10.1016/j.ejphar.2015.04.034.; O’Harte F.P.M., Parthsarathy V., Hogg C., Flatt P.R. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One. 2018;13(8):e0202350. DOI:10.1371/journal.pone.0202350.; Tran K., Sainsily X., Côté J., Coquerel D., Couvineau P., Saibi S. et al. Size-Reduced Macrocyclic Analogues of [Pyr1]-apelin-13 Showing Neg Negative Gα12 Bias Still Produce Prolonged Cardiac Effects. J. Med. Chem. 2022;65(1):531–551.; https://www.sibjcem.ru/jour/article/view/2048Test

  8. 8
    دورية أكاديمية

    المساهمون: Тhe article was prepared with the financial support of the Russian Science Foundation, grant MMP (23-65-10017). The introduction to the article was prepared with the support of the state assignment 122020300042-4, Статья подготовлена при финансовой поддержке Российского Научного Фонда (грант 23-65-10017). Введение к статье подготовлено при поддержке государственного задания 122020300042-4

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 11-17 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 11-17 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1853/927Test; Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M. et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. DOI:10.1016/j.carrev.2020.09.032.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Garcia S., Schmidt C.W., Garberich R., Henry T.D., Bradley S.M., Brilakis E.S. et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003–2018. Catheter. Cardiovasc. Interv. 2021;97(6):1109–1117. DOI:10.1002/ccd.28901.; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. DOI:10.2174/1573403X18666220413121730.; Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. DOI:10.1097/CRD.0000000000000190.; Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A. et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. DOI:10.1111/eci.13526.; Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ. Res. 2004;94(7):960–966. DOI:10.1161/01.RES.0000122392.33172.09.; Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. DOI:10.1213/ANE.0b013e3181b92201.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика; 1996:784.; Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Экспериментальная и клиническая фармакология. 2017;80(6):39–44. DOI:10.30906/0869-2092-2017-80-6-39-44.; Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal NOS signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. J. Pharmacol. Exp. Ther. 2016;358(3):450–456. DOI:10.1124/jpet.116.234021.; Lu Y., Hu J., Zhang Y., Dong C.S., Wong G.T. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J. Surg. Res. 2015;193(1):43–51. DOI:10.1016/j.jss.2014.08.014.; Lishmanov Yu.B., Ugdyzhekova D.S., Maslov L.N. Prevention of experimental epinephrine-induced arrhythmias with agonists of δ1 - and δ2 -opiate receptors. Bull. Exp. Biol. Med. 1997;124(3):873–875. DOI:10.1007/BF02446988.; Patel H.H., Hsu A., Moore J., Gross G.J. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J. Mol. Cell. Cardiol. 2001;33(8):1455–1465. DOI:10.1006/jmcc.2001.1408.; Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.-M., Brown S.A. et al. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. DOI:10.1002/med.21395.; Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009;84(19–20):657–663. DOI:10.1016/j.lfs.2009.02.016.; Peart J.N., Patel H.H., Gross G.J. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol. 2003;42(1):78–81. DOI:10.1097/00005344-200307000-00012.; Fryer R.M., Wang Y., Hsu A.K., Nagase H., Gross G.J. Dependence of δ1 -opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther. 2001;299(2):477–482.; Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. DOI:10.1016/j.ejphar.2021.174302.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis LVM, Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. DOI:10.2174/1570161119666201120160619.; Gross E.R., Hsu A.K., Gross G.J. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H827–H834. DOI:10.1152/ajpheart.00003.2006.; Dorsch M., Behmenburg F., Raible M., Blase D., Grievink H., Hollmann M.W. et al. Morphine-induced preconditioning: involvement of protein kinase A and mitochondrial permeability transition pore. PLoS One. 2016;11(3):e0151025. DOI:10.1371/journal.pone.0151025.; Li L., Zhang H., Li T., Zhang B. Involvement of adenosine monophosphate-activated protein kinase in morphine-induced cardioprotection. J. Surg. Res. 2011;169(2):179–187. DOI:10.1016/j.jss.2009.11.007.; Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. DOI:10.4097/kjae.2011.60.5.351.; Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503–507. DOI:10.1016/j.cyto.2011.07.015.; Gross G.J., Hsu A., Nithipatikom K., Pfeiffer A.W., Bobrova I., Bissessar E. Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology. 2012;90(1–2):110–116. DOI:10.1111/j.1745-7254.2005.00100.x.; Zhang Y., Chen Z.W., Girwin M., Wong T.M. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin. 2005;26(5):546–550. DOI:10.1111/j.1745-7254.2005.00100.x.; Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. DOI:10.3390/membranes13010063.; Maslov L.N., Lishmanov Y.B. The anti-arrhythmic effect of D-Ala2, Leu5, Arg6-enkephalin and its possible mechanism. Int. J. Cardiol. 1993;40(2):89–94. DOI:10.1016/0167-5273(93)90269-m.; Li D.Y., Gao S.J., Sun J., Zhang L.Q., Wu J.Y., Song F.H. et al. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural. Regen Res. 2023; 18(5):996–1003. DOI:10.4103/1673-5374.355748.; Krylatov A.V., Tsibulnikov S.Y., Mukhomedzyanov A.V., Boshchenko A.A., Goldberg V.E., Jaggi A.S. et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling. J. Cardiovasc. Pharmacol. Ther. 2021;26(2):131–148. DOI:10.1177/1074248420952243.; Wu G., Sharina I., Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front. Mol. Biosci. 2022;9:1007768. DOI:10.3389/fmolb.2022.1007768.; Xu J., Zhu K., Wang Y., Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J. Cancer Res. Clin. Oncol. 2023;149(1):483–501. DOI:10.1007/s00432-022-04447-7.; Castany S., Carcolé M., Leánez S., Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci. Lett. 2016;614:49–54. DOI:10.1016/j.neulet.2015.12.059.; Stagni E., Bucolo C., Motterlini R., Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J. Ocul. Pharmacol. Ther. 2010;26(1):31–35. DOI:10.1089/jop.2009.0081.; Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L. et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. DOI:10.2174/1573403X14666180702152436.; Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223– 1227. DOI:10.1016/j.lfs.2007.08.031.; Rong F., Peng Z., Ye M.X., Zhang Q.Y., Zhao Y., Zhang S.M., et al. Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by κ-opioid receptor agonist. Arch. Med. Res. 2009;40(4):227–234. DOI:10.1016/j.arcmed.2009.04.009.; Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454– 463. DOI:10.1007/s00395-008-0726-z.; Jang Y., Xi J., Wang H., Mueller R.A., Norfleet E.A., Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anesthesiology. 2008;108(2):243–250. DOI:10.1097/01.anes.0000299437.93898.4a.; Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69–74. DOI:10.4097/kjae.2011.61.1.69.; https://www.sibjcem.ru/jour/article/view/1853Test

  9. 9
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on reperfusion therapy of microvascular obstruction was prepared in the framework of the state task 122020300042-4., Работа выполнена при финансовой поддержке гранта Российского научного фонда № 23-65-10017. Раздел, посвященный реперфузионной терапии микроваскулярной обструкции, подготовлен в рамках государственного задания 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 14-22 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 14-22 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1782/808Test; Majno G., Ames A., Chaing J., Wright R.L. No reflow after cerebral ischemia. Lancet. 1967;290(7515):569–570. DOI:10.1016/S0140-6736(67)90552-1.; Kloner R.A., Ganote C.E., Jennings R.B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 1974;54(6):1496–1508. DOI:10.1172/JCI107898.; Schofer J., Montz R., Mathey D.G. Scintigraphic evidence of the “no reflow” phenomenon in human beings after coronary thrombolysis. J. Am. Coll. Cardiol. 1985;5(3):593–598. DOI:10.1016/s0735-1097(85)80381-8.; Алексеева Я.В., Вышлов Е.В., Павлюкова Е.Н., Усов В.Ю., Марков В.А., Рябов В.В. Влияние разных фенотипов микрососудистого повреждения миокарда на сократительную функцию левого желудочка у пациентов с инфарктом миокарда с подъемом сегмента ST. Кардиология. 2021;61(5):23–31. DOI:10.18087/cardio.2021.5.n1500.; McCartney P.J., Eteiba H., Maznyczka A.M., McEntegart M., Greenwood J.P. Muir D.F. et al.; T-TIME Group. Effect of low-dose intracoronary alteplase during primary percutaneous coronary intervention on microvascular obstruction in patients with acute myocardial infarction: A randomized clinical trial. JAMA. 2019;321(1):56–68. DOI:10.1001/jama.2018.19802.; McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart J. Cardiovasc. Imaging. 2019;20(2):133–135. DOI:10.1093/ehjci/jey159.; Ndrepepa G., Tiroch K., Fusaro M., Keta D., Seyfarth M., Byrne R.A. et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 2010;55(21):2383–2389. DOI:10.1016/j.jacc.2009.12.054.; Rossington J.A., Sol E., Masoura K., Aznaouridis K., Chelliah R., Cunnington M. et al. No-reflow phenomenon and comparison to the normal-flow population postprimary percutaneous coronary intervention for ST elevation myocardial infarction: case-control study (NORM PPCI). Open Heart. 2020;7(2):e001215. DOI:10.1136/openhrt-2019-001215.; Wu K.C., Zerhouni E.A., Judd R.M., Lugo-Olivieri C.H., Barouch L.A., Schulman S.P. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–772. DOI:10.1161/01.cir.97.8.765.; Mayr A., Klug G., Schocke M., Trieb T., Mair J., Pedarnig K. et al. Late microvascular obstruction after acute myocardial infarction: relation with cardiac and inflammatory markers. Int. J. Cardiol. 2012;157(3):391–396. DOI:10.1016/j.ijcard.2010.12.090.; Ober C.D., Ober M.C., Iancu A.C. Serial transthoracic coronary Doppler shows complete reversibility of microvascular obstruction pattern at one month after reperfused acute myocardial infarction. Med. Ultrason. 2017;19(1):45–50. DOI:10.11152/mu-941.; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. DOI:10.29001/2073-8552-2022-37-1-36-46.; Romano M., Buffoli F., Lettieri C., Aroldi M., Tomasi L., Baccaglioni N. et al. No reflow in patients undergoing primary angioplasty for acute myocardial infarction at high risk: incidence and predictive factors. Minerva Cardioangiol. 2005;53(1):7–14.; Klug G., Mayr A., Schenk S., Esterhammer R., Schocke M., Nocker M. et al. Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012;14(1):46. DOI:10.1186/1532-429X-14-46.; Kitabata H., Kubo T., Ishibashi K., Komukai K., Tanimoto T., Ino Y. et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2013;6(10):1046–1054. DOI:10.1016/j.jcin.2013.05.014.; Porto I., Biasucci L.M., De Maria G.L., Leone A.M., Niccoli G., Burzotta F. et al. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur. Heart J. 2012;33(23):2928–2938. DOI:10.1093/eurheartj/ehs065.; Jesel L., Morel O., Ohlmann P., Germain P., Faure A., Jahn C. et al. Role of pre-infarction angina and inflammatory status in the extent of microvascular obstruction detected by MRI in myocardial infarction patients treated by PCI. Int. J. Cardiol. 2007;121(2):139–147. DOI:10.1016/j.ijcard.2006.10.022.; Zalewski J., Durak M., Lech P., Gajos G., Undas A., Nessler J. et al. Platelet activation and microvascular injury in patients with ST-segment elevation myocardial infarction. Kardiol. Pol. 2012;70(7):677–684.; Basili S., Tanzilli G., Raparelli V., Calvieri C., Pignatelli P., Carnevale R. et al. Aspirin reload before elective percutaneous coronary intervention: impact on serum thromboxane b2 and myocardial reperfusion indexes. Circ. Cardiovasc. Interv. 2014;7(4):577–584. DOI:10.1161/CIRCINTERVENTIONS.113.001197.; Takahashi T., Fukai T., Hata H., Kasuya H., Kuga T., Egashira K. et al. Effects of a new calcium antagonist, CD-832, on experimental coronary artery spasm in miniature pigs. Cardiovasc. Drugs Ther. 1993;7(2):265–271. DOI:10.1007/BF00878517.; Ghaleh B., Dubois-Randé J.L., Hittinger L., Giudicelli J.F., Berdeaux A. Comparisons of the effects of nicorandil, pinacidil, nicardipine and nitroglycerin on coronary vessels in the conscious dog: role of the endothelium. Br. J. Pharmacol. 1995;114(2):496–502. DOI:10.1111/j.1476-5381.1995.tb13254.x.; Abebe W., Makujina S.R., Mustafa S.J. Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am. J. Physiol. 1994;266(5):H2018–H2025. DOI:10.1152/ajpheart.1994.266.5.H2018.; Ghaleh B., Béa M.L., Dubois-Randé J.L., Giudicelli J.F., Hittinger L., Berdeaux A. Endothelial modulation of beta-adrenergic dilation of large coronary arteries in conscious dogs. Circulation. 1995;92(9):2627–2635. DOI:10.1161/01.cir.92.9.2627.; Lee S.R., Jung J.M., Jung L.Y., Lee J.H., Lee S.H., Rhee K.S. et al. Elevated coronary whole blood viscosity in acute coronary syndrome patients. Clin. Hemorheol. Microcirc. 2013;55(1):85–94. DOI:10.3233/CH-131692.; Fracassi F., Vetrugno V., Mandurino-Mirizzi A., Cosentino N., Panicale S., Caprari P. et al. Effect of hemorheological parameters on myocardial injury after primary or elective percutaneous coronary intervention. Coron. Artery Dis. 2018;29(8):638–646. DOI:10.1097/MCA.0000000000000661.; Tarantini G., Razzolini R., Cacciavillani L., Bilato C., Sarais C., Corbetti F. et al. Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am. J. Cardiol. 2006;98(8):1033–1040. DOI:10.1016/j.amjcard.2006.05.022.; Galiuto L., Garramone B., Scarà A., Rebuzzi A.G., Crea F., La Torre G. et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J. Am. Coll. Cardiol. 2008;51(5):552–559. DOI:10.1016/j.jacc.2007.09.051.; Zhang L., Mandry D., Chen B., Huttin O., Hossu G., Wang H. et al. Impact of microvascular obstruction on left ventricular local remodeling after reperfused myocardial infarction. J. Magn. Reson. Imaging. 2018;47(2):499–510. DOI:10.1002/jmri.25780.; Dregoesc M.I., Iancu A.C., Ober C.D., Homorodean C., Bãlãnescu Ş., Bolboacã S. In ST-segment elevation myocardial infarction, the echocardiographic parameters of microvascular obstruction are not associated with left ventricular remodeling at five years of follow-up. Echocardiography. 2019;36(6):1103–1109. DOI:10.1111/echo.14371.; Tsujioka H., Imanishi T., Ikejima H., Tanimoto T., Kuroi A., Kashiwagi M. et al. Post-reperfusion enhancement of CD14(+)CD16(–) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ. J. 2010;74(6):1175–1182. DOI:10.1253/circj.cj-09-1045.; Reindl M., Reinstadler S.J., Feistritzer H.J., Klug G., Tiller C., Mair J. et al. Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care. 2017;6(7):640–649. DOI:10.1177/2048872616661691.; Holzknecht M., Tiller C., Reindl M., Lechner I., Troger F., Hosp M. et al. C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. Int. J. Cardiol. 2021;338:30–36. DOI:10.1016/j.ijcard.2021.06.023.; Guo F., Dong M., Ren F., Zhang C., Li J., Tao Z. et al. Association between local interleukin-6 levels and slow flow/microvascular dysfunction. J. Thromb. Thrombolysis. 2014;37(4):475–482. DOI:10.1007/s11239-013-0974-0.; Shetelig C., Limalanathan S., Hoffmann P., Seljeflot I., Gran J.M., Eritsland J. et al. Association of IL-8 with infarct size and clinical outcomes in patients with STEMI. J. Am. Coll. Cardiol. 2018;72(2):187–198. DOI:10.1016/j.jacc.2018.04.053.; Abdelaziz H.K., Elkilany W., Khalid S., Sabet S., Saad M. Efficacy and safety of intracoronary verapamil versus sodium nitroprusside for the prevention of microvascular obstruction during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Coron Artery Dis. 2017;28(1):11–16. DOI:10.1097/MCA.0000000000000423.; Hillegass W.B., Dean N.A., Liao L., Rhinehart R.G., Myers P.R. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J. Am. Coll. Cardiol. 2001;37(5):1335–1343. DOI:10.1016/s0735-1097(01)01138-x.; Wang H.J., Lo P.H., Lin J.J., Lee H., Hung J.S. Treatment of slow/noreflow phenomenon with intracoronary nitroprusside injection in primary coronary intervention for acute myocardial infarction. Catheter. Cardiovasc. Interv. 2004;63(2):171–176. DOI:10.1002/ccd.20149.; Niccoli G., Rigattieri S., De Vita M.R., Valgimigli M., Corvo P., Fabbiocchi F. et al. Open-label, randomized, placebo-controlled evaluation of intracoronary adenosine or nitroprusside after thrombus aspiration during primary percutaneous coronary intervention for the prevention of microvascular obstruction in acute myocardial infarction: the REOPEN-AMI study (Intracoronary Nitroprusside Versus Adenosine in Acute Myocardial Infarction). JACC Cardiovasc. Interv. 2013;6(6):580–589. DOI:10.1016/j.jcin.2013.02.009.; Nazir S.A., McCann G.P., Greenwood J.P., Kunadian V., Khan J.N., Mahmoud I.Z. et al. Strategies to attenuate micro-vascular obstruction during P-PCI: the randomized reperfusion facilitated by local adjunctive therapy in ST-elevation myocardial infarction trial. Eur. Heart J. 2016;37(24):1910–1919. DOI:10.1093/eurheartj/ehw136.; Taylor A.J., Bobik A., Richards M., Kaye D., Raines G., Gould P. et al. Myocardial endothelin-1 release and indices of inflammation during angioplasty for acute myocardial infarction and stable coronary artery disease. Am. Heart J. 2004;148(2):e10. DOI:10.1016/j.ahj.2004.03.018.; Eitel I., Nowak M., Stehl C., Adams V., Fuernau G., Hildebrand L. et al. Endothelin-1 release in acute myocardial infarction as a predictor of long-term prognosis and no-reflow assessed by contrast-enhanced magnetic resonance imaging. Am. Heart J. 2010;159(5):882–890. DOI:10.1016/j.ahj.2010.02.019.; Tan C.M.J., Green P., Tapoulal N., Lewandowski A.J., Leeson P., Herring N. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol. 2018;9:1281. DOI:10.3389/fphys.2018.01281.; Clarke J.G., Davies G.J., Kerwin R., Hackett D., Larkin S., Dawbarn D. et al. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet. 1987;1(8541):1057–1059. DOI:10.1016/s0140-6736(87)90483-1.; Herring N., Tapoulal N., Kalla M., Ye X., Borysova L., Lee R. et al. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur. Heart J. 2019;40(24):1920–1929. DOI:10.1093/eurheartj/ehz115.; Aksu T., Guler T.E., Colak A., Baysal E., Durukan M., Sen T. et al. Intracoronary epinephrine in the treatment of refractory no-reflow after primary percutaneous coronary intervention: a retrospective study. BMC Cardiovasc. Disord. 2015;15:10. DOI:10.1186/s12872-015-0004-6.; Navarese E.P., Frediani L., Kandzari D.E., Caiazzo G., Cenname A.M., Cortese B. et al. Efficacy and safety of intracoronary epinephrine versus conventional treatments alone in STEMI patients with refractory coronary no-reflow during primary PCI: The RESTORE observational study. Catheter Cardiovasc. Interv. 2021;97(4):602–611. DOI:10.1002/ccd.29113.; Darwish A, Frere AF, Abdelsamie M, Awady WE, Gouda M. Intracoronary epinephrine versus adenosine in the management of refractory no-reflow phenomenon: a single-center retrospective cohort study. Ann. Saudi. Med. 2022;42(2):75–82. DOI:10.5144/0256-4947.2022.75.; Zhao J., Yang Y., You S., Cui C., Gao R. Carvedilol preserves endothelial junctions and reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Int. J. Cardiol. 2007;115(3):334–341. DOI:10.1016/j.ijcard.2006.03.017.; Marzilli M., Orsini E., Marraccini P., Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101(18):2154–2159. DOI:10.1161/01.cir.101.18.2154.; Ito H., Taniyama Y., Iwakura K., Nishikawa N., Masuyama T., Kuzuya T. et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J. Am. Coll. Cardiol. 1999;33(3):654–660. DOI:10.1016/s0735-1097(98)00604-4.; Khan J.N., Greenwood J.P., Nazir S.A., Lai F.Y., Dalby M., Curzen N. et al. Infarct size following treatment with second-versus third-generation P2Y12 antagonists in patients with multivessel coronary disease at ST-segment elevation myocardial infarction in the CvLPRIT study. J. Am. Heart Assoc. 2016;5(6):e003403. DOI:10.1161/JAHA.116.003403.; Ma Q., Ma Y., Wang X., Li S., Yu T., Duan W. et al. Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study. Int. J. Cardiovasc. Imaging. 2020;36(6):1121–1132. DOI:10.1007/s10554-020-01800-0.; Aetesam-Ur-Rahman M., Brown A.J., Jaworski C., Giblett J.P., Zhao T.X., Braganza D.M. et al. Adenosine-induced coronary steal is observed in patients presenting with ST-segment-elevation myocardial infarction. J. Am. Heart Assoc. 2021;10(13):e019899. DOI:10.1161/JAHA.120.019899.; Lim S.Y., Bae E.H., Jeong M.H., Kang D.G., Lee Y.S., Kim K.H. et al. Effect of combined intracoronary adenosine and nicorandil on no-reflow phenomenon during percutaneous coronary intervention. Circ J. 2004;68(10):928–932. DOI:10.1253/circj.68.928.; Knabb R.M., Ely S.W., Bacchus A.N., Rubio R., Berne R.M. Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow, and pericardial infusate adenosine concentration with various interventions and beta-blockade in the dog. Circ. Res. 1983;53(1):33–41. DOI:10.1161/01.res.53.1.33.; Buffington C.W., Feigl E.O. Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ. Res. 1981;48(3):416–423. DOI:10.1161/01.res.48.3.416.; Golino P., Maroko P.R., Carew T.E. The effect of acute hypercholesterolemia on myocardial infarct size and the no-reflow phenomenon during coronary occlusion-reperfusion. Circulation. 1987;75(1):292–298. DOI:10.1161/01.cir.75.1.292.; Taniyama Y., Ito H., Iwakura K., Masuyama T., Hori M., Takiuchi S. et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 1997;30(5):1193–1199. DOI:10.1016/s0735-1097(97)00277-5.; Huang R.I., Patel P., Walinsky P., Fischman D.L., Ogilby J.D., Awar M. et al. Efficacy of intracoronary nicardipine in the treatment of no-reflow during percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2006;68(5):671–676. DOI:10.1002/ccd.20885.; Fischell T.A., Haller S., Pulukurthy S., Virk I.S. Nicardipine and adenosine “flush cocktail” to prevent no-reflow during rotational atherectomy. Cardiovasc. Revasc. Med. 2008;9(4):224–228. DOI:10.1016/j.carrev.2008.03.002.; https://www.sibjcem.ru/jour/article/view/1782Test

  10. 10
    دورية أكاديمية

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 126-132 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 126-132 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1721/795Test; Tapsell L.C., Neale E.P., Satija A., Hu F.B. Foods, Nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv. Nutr. 2016;7(3):445–454. DOI:10.3945/an.115.011718.; GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–1972. DOI:10.1016/S0140-6736(19)30041-8.; Elizabeth L., Machado P., Zinöcker M., Baker P., Lawrence M. Ultra-processed foods and health outcomes: A narrative review. Nutrients. 2020;12(7):1955. DOI:10.3390/nu12071955.; Hunt N.J., Kang S.W.S., Lockwood G.P., Le Couteur D.G., Cogger V.C. Hallmarks of aging in the liver. Comput. Struct. Biotechnol. J. 2019;17:1151–1161. DOI:10.1016/j.csbj.2019.07.021.; Drożdż K., Nabrdalik K., Hajzler W., Kwiendacz H., Gumprecht J., Lip G.Y.H. Metabolic-associated fatty liver disease (MAFLD), diabetes, and cardiovascular disease: associations with fructose metabolism and gut microbiota. Nutrients. 2021;14(1):103. DOI:10.3390/nu14010103.; Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75(18):3313–3327. DOI:10.1007/s00018-018-2860-6.; Vlad M., Ionescu N., Ispas A.T., Giuvărăşteanu I., Ungureanu E., Stoica C. Morphological changes during acute experimental short-term hyperthermia. Rom. J. Morphol. Embryol. 2010;51(4):739–744.; Maeso-Díaz R., Ortega-Ribera M., Fernández-Iglesias A., Hide D., Muñoz L., Hessheimer A.J. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell. 2018;17(6):e12829. DOI:10.1111/acel.12829.; Miyaoka Y., Ebato K., Kato H., Arakawa S., Shimizu S., Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 2012;22(13):1166–1175. DOI:10.1016/j.cub.2012.05.016.; Cai J., Hu M., Chen Z., Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 2021;19(1):186. DOI:10.1186/s12967-021-02854-x.; Le Couteur D.G., Lakatta E.G. A vascular theory of aging. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65(10):1025–1027. DOI:10.1093/gerona/glq135.; Wang W.L., Zheng X.L., Li Q.S., Liu W.Y., Hu L.S., Sha H.C. et al. The effect of aging on VEGF/VEGFR2 signal pathway genes expression in rat liver sinusoidal endothelial cell. Mol. Cell. Biochem. 2021;476(1):269–277. DOI:10.1007/s11010-020-03903-7.; Cheluvappa R., Hilmer S.N., Kwun S.Y., Jamieson H.A., O’Reilly J.N., Muller M. et al. The effect of old age on liver oxygenation and the hepatic expression of VEGF and VEGFR2. Exp. Gerontol. 2007;42(10):1012–1019. DOI:10.1016/j.exger.2007.06.001.; Mariotti V., Fiorotto R., Cadamuro M., Fabris L., Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021;3(3):100251. DOI:10.1016/j.jhepr.2021.100251.; Adas G., Koc B., Adas M., Duruksu G., Subasi C., Kemik O. et al. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch. Surg. 2016;401(5):725–740. DOI:10.1007/s00423-016-1380-9.; Kambakamba P., Linecker M., Schneider M., Kron P., Limani P., Tschuor C. et al. Novel benefits of remote ischemic preconditioning through VEGF-dependent protection from resection-induced liver failure in the mouse. Ann. Surg. 2018;268(5):885–893. DOI:10.1097/SLA.0000000000002891.; Lee A.R., Baek S.M., Lee S.W., Kim T.U., Han J.E., Bae S. et al. Nuclear VEGFR-2 expression of hepatocytes is involved in hepatocyte proliferation and liver regeneration during chronic liver injury. In Vivo. 2021;35(3):1473–1483. DOI:10.21873/invivo.12400.; Wang P., Lu Z., He M., Shi B., Lei X., Shan A. The effects of endoplasmic-reticulum-resident selenoproteins in a nonalcoholic fatty liver disease pig model induced by a high-fat diet. Nutrients. 2020;12(3):692. DOI:10.3390/nu12030692.; https://www.sibjcem.ru/jour/article/view/1721Test